
Turkish Journal of Science & Technology Research Paper
17(1), 89-98, 2022 https://doi.org/10.55525/tjst.1068940

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better

Distribution

Beytullah YILDIZ1*
1 Department of Software Engineering, School of Engineering, Atilim University, Ankara, Turkey

*1 beytullah.yildiz@atilim.edu.tr

 (Geliş/Received: 06/02/2022; Kabul/Accepted: 22/02/2022)

Abstract: Technological developments and the widespread use of the internet cause the data produced on a daily basis to

increase exponentially. An important part of this deluge of data is text data from applications such as social media,

communication tools, customer service. The processing of this large amount of text data needs automation. Significant

successes have been achieved in text processing recently. Especially with deep learning applications, text classification

performance has become quite satisfactory. In this study, we proposed an innovative data distribution algorithm that reduces

the data imbalance problem to further increase the text classification success. Experiment results show that there is an

improvement of approximately 3.5% in classification accuracy and over 3 in F1 score with the algorithm that optimizes the

data distribution.

Key words: Text classification, Data Imbalance, Data Distribution, Deep learning, Word Embedding.

Daha İyi Dağıtımla İyileştirilmiş Dengesiz Veriler Üzerinde Derin Öğrenme ile Verimli Metin

Sınıflandırması

Öz: Teknolojik gelişmeler ve internetin yaygınlaşması, günlük olarak üretilen verilerin katlanarak artmasına neden olmaktadır.

Bu veri tufanının önemli bir kısmı sosyal medya, iletişim araçları, müşteri hizmetleri gibi uygulamalardan gelen metin

verilerinden kaynaklanmaktadır. Bu büyük miktarda metin verisinin işlenmesi otomasyona ihtiyaç duymaktadır. Son

zamanlarda metin işlemede önemli başarılar elde edilmiştir. Özellikle derin öğrenme uygulamaları ile metin sınıflandırma

performansı oldukça tatmin edici hale gelmiştir. Bu çalışmada, metin sınıflandırma başarısını daha da artırmak için veri

dengesizliği sorununu azaltan yenilikçi bir veri dağıtım algoritması önerdik. Deney sonuçları, veri dağılımını optimize eden

algoritma ile sınıflandırma doğruluğunda yaklaşık %3,5 ve F1 puanında 3'ün üzerinde bir iyileşme olduğunu göstermektedir.

Anahtar kelimeler: Metin sınıflandırma, Veri Dengesizliği, Veri Dağıtımı, Derin öğrenme, Kelime Gömme.

1. Introduction

With the widespread use of the Internet, data production speed, volume, and variety of data have increased

significantly. Text data has a significant share in the produced data. Many applications such as social media,

customer service, and communication tools are increasingly generating huge text data. The processing and analysis

of these data become very important. Institutions and organizations hire employees and experts who will carry out

the tasks of reading, classifying, evaluating, and responding to texts. The correct and fast processing and the

response of the text are extremely important in terms of quality and satisfaction. However, the current business

model has some drawbacks that need improvement. When the workload increases, either the number of employees

or the working hours of the employees must be increased in order to provide the necessary service. This results in

compromising the quality of the work. In addition, increasing the number of employees or working hours is a

costly solution. Therefore, Automation has become necessary for the processing of increasing text data.

Classification is one of the main tasks for text processing. We see its application in many natural language

processing (NLP) tasks. Recently, very successful classification results have been obtained with the prominent

deep learning models [1-3]. Well-known deep learning networks such as Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN), and recently networks with Attention layer, especially Transformer, have been

used text classification [4, 5]. In order to better classify the text with these networks, data preparation is important;

it is vital that the data is appropriately represented and well distributed among the training batches. In addition to

simple word representation methods such as one-hot encoding, bag-of-words, and term frequency-inverse

document frequency (TF-IDF), advanced methods that take into account semantic and syntactic information such

as Word2Vec [6], FastText [7], Glove [8], BERT [9] can be used. To improve performance and success, it is

* Corresponding author: beytullah.yildiz@atilim.edu.tr. ORCID Number of authors: 1 0000-0001-7664-5145

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution

90

advantageous to use features that best describe the text in terms of classification, rather than using the entire text.

The correct representation of the text and the selection of the correct features are processes that require expertise

depending on the data and method to be used. With the use of deep learning and word representation methods,

there have been important conveniences and gains in this regard.

Deep learning models are trained with batches of data. The data distribution in these batches should ideally

be homogeneous so that the models can learn the patterns efficiently. However, it is not always possible to have

ideal data and it is difficult to eliminate this deficiency, which we can define as imbalanced data[10]. One way to

do this is to use shuffle to randomly distribute data. However, this may not eliminate the imbalanced data problem.

Another way is to use data augmentation. Text data augmentation has some problems. It is difficult to create new

text data that contains the original information and properties of the data. Therefore, in this study, we introduce an

algorithm to create better distribution to mitigate imbalanced data problems. We classified 263168 documents

containing 15 classes using deep learning models. Word2Vec word vectors were created using 2803125 documents

of approximately 203 million words. Long short-term memory (LSTM) based deep learning models were created

for classification tasks. We proposed an innovative algorithm for better distribution of the training dataset to

increase classification success. Experimental results show an increase of about 3.5% in classification accuracy and

an improvement of over 3 in F1 score with the proposed data distribution.

In the second section of this article, related works are presented. In the third section, we describe the

methodology of our research. Results and evaluations are given in the fourth section. In the last section, we provide

the conclusion of our research.

2. Related Work

A brief overview of text classification algorithms was provided by Kowsari et al. in [11]. In the article,

existing algorithms and techniques, text feature extraction methods, and dimensionality reduction methods were

discussed. The authors also explored the limitations of each technique in real-world problems. An effective text

classification requires good word representation and data distribution, in addition to other requirements. The

importance of word representation was discussed in [12, 13]. The authors examined the effect of better word

representation on classification success. On the other hand, the problem of data imbalance, which hinders

classification success, has also attracted the attention of many studies.

Sun et al. studied imbalanced data where the number of text data in some classes was relatively small [14].

The authors provided some conclusions as a result of the experiments. They stated that when the number of texts

in the classes is the same, the difference in the number of words in the texts is a factor affecting the success of

classification. They also claimed that if the number of texts in the classes is different, increasing the number of

texts in the class with a small number of texts does not affect the success much. However, we think that the reason

for this claim is due to the difficulty of producing texts representing the class. In [15], the authors presented an

approach to measure and reduce unwanted bias in machine learning models. In this context, it was shown how

models with imbalances in the training dataset can lead to undesirable bias and thus potentially unfair practices.

To provide a solution, a reduction method, which is an unsupervised approach based on balancing the training

dataset, was proposed. The approach was claimed to reduce unwanted bias without sacrificing overall model

quality. [16] presented a KNN-based method for unevenly distributed large sets of documents. Experimental

results showed that the approach provides better text classification.

Imbalance in classes is often come across in real applications of text classifications, especially one-vs-all

methods. Therefore, it is quite important to address the issue for reasonable performance. To mitigate the problem,

Ogura et al. focused their attention on a feature selection scheme and explored various criteria for feature selection

[17]. They examined three different types of metrics and showed that feature selections using the appropriate

metrics in the unbalanced dataset yield satisfactory classification success. The problem of underrepresentation of

categories with fewer examples was attempted to be solved by Liu et al. using a simple probability-based term

weighting scheme [18]. This scheme directly used two critical information ratios, namely, relevance indicators.

Using Support Vector Machines and Naïve Bayes classifiers on two benchmark datasets, including Reuters-21578,

the proposed work was compared with other classical weighting schemes and showed significant improvement for

categories with fewer examples. [10] presented an experimental analysis using various text data representations

and data balancing schemes to obtain a classification model with the highest success. The authors' proposed

schemes to deal with data imbalance and to analyze it with a numerical optimization problem in which the costs

are derived by a Differential Evolution algorithm. In the book chapter, Liu et al. explained the approaches adopted

to resolve data imbalance in text classification and group them according to their primary focus [19]. The authors

Beytullah YILDIZ

91

showed the effects of class imbalance on classification models in [20]. They conduct extensive experiments to

highlight the nature of the relationship between the degree of class imbalance and classifier performance.

3. Methodology

In many real-world applications, some classes in training datasets have less representation than others. This

imbalanced data structure causes problems in Machine Learning classification and results in poor classification

success as there is not enough data to learn. Therefore, we presented an algorithm that optimizes the data

distribution as a solution to the data imbalance. We studied this algorithm in an LSTM-based deep learning model.

We made text classification on 263168 Turkish documents labeled in 15 categories. The same text data and the

same word representations were used when evaluating the model. Since deep learning methods use numbers

instead of text, we drew attention to the vectorization of texts using a word representation. Python programming

language was used in the development of the application. Word vectors were created using Gensim [21] library

and the TensorFlow library was used for deep learning model development.

We performed the steps in Figure 1 to train and test the classification model. We trained and tested our model

on the normal dataset containing Turkish documents and the dataset with the removed data imbalance in which

we applied our algorithm. The algorithm was applied while generating batches for training. The deep learning

model was trained with batches of text documents because the data size was huge. In the remainder of this section,

we'll explain our solution to the data imbalance. We will provide detailed information about the classification

model, the dataset we used, and the Word2vec model we used to create the word representations.

Figure 1. Training and testing the classification model and applying algorithms that resolve data

imbalances.

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution

92

3.1. Solving Data Imbalance

In many real-life application datasets, some classes are less represented than others. In other words, the data

is skewed. When the number of texts in some classes is less than in others, the training process is negatively

affected. This problem is called imbalanced data. There are solutions to mitigate this problem, such as data

augmentation and deleting data from classes with more data. Data deletion is generally not a good choice as it can

remove some necessary information. On the other hand, data augmentation is difficult for text data as opposed to

image data. For this reason, we prefer to distribute the data optimally into the training batches, considering the

number of documents in the classes. Hence, we created the following algorithm that optimally performs the data

distribution in the datasets. Algorithm 1 creates ideal batches, while Algorithm 2 performs optimal data distribution

in each training batch.

Algorithm 1: Distribute Data

1: procedure GetBatches()

2: Number of classes is m

3: for i ← 1, m do

4: classes(i) ← getClasses()

5: batches← CreateWellDistributedBatches (classes)

6: end for

7: end procedure

Algorithm 2: Create Well-distributed Batches

1: procedure CreateWellDistributedBatches (classes)

2: normIndex is a two dimentional array

3: for i ← 1, m do

4: class ← classes(i)

5: max ← len(class), min ← 1, row ← 1

6: while class is not empty do

7: index (row) ← an incremental value starting from 1 to max for each row

8: normIndex (i ,row) ← (index(row) – min)/ (max – min)

9: row ← row+ 1

10: end while

11: end for

12: classesWithNormIndex ← join classes with normalized indexes

13: range ← 1/numberOfBatch

14: r ← 0

15: for i ← 1, numberOfBatch do

16: while data in classes do

17: if r < normIndex for the data < r+range then

18: selectToBatch(classesWithNormIndex)

19: end if

20: end while

21: r ← r + range

22: end for

23: end procedure

We will give an example shown in Table 1 to explain how the algorithm works. Let's say we have a dataset

with categories A, B, and C. Category A consists of 10 texts, Category B consists of 5 texts, and Category C

consists of 3 texts. There are 18 texts in total in the dataset. It is aimed to divide the dataset into 3 optimal batches

of text. When the data is divided into three equal parts without any mixing or distribution as shown in Table 1

(Left-Original), it is seen that the classes are stacked in certain parts. The first part consists of A class texts, the

second part consists of A and B class texts. The third part consists of B and C class texts. Generally, classes are

randomly distributed using shuffle. However, this method does not guarantee that the categories are optimally

distributed in the batches for classification training. The texts in Table 1 (right) were distributed according to the

text frequency in the classes using the algorithm we suggested. When the data is divided into batches, it is seen

Beytullah YILDIZ

93

that the texts in each class are distributed as evenly as possible. Data that is not evenly distributed across 3 batches

is placed in an appropriate batch. As the number of data increases, this small error will decrease and the data

distribution will approach the ideal.

Table 1. A sample distribution of data.

Original Distributed

Indices Class Min Max

Normalized

Indices Part Indices Class Min Max

Normalized

Indices

1 A 1 10 0.00 1 1 A 1 10 0.00

2 A 1 10 0.11 2 1 B 1 5 0.00

3 A 1 10 0.22 3 1 C 1 3 0.00

4 A 1 10 0.33 4 2 A 1 10 0.11

5 A 1 10 0.44 5 3 A 1 10 0.22

6 A 1 10 0.56 6 2 B 1 5 0.25

7 A 1 10 0.67 1 4 A 1 10 0.33

8 A 1 10 0.78 2 5 A 1 10 0.44

9 A 1 10 0.89 3 3 B 1 5 0.50

10 A 1 10 1.00 4 2 C 1 3 0.50

1 B 1 5 0.00 5 6 A 1 10 0.56

2 B 1 5 0.25 6 7 A 1 10 0.67

3 B 1 5 0.50 1 4 B 1 5 0.75

4 B 1 5 0.75 2 8 A 1 10 0.78

5 B 1 5 1.00 3 9 A 1 10 0.89

1 C 1 3 0.00 4 10 A 1 10 1.00

2 C 1 3 0.50 5 5 B 1 5 1.00

3 C 1 3 1.00 6 3 C 1 3 1.00

3.2. Word Representation

We used the Word2Vec model, an unsupervised method proposed by Mikolov et al. [6, 22], for representing

words in texts. Word2Vec takes a corpus and creates word vectors of several hundred dimensions. It creates

numerical vectors to represent words by trying to position similar syntactic and semantic words close to each other

in vector space. There are two different methods for creating word vectors. The first of these is CBOW (Continuous

Bag of Words) and the second is SG (Skip-Gram). While the CBOW method tries to guess the word from the

words in a particular window to the right and left of the word, the SG method tries to guess the words to the right

and left of the word from the word itself. Besides word vectors, we also come across researches that create vectors

for documents, patterns, users, and classes [23, 24].

We created the word vectors using the SG model. The SG model has an input layer, a hidden layer, and an

output layer. The input vector 𝑥 = {𝑥1, … , 𝑥𝑣} is one-hot encoded. The weights between the input layer and the

hidden layer can be represented by the V x 𝑁 matrix W shown in formula 1, where V is the vocabulary size and 𝑁

is the unit size in the hidden layer. Between the output layer and the hidden layer, there is another V x 𝑁 weight

matrix 𝑊′ shown in formula 2.

𝑊𝑉𝑥𝑁 = [

𝑣11 … 𝑣1𝑁

⋮ ⋮ ⋮
𝑣𝑉1 … 𝑣𝑉𝑁

] (1)

𝑊′
𝑉𝑥𝑁 = [

𝑣′
11 … 𝑣′

1𝑁

⋮ ⋮ ⋮
𝑣′

𝑉1 … 𝑣′
𝑉𝑁

] (2)

Given a single word 𝑥𝑘, and assuming 𝑥𝑘 = 1 and 𝑥𝑘′ = 0 for 𝑘 ≠ 𝑘′, we obtain the formula 3 for the hidden-

layer outputs, where 𝑣𝑤𝐼
denotes the input vector of the associated word 𝑤 of the input layer.

ℎ = 𝑥𝑇𝑊 = 𝑊(𝑘,) ∶= 𝑣𝑤𝐼
 (3)

The output utilizing the Softmax function can be calculated by using 𝑣′
𝑤 . ℎ . Applying Formula 3, we get

the following formula:

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution

94

𝑝(𝑤𝑂|𝑤𝐼) =
exp (𝑣′

𝑤𝑂
 .𝑣𝑤𝐼

)

∑ exp (𝑣′
𝑤

𝑗′ .𝑣𝑤𝐼
)𝑉

𝑗′=1

 (4)

Thus, the loss function is formula 5 where 𝑐 is the number of context words.

𝐸 = − log 𝑝(𝑤𝑂,1, 𝑤𝑂,2, … 𝑤𝑂,𝐶|𝑤𝐼) (5)

After providing the mathematical background information, we explain how we generate the word vectors. A

collection of 2.8 million Turkish texts was used to create the Word2Vec model. The corpus has a total of 243

million words and 2.6 million unique words, including misspellings words. All uppercase letters have been

converted to lowercase to avoid creating a new token for the same word. While Word2vec training, windows size,

negative sample, minimum word count, and vector size were set to 20, 5, 5 250, respectively, in the SG method.

When the minimum word count parameter was set to 5, the number of unique words decreased from 2.6 million

to 603 thousand words. This is because there are many misspelled words in the corpus. Therefore, the minimum

word count parameter was chosen as 5.

3.3. Deep Learning Model

For the experiments, we used an LSTM-based deep learning model, which is known to classify well on text

data. With the algorithm we proposed, the dataset that solved the problem of data imbalance and the regular dataset,

in which this algorithm was not applied, were trained using the same model. In other words, two datasets were

tested on the same deep learning model. In the deep learning model, 1 Embedding layer, 2 bidirectional LSTM

layers of 128 units, 2 Dense layers of 500 and 300 units, and 1 output layer of 15 units were used. A 160 x 250

matrix was created for each text, with the embedding layer set to a maximum text length of 160 and using

Word2Vec vectors of size 250. Zero padding was applied to texts less than 160 words. 0.2 Dropout was utilized

in layers containing LSTM and Dense. Softmax activation function was applied to the output layer. "Adam" was

preferred as the optimization function and "sparse_categorical_crossentropy" was used as the loss function.

3.4. Dataset

Statistics of the text dataset used for classification are given in Table 2. The dataset contains a total of 263168

labeled documents with 15 classes. Of these documents, approximately 70% corresponding to 185344 documents

were used for training, approximately 15% corresponding to 38912 documents were used for verification, and

approximately 15% corresponding to 38912 documents were used for testing.

Table 2. Dataset used for classification.

Class Name Total Train Validation Test

1.Class 12055 8490 1782 1783

2.Class 18150 12782 2684 2684

3.Class 14405 10145 2130 2130

4.Class 26086 18372 3857 3857

5.Class 9550 6726 1412 1412

6.Class 20945 14751 3097 3097

7.Class 37180 26186 5497 5497

8.Class 11280 7944 1668 1668

9.Class 15505 10919 2293 2293

10.Class 15435 10871 2282 2282

11.Class 10768 7584 1592 1592

12.Class 30312 21348 4482 4482

13.Class 11795 8307 1744 1744

14.Class 12109 8528 1791 1790

15.Class 17593 12391 2601 2601

Total 263168 185344 38912 38912

Ratio (~%) 100 70 15 15

Beytullah YILDIZ

95

4. Benchmark and Evaluation

We used the documents whose statistics are given in Table 2 in the experiments. We first trained the dataset

as it provided. We collected the experimental metrics. We then optimally redistribute documents from datasets to

batches to find the improvement our algorithm provides to mitigate the data imbalance issue. Although the train,

validation, and test datasets contain the same number of documents, we rearrange the documents in the batches by

class types so that the distribution is optimal. Then, we collected experimental results. We did not make use of the

"EarlyStopping" callback to see the experimental behaviors and used 20 epochs for model training. However, we

save the best models for both experiments. A batch size of 1024 was used for each experiment. Precision, recall,

F1-score metrics, and model accuracies were used to evaluate approaches.

 4.1. Classification Model with Regular Dataset

The loss and accuracy graphs of the train and validation datasets are given in Figure 2 and Figure 3. The

model starts overfitting from Epoch 14. After this point, the validation loss and accuracy are not improving even

though training loss and accuracy values are getting better. Hence, we save the model at this point to measure

precision, recall, and F1 scores and accuracy on test datasets.

Figure 2. The loss results obtained during the training with the dataset in which the proposed distribution

algorithm is not applied.

Figure 3. The accuracy results obtained during the training with the dataset in which the proposed

distribution algorithm is not applied.

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution

96

The saved model was used to collect benchmarks. The accuracy of the test dataset is 87.96%. The precision,

recall, and F1-score values for each class are given in Table 3. The model's F1 score is 87.84. The other metrics

are also reasonable. Class transitivity seems to have caused bad results in some classes. Since the dataset we use

was obtained from a real-life application, some classes such as economics and education have similar content with

other classes. Therefore, metrics are worse in these classes.

Table 1. Precision, recall, and F1-score metrics obtained with the test dataset in the model trained with the

dataset to which the distribution algorithm is not applied.

Class Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All

Support 1783 2684 2130 3857 1412 3097 5497 1668 2293 2282 1592 4482 1744 1790 2533 38912

Precision 90.63 83.15 83.33 89.77 91.18 90.65 89.53 83.84 85.1 89.65 83.43 89.27 91.94 87.28 86.38 87.99

Recall 92.5 90.29 64.1 88.74 92.76 88.41 92.51 94.28 73.67 85.03 87.51 96.15 83.26 86.44 90.16 88

F1-Score 91.56 86.57 72.46 89.25 91.96 89.52 91 88.75 78.97 87.28 85.42 92.58 87.38 86.86 88.23 87.84

4.2. Classification Model with Well-distributed Dataset

For the optimally distributed dataset to the batches, loss and accuracy plots of the train and validation datasets

are given in Figure 4 and Figure 5. The model started to encounter the overfitting problem after Epoch 11.

Therefore, we save the model at this point to measure precision, recall, F1 score, and the accuracy value on the

test dataset. Compared to the model described in the previous section, the model is trained faster with the optimally

distributed dataset using our proposed algorithm. In addition, it is observed that the training and validation

accuracy values are much higher.

Figure 4. The loss results obtained in the model trained with the dataset created with the proposed

distribution algorithm.

Table 2. Precision, recall, and F1-score metrics obtained with the test dataset using the model trained with

the dataset created with the distribution algorithm.

Class Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All

Support 1783 2684 2130 3857 1412 3097 5497 1668 2293 2282 1592 4482 1744 1790 2533 38912

Precision 94 86.25 86.23 93.67 95.51 92.78 92.72 88.16 90.91 92.63 87.85 91.79 92.31 89.76 91.11 91.3

Recall 95.79 93.22 70.28 91.73 94.83 91.22 94.78 96.88 76.8 88.65 90.83 98.55 92.2 91.12 92.62 91.31

F1-Score 94.89 89.6 77.44 92.69 95.17 91.99 93.74 92.31 83.26 90.6 89.32 95.05 92.25 90.43 91.86 91.19

Beytullah YILDIZ

97

Figure 5. The accuracy results obtained in the model trained with the dataset created with the proposed

distribution algorithm.

When we look at the metrics collected for the test dataset. The accuracy of the test dataset was measured as

91.45%. Precision, recall, and F1 score values are given in Table 4. For the entire dataset, they are 91.3, 91.31,

and 91.19, respectively. It is clearly seen that these metrics are also better than the results we obtained in the

previous experiment.

4.3 Comparison

In terms of accuracy, we observe that our algorithm to distribute data into batches optimally provides 3.46%

better output. In addition, the average F1 score improved by 3.35. We see similar advances in recall and precision

measures. When we look at each of the classes, we witness improvement in almost every metric. In particular, it

appears that improvement is higher in classes with the worst metrics of previous experiments. This shows that our

proposed algorithm contributes better to solve the problem of data imbalance in underrepresented or transitive

classes. In addition, training takes less time as the model trained with the data set with the improved distribution

is optimized faster.

5. Conclusion

Nowadays, huge amounts of text data are produced from many sources. This excessive amount of text data

creates more workload. Dealing with this workload with new employees or more working hours is an expensive

method. Therefore, document classification, which is an important task for text data, requires atomization. Deep

learning, which has achieved significant success recently, offers an ideal solution. However, real-life application

datasets often do not have balanced datasets. Data imbalance is ubiquitous in real-life applications. This problem

leads to poor classification success.

In order to reduce the data imbalance problem, we proposed an algorithm that can better distribute the data

to the batches. We analyzed our proposed method using a very large Turkish dataset containing 263168 documents

with 15 classes. We conducted our experiments using an LSTM-based deep learning model. First, we trained the

deep learning model and collected the experimental metrics without using the proposed method on the data set we

collected. Then, we trained the same model using the dataset improved with our proposed distribution algorithm.

We compared the metrics we gathered from both experiments. Our proposed solution yielded approximately 3.5%

better accuracy than the experiment using a regular approach. It also shows an increase of more than 3 in the F1

score. Similar improvements are seen in other metrics. These results clearly demonstrate the importance of better

data distribution to training batches in text classification. Our proposed algorithm, which mitigates the data

imbalance problem, offers an important solution in this regard.

Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution

98

References

[1] Lai S, Xu L, Liu K, Zhao J. Recurrent convolutional neural networks for text classification. In: 29th AAAI conference on

artificial intelligence, Austin, Texas USA, January 25–30, 2015 2015.

[2] Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J. Deep Learning-based Text Classification: A

Comprehensive Review. ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1-40, 2021.

[3] Tufek A, Aktas M S. On the provenance extraction techniques from large scale log files: a case study for the numerical

weather prediction models. In: European Conference on Parallel Processing, 2020: Springer, pp. 249-260.

[4] Tezgider M, Yildiz B, Aydin G. Text classification using improved bidirectional transformer. Concurrency and

Computation: Practice and Experience, p. e6486.

[5] Soyalp G, Alar A, Ozkanli K, Yildiz B. Improving Text Classification with Transformer. In: 2021 6th International

Conference on Computer Science and Engineering (UBMK), 2021; Ankara, Turkey, IEEE pp. 707-712.

[6] Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their

compositionality. In: 26th International Conference on Neural Information Processing Systems, 2013, Lake Tahoe,

Nevada, pp. 3111-3119.

[7] Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of Tricks for Efficient Text Classification. In: 15th Conference of the

European Chapter of the Association for Computational Linguistics, April 2017, Valencia, Spain: Association for

Computational Linguistics, in Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 2, Short Papers, pp. 427-431.

[8] Pennington J, Socher R, Manning C. Glove: Global Vectors for Word Representation. In: The Conference on Empirical

Methods in Natural Language Processing (EMNLP). October 2014 Doha, Qatar: Association for Computational

Linguistics, pp. 1532-1543.

[9] Devlin J. Chang M W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language

understanding. In: 2019 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2019, Minneapolis, MN, USA.

[10] Padurariu C, Breaban M E. Dealing with data imbalance in text classification. Procedia Computer Science, 2019, vol. 159,

pp. 736-745.

[11] Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D. Text Classification Algorithms: A Survey.

Information, 2019, vol. 10, no. 4, p. 150.

[12] Yildiz B, Tezgider M. Improving word embedding quality with innovative automated approaches to hyperparameters.

Concurrency and Computation: Practice and Experience, 2021 p. e6091.

[13] Yildiz B, Tezgider M. Learning Quality Improved Word Embedding with Assessment of Hyperparameters. In European

Conference on Parallel Processing, 2019: Springer, pp. 506-518.

[14] Li Y, Sun G, Zhu Y. Data imbalance problem in text classification. In: 2010 Third International Symposium on

Information Processing, 2010: IEEE, pp. 301-305.

[15] Dixon L, Li J, Sorensen J, Thain N, Vasserman L. Measuring and mitigating unintended bias in text classification. In:

Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 67-73.

[16] Shi K, Li L, Liu H, He J, Zhang N, Song W. An improved KNN text classification algorithm based on density. In: 2011

IEEE International Conference on Cloud Computing and Intelligence Systems, 2011: IEEE, pp. 113-117.

[17] Ogura H, Amano H, Kondo M. Comparison of metrics for feature selection in imbalanced text classification. Expert

Systems with Applications, 2011, vol. 38, no. 5, pp. 4978-4989.

[18] Liu Y, Loh H T, Sun A. Imbalanced text classification: A term weighting approach. Expert systems with Applications,

2009, vol. 36, no. 1, pp. 690-701.

[19] Liu Y, Loh H T, Kamal Y T, Tor and S B. Handling of imbalanced data in text classification: Category-based term

weights. In: Natural language processing and text mining: Springer, 2007, pp. 171-192.

[20] Thabtah F, Hammoud S, Kamalov F, Gonsalves A. Data imbalance in classification: Experimental evaluation. Information

Sciences, 2020, vol. 513, pp. 429-441.

[21] Rehurek R, Sojka P. Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks, 2010: Citeseer.

[22] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint, 2013,

arXiv:1301.3781.

[23] Olmezogullari E, Aktas M S. Pattern2Vec: Representation of clickstream data sequences for learning user navigational

behavior. Concurrency and Computation: Practice and Experience, 2021, p. e6546.

[24] Hallac I R, Makinist S, Ay B, and Aydin G. user2vec: Social media user representation based on distributed document

embeddings. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 2019: IEEE, pp. 1-5.

