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1. Introduction
Because of its wide applicability in biology, medicine and in more and more fields, the theory of fractional differential equations
has recently been attracting increasing interest. Especially, many research papers had devoted to generalized fractional
differential operator, this concept of generalized integral and derivative was given through Katugampola [11, 12]. The use
of Katugampola fractional derivative (KFD) is to generalize the Hadamard and Riemann-Liouville integrals and derivatives
which widely discussed by many researchers, one can refer to [8, 11, 12, 22]. Anderson et al. [1] studied some properties of
KFD with potential application in quantum mechanics. In [8], Janaki et al. established existence and uniqueness of solutions
to the impulsive differential equations with inclusions, and the authors also established some conditions for the uniqueness
and existence of solutions for a class of fractional implicit differential equations with KFD [9]. Recently, Vivek et al. [22]
investigated existence and stability of solutions for impulsive type integro-differential equations. Followed by the work, the
existence and Ulam stability of solutions for impulsive type pantograph equations was considered in [23].

As a result of unifying different techniques for initial or boundary conditions, nonlinear boundary conditions received more
and more attention, see [5, 6, 10], [13]-[18].

In this paper, we consider the following boundary value problem for implicit differential equations with KFD of the form
ρ Dα u(t) = Ψ(t,u(t),ρ Dα u(t)), t ∈ J := [a,b], 1 < α < 2, ρ > 0,
c1u(a)−d1u′(a) = u1,
c2u(b)−d2u′(b) = u2,

(1.1)

where ρ Dα is the generalized fractional derivative of order α, Ψ : J×R×R−→ R, is given function, c1,c2,d1,d2,u1,u2 ∈ R
and 0 6 a < b < ∞.
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The paper is organized as follows: In Section 2, we present definitions, lemmas, and some results. Section 3 is devoted to
establish our main results. Finally, two explanatory examples are given to illustrate the theoretical results.

2. Fundamental Results
We now introduce some definitions, preliminary facts about the fractional calculus, notations, and some auxiliary results, which
will be used later.

Definition 2.1. [12] The generalized left-sided fractional integral of order α ∈ C, (Re(α)> 0) is defined for t > a by

ρ Iα h(t) =
ρ1−α

Γ(α)

∫ t

a

(
tρ − sρ

)α−1
sρ−1h(s)ds, (2.1)

if the integral exists, where Γ(.) is the Gamma function.

Definition 2.2. [12] The generalized left-sided fractional derivative, corresponding to the generalized fractional integral (2.1)
is defined for t > a by

ρ Dα h(t) =
ρα−n+1

Γ(n−α)

(
t1−ρ d

dt

)∫ t

a

(
tρ − sρ

)n−α−1
sρ−1h(s)ds,

where n = [α]+1, if the integral exists.

Lemma 2.3. Let α > 0 and ρ > 0, then the differential equation

ρ Dα f (t) = 0,

has solutions

f (t) = a0 +
n−2

∑
k=1

ak

( tρ −aρ

ρ

)α−k
, ak ∈ R, k = 0,1,2, . . . ,n−2; n = [α]+1.

Lemma 2.4. Let α > 0 and ρ > 0, then

ρ Iα

(ρ

Dα f (t)
)
= f (t)+a0 +

n−2

∑
k=1

ak

( tρ −aρ

ρ

)α−k
,

for some

ak ∈ R, k = 0,1,2, . . . ,n−2; n = [α]+1.

Theorem 2.5. [7](Nonlinear alternative)
Let X be a Banach space with C ⊂ X closed and convex. Assume U is a relatively open subset of C with 0 ∈U and T : U −→C
is a compact. Then either,

1. T has a fixed point in U, or

2. there is a point u ∈ ∂U and λ ∈ (0,1) with u = λTu.

Theorem 2.6. [19] ( Krasnoselskii’s fixed point theorem)
Let E be a bounded closed convex and nonempty subset of a Banach space X . Let A,B two operators such that Ax+By ∈ E for
every pair x,y ∈ E. If A is a contraction and B is completely continuous then there exists z ∈ E such that Az+Bz = z.

3. Main Results
The following lemma is essential to state and prove our main result

Lemma 3.1. Let 1 < α < 2, ρ > 0 and ψ ∈C(J,R) be a continuous function. Then the following boundary value problem
ρ Dα u(t) = ψ(t), t ∈ J,
c1u(a)−d1u′(a) = u1,
c2u(b)−d2u′(b) = u2,

(3.1)
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has a unique solution given by

u(t) =
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds,

where

Kα
t (s) =

ρα−1

Γ(α)
(tρ − sρ)α−1sρ−1, σt =

( tρ −aρ

ρ

)α−1
,

φa,b =
1
δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)
, K(s) = c2Kα

b (s)−d2ρbρ−1Kα−1
b (s),

and

δ = d2(α−1)bρ−1
(bρ −aρ

ρ

)α−2
− c2

(bρ −aρ

ρ

)α−1
.

Proof. Let u satisfies the problem (3.1) then, by Lemmas 2.3 and 2.3 we have

u(t) = a0 +a1

( tρ −aρ

ρ

)α−1
+

ρα−1

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1

ψ(s)ds

= a0 +a1

( tρ −aρ

ρ

)α−1
+
∫ t

a
Kα

t (s)ψ(s)ds.

Then

u′(t) = a1(α−1)tρ−1
( tρ −aρ

ρ

)α−2
+ρtρ−1

∫ t

a
Kα−1

t (s)ψ(s)ds.

Therefore

u(a) = a0 and u′(a) = 0,

so we have

c1u(a)−d1u′(a) = c1a0 = u1

it follows that

a0 =
u1

c1
·

On the other hand, we have

c2u(b) = c2a0 + c2a1

(bρ −aρ

ρ

)α−1
+ c2

∫ b

a
Kα

b (s)ψ(s)ds,

and

d2u′(b) = d2a1(α−1)bρ−1
(bρ −aρ

ρ

)α−2
+d2ρbρ−1

∫ b

a
Kα−1

b (s)ψ(s)ds.

Then we obtain

c2u(b)−d2u′(b) = c2a0 + c2a1

(bρ −aρ

ρ

)α−1
−d2a1(α−1)bρ−1

(bρ −aρ

ρ

)α−2

+
∫ b

a

[
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

]
ψ(s)ds = u2

=
c2u1

c1
+ c2a1

(bρ −aρ

ρ

)α−1
−d2a1(α−1)bρ−1

(bρ −aρ

ρ

)α−2

+
∫ b

a

[
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

]
ψ(s)ds = u2

=
c2u1

c1
−a1

(
d2(α−1)bρ−1

(bρ −aρ

ρ

)α−2
− c2

(bρ −aρ

ρ

)α−1
)

+
∫ b

a

[
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

]
ψ(s)ds.
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From c2u(b)−d2u′(b) = u2 we deduce that

a1 =
1
δ

(c2u1

c1
−u2 +

∫ b

a

[
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

]
ψ(s)ds

)
=

1
δ

[c2u1

c1
−u2 +

∫ b

a

(
c2Kα

b (s)−d2ρbρ−1Kα−1
b (s)

)
ψ(s)ds

]
=

1
δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)
= φa,b.

Then we obtain

u(t) =
c2u1

c1
−u2 +φa,b

( tρ −aρ

ρ

)α−1
+
∫ t

a
Kα

t (s)ψ(s)ds

=
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds.

Then we can accomplish the purpose desired, which complete the proof.
For sake of brevity, we need the following proposition which is very useful in what follows.

Proposition 3.2. For 1 < α < 2, ρ > 0, and t,s ∈ J we have
(i)
∫ t

a Kα
t (s)ds 6

∫ b
a Kα

b (s)ds = ρα−2

Γ(α+1) (b
ρ −aρ)α

(ii)
∫ b

a Kα−1
b (s)ds = ρα−2

(α−1)Γ(α) (b
ρ −aρ)α−1

(iii)
∫ b

a |K(s)|ds 6 (bρ−aρ )α−1ρα−2

(α−1)Γ(α)

(
|c2|(bρ −aρ)+ |d2|ρbρ−1

)
:= K∗.

Proof. The proof of (i) and (ii) is immediate, it remains to prove (iii). Indeed, we have∫ b

a
|K(s)|ds =

∫ b

a

∣∣∣c2Kα
b (s)−d2ρbρ−1Kα−1

b (s)
∣∣∣ds

6
|c2|ρα−2

Γ(α +1)
(bρ −aρ)α +

|d2|ρbρ−1ρα−2

(α−1)Γ(α)
(bρ −aρ)α−1

6
(bρ −aρ)α−1ρα−2

Γ(α)

(
|c2|

bρ −aρ

α
+ |d2|

ρbρ−1

α−1

)
6

(bρ −aρ)α−1ρα−2

(α−1)Γ(α)

(
|c2|(bρ −aρ)+ |d2|ρbρ−1

)
= K∗.

3.1 Existence results
Now, we are in position to first result which is based on Theorem 2.5.

Theorem 3.3. Assume that
(A1) Ψ is continuous.
(A2) There exist constants k > 0 and 0 < l < 1 such that

|Ψ(t,u2,v2)−Ψ(t,u1,v1)|6 k|u2−u1|+ l|v2− v1|

for any u1,v1, u2,v2 ∈ R, and t ∈ J.
Then the problem (1.1) has at least one solution.

Proof. Let us consider the operator χ : C (J,R)−→ C (J,R) defined by

(χu)(t) =
c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds

where

ψ(s) = Ψ(s,u(s),ψ(s)).
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Step 1: χ is continuous.
Let {un} be a sequence such that un→ u in C (J,R). Then for each t ∈ J, we have

∣∣(χun)(t)− (χu)(t)
∣∣ =

∣∣∣σt

δ

∫ b

a
K(s)

(
ψn(s)−ψ(s)

)
ds

+
∫ t

a
Kα

t (s)
(
ψn(s)−ψ(s)

)
ds
∣∣∣

6
σb

|δ |

∫ b

a
|K(s)|

∣∣ψn(s)−ψ(s)
∣∣ds

+
∫ t

a
|Kα

t (s)|
∣∣ψn(s)−ψ(s)

∣∣ds

where

ψn(s) = Ψ(s,un(s),ψn(s)).

In virtue of (A2), we have

|ψn(s)−ψ(s)| ≤ k
1− l

|un(s)−u(s)|.

It follows that

|χun(t)−χu(t)| 6
k

1− l

(
σbK∗

|δ |
+
∫ b

a
Kα

b (s)ds
)
|un(s)−u(s)|

6
k

1− l

(
σbK∗

|δ |
+

ρα−2

Γ(α +1)
(bρ −aρ)α

)
‖un−u)‖∞.

Since un→ u, we get that ‖χun−χu‖∞→ 0 as n→ ∞. Hence χ is continuous.
Step 2: χ maps bounded sets into bounded sets in C (J,R).
It is enough to show that there exists a positive constant m for r > 0 such that for each u ∈Dr = {u ∈ C (J,R) : ‖u‖∞ 6 r} we
have ‖χu‖∞ 6 m. Indeed for each t ∈ J, and u ∈Dr we have

|(χu)(t)| =
∣∣∣c2u1

c1
−u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds
∣∣∣

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+ |φa,b|σb +
∫ t

a
Kα

t (s)|ψ(s)|ds.

According to (A2) we have

|ψ(s)| = |Ψ(s,u(s),ψ(s))−Ψ(s,0,0)+Ψ(s,0,0)|

6
k‖u‖∞ + sups∈J |Ψ(s,0,0)|

1− l

6
kr+Ψ∗

1− l
, where Ψ

∗ = sup
s∈J
|Ψ(s,0,0)|.

On the other hand, we have

|φa,b| =

∣∣∣∣∣ 1
δ

(c2u1

c1
−u2 +

∫ b

a
K(s)ψ(s)ds

)∣∣∣∣∣
6

1
|δ |

(∣∣∣c2u1

c1

∣∣∣+ |u2|+
∫ b

a
|K(s)||ψ(s)|ds

)

6
1
|δ |

(∣∣∣c2u1

c1

∣∣∣+ |u2|+
kr+Ψ∗

1− l

∫ b

a
|K(s)||ds

)

6
1
|δ |

(∣∣∣c2u1

c1

∣∣∣+ |u2|+
(kr+Ψ∗)K∗

1− l

)
:= φ

∗
a,b.
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Then,

|(χu)(t)| 6
∣∣∣c2u1

c1

∣∣∣+ |u2|+φ
∗
a,bσb +

kr+Ψ∗

1− l

∫ t

a
Kα

t (s)ds

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+φ
∗
a,bσb +

kr+Ψ∗

1− l

∫ b

a
Kα

b (s)ds := m.

It follows that

‖χu‖∞ 6 m

which implies that χ maps bounded sets into bounded sets of C (J,R).
Step 3: χ maps bounded sets into a equicontinuous set of C (J,R).
Let u ∈Dr (as defined in Step 2), and t1, t2 ∈ J with t1 < t2, then

|χu(t2)−χu(t1)|

≤ |φa,b||σt2 −σt1 |+
∣∣∣∫ t2

a
Kα

t2 (s)ψ(s)ds−
∫ t1

a
Kα

t1 (s)ψ(s)ds
∣∣∣

≤ φ
∗
a,b|σt2 −σt1 |+

∣∣∣∫ t1

a
(Kα

t2 −Kα
t1 )(s)ψ(s)ds+

∫ t2

t1
Kα

t2 (s)ψ(s)ds
∣∣∣

≤ φ
∗
a,b|σt2 −σt1 |+

(k‖u‖∞ +Ψ∗)ρα−2

(1− l)Γ(α +1)

∣∣∣∣∣
∫ t1

a
(Kα

t2 −Kα
t1 )(s)ds+

∫ t2

t1
Kα

t2 (s)ds

∣∣∣∣∣
≤ φ

∗
a,b|σt2 −σt1 |+

(kr+Ψ∗)ρα−2

(1− l)Γ(α +1)

[
2
(
tρ

2 − tρ

1

)α
+ tρα

1 − tρα

2

]
.

As t2 −→ t1 the right-hand side of above inequality tends to zero. As a sequence of Steps 1 to 3 together with Arzelà-Ascoli
theorem, we conclude that χ is completely continuous.
Step 4: A priori bounds.
We show there exists an open set O ⊂ C (J,R) with u 6= λ χ(u) where λ ∈ (0,1) and u ∈ ∂O. Let u ∈ C (J,R) and u = λ χ(u),
with λ ∈ (0,1), then for each t ∈ J we have

|u(t)| = λ

∣∣∣c2u1

c1
+u2 +φa,bσt +

∫ t

a
Kα

t (s)ψ(s)ds
∣∣∣

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+ |φa,b|σb +
∫ b

a
Kα

b (s)|ψ(s)|ds

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+φ
∗
a,bσb +

kr+Ψ∗

1− l

∫ b

a
Kα

b (s)ds.

Thus

‖u‖∞ 6 m.

Let

O = {u ∈ C (J,R) : ‖u‖∞ < m+1}.

By our choosing of O, there is no u ∈ ∂O, such that u = λ χ(u), for λ ∈ (0,1). As a consequence of Theorem 3.3 and the
nonlinear alternative of Leray-Schauder’s fixed point theorem, χ has a fixed point u∈O which is a solution of our problem (1.1).

The second result is based on Theorem 2.6.

Theorem 3.4. Assume that (A1), (A2), and

θ =
kσbK∗

|δ |(1− l)
< 1. (3.2)

Then the problem (1.1) has at least one solution.
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Proof. Let

M = {u ∈ C (J,R) : ‖u‖∞ 6 r1 + r2 6 r},

where

r1 =
∣∣∣c2u1

c1

∣∣∣+ |u2|+φ
∗
a,bσb, r2 =

(kr+Ψ∗)(bρ −aρ)α ρα−2

(1− l)Γ(α +1)
.

We define two operators S1 and S2 by

S1u(t) =
c2u1

c1
−u2 +φa,bσt

S2u(t) =
∫ t

a
Kα

t (s)ψ(s)ds

where

ψ(s) = Ψ(s,u(s),ψ(s)).

Step 1: We will show that S1u+S2v ∈M .
Let u,v ∈M , and t ∈ J so we have

|S1u(t)| 6
∣∣∣c2u1

c1

∣∣∣+ |u2|+ |φa,b|σt

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+ |φa,b|σb

6
∣∣∣c2u1

c1

∣∣∣+ |u2|+φ
∗
a,bσb

6 r1,

and

|S2v(t)| 6
∫ t

a
Kα

t (s)|ψ(s)|ds

6
(kr+Ψ∗)

1− l

∫ b

a
Kα

b (s)ds

6
(kr+Ψ∗)(bρ −aρ)α ρα−2

(1− l)Γ(α +1)
6 r2.

Therefore

‖S1u+S2v‖∞ 6 ‖S1u‖∞ +‖S2v‖∞

6 r1 + r2

6 r.

We deduce that S1u+S2v ∈M .
Step 2: S1 is a contraction on M .
For each t ∈ J, u,v ∈M , ψ(s) = Ψ(s,u(s),ψ(s)), and φ(s) = Ψ(s,v(s),φ(s)), we have∣∣S1u(t)−S1v(t)

∣∣ =
∣∣∣σt

δ

∫ b

a
K(s)

(
ψ(s)−φ(s)

)
ds
∣∣∣

6
σb

|δ |

∫ b

a
|K(s)|

∣∣ψ(s)−φ(s)
∣∣ds

6
kσb

|δ |(1− l)

∫ b

a
|K(s)||u(s)− v(s)|ds

6
kσbK∗

|δ |(1− l)
|u(s)− v(s)|.
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Therefore

‖S1u−S1v‖∞ 6
kσbK∗

|δ |(1− l)
‖u− v‖∞.

By (3.2) we deduce that S1 is a contraction.
Step 3: S2 is compact.
It is clear that S2 is continuous and uniformly bounded on M (‖S2u‖∞ 6 r2).
It remains to show that S2 maps bounded sets into a equicontinuous set of C (J,R).
Let u ∈M , and t1, t2 ∈ J with t1 < t2, then

|S2u(t2)−S2u(t1)| =
∣∣∣∫ t2

a
Kα

t2 (s)ψ(s)ds−
∫ t1

a
Kα

t1 (s)ψ(s)ds
∣∣∣

=
∣∣∣∫ t1

a
(Kα

t2 −Kα
t1 )(s)ψ(s)ds+

∫ t2

t1
Kα

t2 (s)ψ(s)ds
∣∣∣

6
(k‖u‖∞ +Ψ∗)ρα−2

(1− l)Γ(α +1)

∣∣∣∣∣
∫ t1

a
(Kα

t2 −Kα
t1 )(s)ds+

∫ t2

t1
Kα

t2 (s)ds

∣∣∣∣∣
6

(kr+Ψ∗)ρα−2

(1− l)Γ(α +1)

[
2
(
tρ

2 − tρ

1

)α
+ tρα

1 − tρα

2

]
.

It is obvious that since t2 −→ t1 we get |S2u(t2)−S2u(t1)| −→ 0. It means that S2 is compact. By Theorem 3.4 we conclude
that our problem (1.1) has a solution in C (J,R).

4. Examples
Example 4.1. Let us consider the following boundary problem

1
3 D

3
2 u(t) = |u(t)|

5+|u(t)| +
1
2 tan

∣∣ 1
3 D

3
2 u(t)

∣∣, t ∈ [0, π

3 ],

u(0)−u′(0) = 3
2 ,

u(π

3 )+u′(π

3 ) =
π

6 .

(4.1)

Let the function Ψ defined by

Ψ(t,u,v) =
u

5+u
+

1
2

tanv, u,v ∈ R+, t ∈ [0,
π

3
].

Obviously the function Ψ is continuous. Now we check assumption (A2). Indeed for each t ∈ [0, π

3 ] and u,v ∈ R+, we have

|Ψ(t,u2,v2)−Ψ(t,u1,v1)| =
∣∣∣ u2

5+u2
− u1

5+u1
+

1
2
(

tanv2− tanv1
)∣∣∣

6
∣∣∣ 5(u2−u1)

(5+u2)(5+u1)

∣∣∣+ 1
2

∣∣ tanv2− tanv1
∣∣

6
1
5

∣∣u2−u1
∣∣+ 2

3

∣∣v2− v1
∣∣.

Therefore (A2) holds for k = 1
5 , and l = 2

3 . Then according to Theorem 3.3 the problem (4.1) has at least one solution.

Example 4.2. Let us consider the following boundary problem
1
4 D

5
2 u(t) = |u(t)|

3+
∣∣ 1

4 D
5
2 u(t)

∣∣ +
∣∣ 1

4 D
5
2 u(t)

∣∣
3+|u(t)| , t ∈ [0,1],

u(0)−u′(0) = 1,
u(1)+u′(1) = 1

2 .

(4.2)

Set the function Ψ as

Ψ(t,u,v) =
u

3+ v
+

v
3+u

, u,v ∈ R+, t ∈ [0,1].
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It is easy to see that the function Ψ is continuous. On the other hand for each t ∈ [0,1] and u,v ∈ R+, we have

|Ψ(t,u2,v2)−Ψ(t,u1,u1)| =
∣∣∣ u2

3+ v2
+

v2

3+u2
− u1

3+ v1
− v1

3+u1

∣∣∣
6

∣∣∣3u2 +u2v1−3u1−u1v2

(3+u2)(3+ v2)

∣∣∣+ ∣∣∣3v2 + v2u1−3v1−u2v1

(3+ v1)(3+u1)

∣∣∣
6

1
9

(
|3u2−3u1|+ |3v2−3v1|

)
6

1
3

(
|u2−u1|+ |v2− v1|

)
.

Therefore the assumption (A2) holds for k = l = 1
3 . On the other hand we have

θ =

1
3 ×8× 16

15Γ( 5
2 )

11× 2
3

=
128

495
√

π
< 1

By Theorem 3.4 we conclude that the problem (4.2) has at least one solution.

5. Conclusion
In this paper, we studied some existence results of certain type of differential fractional problem involving the concept of the
generalized fractional derivative, in this study we focused on Nonlinear alternative and Krasnoselskii fixed points.
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