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Abstract: Technological developments and the widespread use of the internet cause the data produced on a daily basis to 

increase exponentially. An important part of this deluge of data is text data from applications such as social media, 

communication tools, customer service. The processing of this large amount of text data needs automation. Significant 

successes have been achieved in text processing recently. Especially with deep learning applications, text classification 

performance has become quite satisfactory. In this study, we proposed an innovative data distribution algorithm that reduces 

the data imbalance problem to further increase the text classification success. Experiment results show that there is an 

improvement of approximately 3.5% in classification accuracy and over 3 in F1 score with the algorithm that optimizes the 

data distribution. 
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Daha İyi Dağıtımla İyileştirilmiş Dengesiz Veriler Üzerinde Derin Öğrenme ile Verimli Metin 

Sınıflandırması 
 

Öz: Teknolojik gelişmeler ve internetin yaygınlaşması, günlük olarak üretilen verilerin katlanarak artmasına neden olmaktadır. 

Bu veri tufanının önemli bir kısmı sosyal medya, iletişim araçları, müşteri hizmetleri gibi uygulamalardan gelen metin 

verilerinden kaynaklanmaktadır. Bu büyük miktarda metin verisinin işlenmesi otomasyona ihtiyaç duymaktadır. Son 

zamanlarda metin işlemede önemli başarılar elde edilmiştir. Özellikle derin öğrenme uygulamaları ile metin sınıflandırma 

performansı oldukça tatmin edici hale gelmiştir. Bu çalışmada, metin sınıflandırma başarısını daha da artırmak için veri 

dengesizliği sorununu azaltan yenilikçi bir veri dağıtım algoritması önerdik. Deney sonuçları, veri dağılımını optimize eden 

algoritma ile sınıflandırma doğruluğunda yaklaşık %3,5 ve F1 puanında 3'ün üzerinde bir iyileşme olduğunu göstermektedir. 

 

Anahtar kelimeler: Metin sınıflandırma, Veri Dengesizliği, Veri Dağıtımı, Derin öğrenme, Kelime Gömme. 
 

1. Introduction 

 

With the widespread use of the Internet, data production speed, volume, and variety of data have increased 

significantly. Text data has a significant share in the produced data. Many applications such as social media, 

customer service, and communication tools are increasingly generating huge text data. The processing and analysis 

of these data become very important. Institutions and organizations hire employees and experts who will carry out 

the tasks of reading, classifying, evaluating, and responding to texts. The correct and fast processing and the 

response of the text are extremely important in terms of quality and satisfaction. However, the current business 

model has some drawbacks that need improvement. When the workload increases, either the number of employees 

or the working hours of the employees must be increased in order to provide the necessary service. This results in 

compromising the quality of the work. In addition, increasing the number of employees or working hours is a 

costly solution. Therefore, Automation has become necessary for the processing of increasing text data. 

Classification is one of the main tasks for text processing. We see its application in many natural language 

processing (NLP) tasks. Recently, very successful classification results have been obtained with the prominent 

deep learning models [1-3].  Well-known deep learning networks such as Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and recently networks with Attention layer, especially Transformer, have been 

used text classification [4, 5]. In order to better classify the text with these networks, data preparation is important; 

it is vital that the data is appropriately represented and well distributed among the training batches. In addition to 

simple word representation methods such as one-hot encoding, bag-of-words, and term frequency-inverse 

document frequency (TF-IDF), advanced methods that take into account semantic and syntactic information such 

as Word2Vec [6], FastText [7], Glove [8], BERT [9] can be used. To improve performance and success, it is 
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advantageous to use features that best describe the text in terms of classification, rather than using the entire text. 

The correct representation of the text and the selection of the correct features are processes that require expertise 

depending on the data and method to be used. With the use of deep learning and word representation methods, 

there have been important conveniences and gains in this regard. 

Deep learning models are trained with batches of data. The data distribution in these batches should ideally 

be homogeneous so that the models can learn the patterns efficiently. However, it is not always possible to have 

ideal data and it is difficult to eliminate this deficiency, which we can define as imbalanced data[10]. One way to 

do this is to use shuffle to randomly distribute data. However, this may not eliminate the imbalanced data problem. 

Another way is to use data augmentation. Text data augmentation has some problems. It is difficult to create new 

text data that contains the original information and properties of the data. Therefore, in this study, we introduce an 

algorithm to create better distribution to mitigate imbalanced data problems. We classified 263168 documents 

containing 15 classes using deep learning models. Word2Vec word vectors were created using 2803125 documents 

of approximately 203 million words. Long short-term memory (LSTM) based deep learning models were created 

for classification tasks. We proposed an innovative algorithm for better distribution of the training dataset to 

increase classification success. Experimental results show an increase of about 3.5% in classification accuracy and 

an improvement of over 3 in F1 score with the proposed data distribution. 

In the second section of this article, related works are presented. In the third section, we describe the 

methodology of our research. Results and evaluations are given in the fourth section. In the last section, we provide 

the conclusion of our research. 

 

2. Related Work 

 

A brief overview of text classification algorithms was provided by Kowsari et al. in [11]. In the article, 

existing algorithms and techniques, text feature extraction methods, and dimensionality reduction methods were 

discussed. The authors also explored the limitations of each technique in real-world problems. An effective text 

classification requires good word representation and data distribution, in addition to other requirements. The 

importance of word representation was discussed in [12, 13]. The authors examined the effect of better word 

representation on classification success. On the other hand, the problem of data imbalance, which hinders 

classification success, has also attracted the attention of many studies. 

Sun et al. studied imbalanced data where the number of text data in some classes was relatively small [14]. 

The authors provided some conclusions as a result of the experiments. They stated that when the number of texts 

in the classes is the same, the difference in the number of words in the texts is a factor affecting the success of 

classification. They also claimed that if the number of texts in the classes is different, increasing the number of 

texts in the class with a small number of texts does not affect the success much. However, we think that the reason 

for this claim is due to the difficulty of producing texts representing the class. In [15], the authors presented an 

approach to measure and reduce unwanted bias in machine learning models. In this context, it was shown how 

models with imbalances in the training dataset can lead to undesirable bias and thus potentially unfair practices. 

To provide a solution, a reduction method, which is an unsupervised approach based on balancing the training 

dataset, was proposed. The approach was claimed to reduce unwanted bias without sacrificing overall model 

quality. [16] presented a KNN-based method for unevenly distributed large sets of documents. Experimental 

results showed that the approach provides better text classification. 

Imbalance in classes is often come across in real applications of text classifications, especially one-vs-all 

methods. Therefore, it is quite important to address the issue for reasonable performance. To mitigate the problem, 

Ogura et al. focused their attention on a feature selection scheme and explored various criteria for feature selection 

[17]. They examined three different types of metrics and showed that feature selections using the appropriate 

metrics in the unbalanced dataset yield satisfactory classification success. The problem of underrepresentation of 

categories with fewer examples was attempted to be solved by Liu et al. using a simple probability-based term 

weighting scheme [18]. This scheme directly used two critical information ratios, namely, relevance indicators. 

Using Support Vector Machines and Naïve Bayes classifiers on two benchmark datasets, including Reuters-21578, 

the proposed work was compared with other classical weighting schemes and showed significant improvement for 

categories with fewer examples. [10] presented an experimental analysis using various text data representations 

and data balancing schemes to obtain a classification model with the highest success. The authors' proposed 

schemes to deal with data imbalance and to analyze it with a numerical optimization problem in which the costs 

are derived by a Differential Evolution algorithm. In the book chapter, Liu et al. explained the approaches adopted 

to resolve data imbalance in text classification and group them according to their primary focus [19].  The authors 
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showed the effects of class imbalance on classification models in [20]. They conduct extensive experiments to 

highlight the nature of the relationship between the degree of class imbalance and classifier performance. 

 

3. Methodology 

 

In many real-world applications, some classes in training datasets have less representation than others. This 

imbalanced data structure causes problems in Machine Learning classification and results in poor classification 

success as there is not enough data to learn. Therefore, we presented an algorithm that optimizes the data 

distribution as a solution to the data imbalance. We studied this algorithm in an LSTM-based deep learning model. 

We made text classification on 263168 Turkish documents labeled in 15 categories. The same text data and the 

same word representations were used when evaluating the model. Since deep learning methods use numbers 

instead of text, we drew attention to the vectorization of texts using a word representation. Python programming 

language was used in the development of the application. Word vectors were created using Gensim [21] library 

and the TensorFlow library was used for deep learning model development.  

We performed the steps in Figure 1 to train and test the classification model. We trained and tested our model 

on the normal dataset containing Turkish documents and the dataset with the removed data imbalance in which 

we applied our algorithm. The algorithm was applied while generating batches for training. The deep learning 

model was trained with batches of text documents because the data size was huge. In the remainder of this section, 

we'll explain our solution to the data imbalance. We will provide detailed information about the classification 

model, the dataset we used, and the Word2vec model we used to create the word representations. 

 

 
 

Figure 1. Training and testing the classification model and applying algorithms that resolve data 

imbalances. 
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3.1. Solving Data Imbalance 

 

In many real-life application datasets, some classes are less represented than others. In other words, the data 

is skewed. When the number of texts in some classes is less than in others, the training process is negatively 

affected. This problem is called imbalanced data. There are solutions to mitigate this problem, such as data 

augmentation and deleting data from classes with more data. Data deletion is generally not a good choice as it can 

remove some necessary information. On the other hand, data augmentation is difficult for text data as opposed to 

image data. For this reason, we prefer to distribute the data optimally into the training batches, considering the 

number of documents in the classes. Hence, we created the following algorithm that optimally performs the data 

distribution in the datasets. Algorithm 1 creates ideal batches, while Algorithm 2 performs optimal data distribution 

in each training batch. 

 

Algorithm 1: Distribute Data 

1: procedure GetBatches() 

2:           Number of classes is m               

3:           for i ← 1, m do   

4:                   classes(i) ← getClasses() 

5:                   batches← CreateWellDistributedBatches (classes)  

6:            end for 

7: end procedure 

 

Algorithm 2: Create Well-distributed Batches 

1: procedure CreateWellDistributedBatches (classes)    

2:            normIndex is a two dimentional array 

3:            for i ← 1, m do   

4:                     class ← classes(i) 

5:                     max ← len(class),  min ← 1,  row ← 1 

6:                     while class is not empty do                           

7:                             index (row) ← an incremental value starting from 1 to max for each row 

8:                         normIndex (i ,row) ← (index(row) – min)/ (max – min) 

9:           row ← row+ 1 

10:                 end while 

11:            end for 

12:            classesWithNormIndex ← join classes with normalized indexes  

13:            range  ←  1/numberOfBatch 

14:            r ← 0   

15:            for i ← 1, numberOfBatch do            

16:                     while data in classes do                          

17:                          if  r < normIndex for the data < r+range then 

18:                                 selectToBatch(classesWithNormIndex) 

19:                            end if 

20:      end while       

21:                      r ← r + range 

22:             end for 

23:  end procedure 

 
We will give an example shown in Table 1 to explain how the algorithm works. Let's say we have a dataset 

with categories A, B, and C. Category A consists of 10 texts, Category B consists of 5 texts, and Category C 

consists of 3 texts. There are 18 texts in total in the dataset. It is aimed to divide the dataset into 3 optimal batches 

of text. When the data is divided into three equal parts without any mixing or distribution as shown in Table 1 

(Left-Original), it is seen that the classes are stacked in certain parts. The first part consists of A class texts, the 

second part consists of A and B class texts. The third part consists of B and C class texts. Generally, classes are 

randomly distributed using shuffle. However, this method does not guarantee that the categories are optimally 

distributed in the batches for classification training. The texts in Table 1 (right) were distributed according to the 

text frequency in the classes using the algorithm we suggested. When the data is divided into batches, it is seen 



Beytullah YILDIZ 

 

93 

 

that the texts in each class are distributed as evenly as possible. Data that is not evenly distributed across 3 batches 

is placed in an appropriate batch. As the number of data increases, this small error will decrease and the data 

distribution will approach the ideal. 

Table 1. A sample distribution of data. 

 

Original  Distributed 

Indices Class Min Max 

Normalized 

Indices Part Indices Class Min Max 

Normalized 

Indices 

1 A 1 10 0.00 1 1 A 1 10 0.00 

2 A 1 10 0.11 2 1 B 1 5 0.00 

3 A 1 10 0.22 3 1 C 1 3 0.00 

4 A 1 10 0.33 4 2 A 1 10 0.11 

5 A 1 10 0.44 5 3 A 1 10 0.22 

6 A 1 10 0.56 6 2 B 1 5 0.25 

7 A 1 10 0.67 1 4 A 1 10 0.33 

8 A 1 10 0.78 2 5 A 1 10 0.44 

9 A 1 10 0.89 3 3 B 1 5 0.50 

10 A 1 10 1.00 4 2 C 1 3 0.50 

1 B 1 5 0.00 5 6 A 1 10 0.56 

2 B 1 5 0.25 6 7 A 1 10 0.67 

3 B 1 5 0.50 1 4 B 1 5 0.75 

4 B 1 5 0.75 2 8 A 1 10 0.78 

5 B 1 5 1.00 3 9 A 1 10 0.89 

1 C 1 3 0.00 4 10 A 1 10 1.00 

2 C 1 3 0.50 5 5 B 1 5 1.00 

3 C 1 3 1.00 6 3 C 1 3 1.00 

 

3.2. Word Representation  

 

We used the Word2Vec model, an unsupervised method proposed by Mikolov et al. [6, 22], for representing 

words in texts. Word2Vec takes a corpus and creates word vectors of several hundred dimensions. It creates 

numerical vectors to represent words by trying to position similar syntactic and semantic words close to each other 

in vector space. There are two different methods for creating word vectors. The first of these is CBOW (Continuous 

Bag of Words) and the second is SG (Skip-Gram). While the CBOW method tries to guess the word from the 

words in a particular window to the right and left of the word, the SG method tries to guess the words to the right 

and left of the word from the word itself. Besides word vectors, we also come across researches that create vectors 

for documents, patterns, users, and classes [23, 24]. 

We created the word vectors using the SG model. The SG model has an input layer, a hidden layer, and an 

output layer. The input vector 𝑥 = {𝑥1, … , 𝑥𝑣} is one-hot encoded. The weights between the input layer and the 

hidden layer can be represented by the V x 𝑁 matrix W shown in formula 1, where V is the vocabulary size and 𝑁  

is the unit size in the hidden layer. Between the output layer and the hidden layer, there is another V x 𝑁 weight 

matrix  𝑊′ shown in formula 2.  

 

𝑊𝑉𝑥𝑁   = [

𝑣11 … 𝑣1𝑁

⋮ ⋮ ⋮
𝑣𝑉1 … 𝑣𝑉𝑁

]  (1) 

 

𝑊′
𝑉𝑥𝑁 = [

𝑣′
11 … 𝑣′

1𝑁

⋮ ⋮ ⋮
𝑣′

𝑉1 … 𝑣′
𝑉𝑁

] (2) 

 

Given a single word 𝑥𝑘, and assuming 𝑥𝑘 = 1 and 𝑥𝑘′ = 0 for  𝑘 ≠ 𝑘′, we obtain the formula 3 for the hidden-

layer outputs, where 𝑣𝑤𝐼
denotes the input vector of the associated word 𝑤 of the input layer. 

 

ℎ =  𝑥𝑇𝑊 = 𝑊(𝑘,) ∶=  𝑣𝑤𝐼
  (3) 

 

The output utilizing the Softmax function can be calculated by using  𝑣′
𝑤  . ℎ . Applying Formula 3, we get 

the following formula: 



Efficient Text Classification with Deep Learning on Imbalanced Data Improved with Better Distribution 

94 
 

𝑝(𝑤𝑂|𝑤𝐼) =  
exp (𝑣′

𝑤𝑂
 .𝑣𝑤𝐼

)

∑ exp (𝑣′
𝑤

𝑗′  .𝑣𝑤𝐼
)𝑉

𝑗′=1

 (4) 

 

Thus, the loss function is formula 5 where 𝑐  is the number of context words.  

 

𝐸 =  − log 𝑝(𝑤𝑂,1, 𝑤𝑂,2, … 𝑤𝑂,𝐶|𝑤𝐼) (5) 

 

After providing the mathematical background information, we explain how we generate the word vectors. A 

collection of 2.8 million Turkish texts was used to create the Word2Vec model. The corpus has a total of 243 

million words and 2.6 million unique words, including misspellings words. All uppercase letters have been 

converted to lowercase to avoid creating a new token for the same word. While Word2vec training, windows size, 

negative sample, minimum word count, and vector size were set to 20, 5, 5 250, respectively, in the SG method. 

When the minimum word count parameter was set to 5, the number of unique words decreased from 2.6 million 

to 603 thousand words. This is because there are many misspelled words in the corpus. Therefore, the minimum 

word count parameter was chosen as 5. 

 

3.3. Deep Learning Model 

 

For the experiments, we used an LSTM-based deep learning model, which is known to classify well on text 

data. With the algorithm we proposed, the dataset that solved the problem of data imbalance and the regular dataset, 

in which this algorithm was not applied, were trained using the same model. In other words, two datasets were 

tested on the same deep learning model. In the deep learning model, 1 Embedding layer, 2 bidirectional LSTM 

layers of 128 units, 2 Dense layers of 500 and 300 units, and 1 output layer of 15 units were used.  A 160 x 250 

matrix was created for each text, with the embedding layer set to a maximum text length of 160 and using 

Word2Vec vectors of size 250. Zero padding was applied to texts less than 160 words. 0.2 Dropout was utilized 

in layers containing LSTM and Dense. Softmax activation function was applied to the output layer. "Adam" was 

preferred as the optimization function and "sparse_categorical_crossentropy" was used as the loss function. 

 

3.4. Dataset 

 

Statistics of the text dataset used for classification are given in Table 2.  The dataset contains a total of 263168 

labeled documents with 15 classes. Of these documents, approximately 70% corresponding to 185344 documents 

were used for training, approximately 15% corresponding to 38912 documents were used for verification, and 

approximately 15% corresponding to 38912 documents were used for testing. 

 

Table 2. Dataset used for classification. 

 

Class Name Total Train Validation Test 

1.Class 12055 8490 1782 1783 

2.Class 18150 12782 2684 2684 

3.Class 14405 10145 2130 2130 

4.Class 26086 18372 3857 3857 

5.Class 9550 6726 1412 1412 

6.Class 20945 14751 3097 3097 

7.Class 37180 26186 5497 5497 

8.Class 11280 7944 1668 1668 

9.Class 15505 10919 2293 2293 

10.Class 15435 10871 2282 2282 

11.Class 10768 7584 1592 1592 

12.Class 30312 21348 4482 4482 

13.Class 11795 8307 1744 1744 

14.Class 12109 8528 1791 1790 

15.Class 17593 12391 2601 2601 

Total 263168 185344 38912 38912 

Ratio (~%) 100 70 15 15 
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4. Benchmark and Evaluation 

 

We used the documents whose statistics are given in Table 2 in the experiments. We first trained the dataset 

as it provided. We collected the experimental metrics. We then optimally redistribute documents from datasets to 

batches to find the improvement our algorithm provides to mitigate the data imbalance issue. Although the train, 

validation, and test datasets contain the same number of documents, we rearrange the documents in the batches by 

class types so that the distribution is optimal. Then, we collected experimental results. We did not make use of the 

"EarlyStopping" callback to see the experimental behaviors and used 20 epochs for model training. However, we 

save the best models for both experiments. A batch size of 1024 was used for each experiment. Precision, recall, 

F1-score metrics, and model accuracies were used to evaluate approaches. 

 

 4.1. Classification Model with Regular Dataset 

 

The loss and accuracy graphs of the train and validation datasets are given in Figure 2 and Figure 3. The 

model starts overfitting from Epoch 14. After this point, the validation loss and accuracy are not improving even 

though training loss and accuracy values are getting better. Hence, we save the model at this point to measure 

precision, recall, and F1 scores and accuracy on test datasets.  

 

 
Figure 2. The loss results obtained during the training with the dataset in which the proposed distribution 

algorithm is not applied. 

 

 
Figure 3. The accuracy results obtained during the training with the dataset in which the proposed 

distribution algorithm is not applied. 
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The saved model was used to collect benchmarks. The accuracy of the test dataset is 87.96%. The precision, 

recall, and F1-score values for each class are given in Table 3. The model's F1 score is 87.84. The other metrics 

are also reasonable. Class transitivity seems to have caused bad results in some classes. Since the dataset we use 

was obtained from a real-life application, some classes such as economics and education have similar content with 

other classes. Therefore, metrics are worse in these classes. 

 

Table 1. Precision, recall, and F1-score metrics obtained with the test dataset in the model trained with the 

dataset to which the distribution algorithm is not applied. 

 

Class Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All 

Support 1783 2684 2130 3857 1412 3097 5497 1668 2293 2282 1592 4482 1744 1790 2533 38912 

Precision 90.63 83.15 83.33 89.77 91.18 90.65 89.53 83.84 85.1 89.65 83.43 89.27 91.94 87.28 86.38 87.99 

Recall 92.5 90.29 64.1 88.74 92.76 88.41 92.51 94.28 73.67 85.03 87.51 96.15 83.26 86.44 90.16 88 

F1-Score 91.56 86.57 72.46 89.25 91.96 89.52 91 88.75 78.97 87.28 85.42 92.58 87.38 86.86 88.23 87.84 

 

4.2. Classification Model with Well-distributed Dataset 

 

For the optimally distributed dataset to the batches, loss and accuracy plots of the train and validation datasets 

are given in Figure 4 and Figure 5. The model started to encounter the overfitting problem after Epoch 11. 

Therefore, we save the model at this point to measure precision, recall, F1 score, and the accuracy value on the 

test dataset. Compared to the model described in the previous section, the model is trained faster with the optimally 

distributed dataset using our proposed algorithm. In addition, it is observed that the training and validation 

accuracy values are much higher.  

 

 
Figure 4. The loss results obtained in the model trained with the dataset created with the proposed 

distribution algorithm. 

 

Table 2. Precision, recall, and F1-score metrics obtained with the test dataset using the model trained with 

the dataset created with the distribution algorithm. 

 

Class Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 All 

Support 1783 2684 2130 3857 1412 3097 5497 1668 2293 2282 1592 4482 1744 1790 2533 38912 

Precision 94 86.25 86.23 93.67 95.51 92.78 92.72 88.16 90.91 92.63 87.85 91.79 92.31 89.76 91.11 91.3 

Recall 95.79 93.22 70.28 91.73 94.83 91.22 94.78 96.88 76.8 88.65 90.83 98.55 92.2 91.12 92.62 91.31 

F1-Score 94.89 89.6 77.44 92.69 95.17 91.99 93.74 92.31 83.26 90.6 89.32 95.05 92.25 90.43 91.86 91.19 
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Figure 5. The accuracy results obtained in the model trained with the dataset created with the proposed 

distribution algorithm. 

 

When we look at the metrics collected for the test dataset. The accuracy of the test dataset was measured as 

91.45%. Precision, recall, and F1 score values are given in Table 4. For the entire dataset, they are 91.3, 91.31, 

and 91.19, respectively. It is clearly seen that these metrics are also better than the results we obtained in the 

previous experiment. 

 

4.3 Comparison  

 

In terms of accuracy, we observe that our algorithm to distribute data into batches optimally provides 3.46% 

better output. In addition, the average F1 score improved by 3.35. We see similar advances in recall and precision 

measures. When we look at each of the classes, we witness improvement in almost every metric. In particular, it 

appears that improvement is higher in classes with the worst metrics of previous experiments. This shows that our 

proposed algorithm contributes better to solve the problem of data imbalance in underrepresented or transitive 

classes. In addition, training takes less time as the model trained with the data set with the improved distribution 

is optimized faster. 

 

5. Conclusion 

 

Nowadays, huge amounts of text data are produced from many sources. This excessive amount of text data 

creates more workload. Dealing with this workload with new employees or more working hours is an expensive 

method. Therefore, document classification, which is an important task for text data, requires atomization. Deep 

learning, which has achieved significant success recently, offers an ideal solution. However, real-life application 

datasets often do not have balanced datasets. Data imbalance is ubiquitous in real-life applications. This problem 

leads to poor classification success.  

In order to reduce the data imbalance problem, we proposed an algorithm that can better distribute the data 

to the batches. We analyzed our proposed method using a very large Turkish dataset containing 263168 documents 

with 15 classes. We conducted our experiments using an LSTM-based deep learning model. First, we trained the 

deep learning model and collected the experimental metrics without using the proposed method on the data set we 

collected. Then, we trained the same model using the dataset improved with our proposed distribution algorithm. 

We compared the metrics we gathered from both experiments. Our proposed solution yielded approximately 3.5% 

better accuracy than the experiment using a regular approach. It also shows an increase of more than 3 in the F1 

score. Similar improvements are seen in other metrics. These results clearly demonstrate the importance of better 

data distribution to training batches in text classification. Our proposed algorithm, which mitigates the data 

imbalance problem, offers an important solution in this regard. 
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