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APPROXIMATE SOLUTIONS OF NONLINEAR OSCILLATORS 

 

ABSTRACT 

The modified homotopy perturbation method (MHPM) is used for 

solving the differential equation of pendulum model. Comparisons are 

made between the standard HPM and the MHPM. The results show that this 

method is effective and can obtain high accuracy solutions by only one 

iteration.  

Keywords: Nonlinear Oscillators, Homotopy Perturbation Method, 

          Modified Homotopy Perturbation Method, Simple 

          Pendulum, Approximate Solutions  

 

LİNEER OLMAYAN OSİLATÖRLERİN YAKLAŞIK ÇÖZÜMLERİ 

 

ÖZ                                                           

Sarkaç modelinin diferansiyel denkleminin çözümü için 

değiştirilmiş Homotopi perturbasyon yöntemi kullanılıyor. Standart 

homotopi ve değiştirilmiş homotopi yöntemi arasında karşılaştırmalar 

yapılıyor. Sonuçlar bu yöntemin etkin olduğunu ve sadece bir iterasyon 

ile yüksek hassas çözümler elde edilebileceğini gösteriyor. 

Anahtar Kelimeler: Doğrusal Olmayan Osilatörler, 

                   Homotopi Perturbasyon Yöntemi, Değiştirilmiş 

                   Homotopi Perturbasyon Yöntemi, Basit Sarkaç, 

                   Yaklaşık Çözümler 
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1. INTRODUCTION 

Nonlinear oscillators are important in physical sciences; 

engineering and the other disciplines. It is difficult to solve them 

analytically. Recently, an extensive attention has been directed to 

analytical and numerical solutions of these class of problems. The 

homotopy perturbation method (HPM) is a powerful technique for solving 

nonlinear problems. The HPM was introduced by He [1 and 2]. Generally, 

this method leads to accurate approximation by using one iteration 

only. The HPM combines the traditional perturbation method and the 

homotopy in topology. It does not require a small parameter in an 

equation. This property of HPM has a significant advantage in many 

nonlineaar problems. Recently, researchers apply methods which do not 

require small parameters. For example, He’s homotopy perturbation 

method [3, 4, 5, 6, 7, 8 and 9], parameter-expansion method [10 and 

11] variational iteration method [12 and 13], modified Lindstedt-

Poincaré method [14], rational harmonic balance method [15], Adomian 

decomposition method [16], method of energy balance [17]. In last 

decades, some modifications of HPM are investigated to facilitate and 

accurate the calculation and acceleration of the rapid convergence of 

the series solution [18, 19, 20, 21, 22 and 23]. In this paper, the 

modified homotopy perturbation method has been applied for solving a 

nonlinear differential equation. Moreover, the comparison with the HPM 

has been done. The solutions obtained by this method have been 

presented in graphs.  

 

2. RESEARCH SIGNIFICANCE 

The mathematical pendulum equation has been solved by HPM and 

MHPM. The comparison of these methods is presented in the paper. 

 

3. ANALYTICAL STUDY  

Our work is based on applied mathematics. Practical applications 

in science, engineering and industry have motivated the development of 

mathematical theories, which then became the subject of study in pure 

mathematics. Therefore we deduce mathematical methods to solve the 

nonlinear equations by means of analysis of method [18, 19, 20, 21, 

22, 23 and 24].  

 

  4. THE MODIFICATION OF HPM 

The modified homotopy perturbation method that is used to solve 

the nonlinear oscillator is similar to standard HPM. To make the 

modification, we add and subtract a linear term such as )(Af  to the 

main governing equation and then apply the linearization. In this way, 

the governing equation remain unchanged, but we choose just one of the 

additional terms for using in linear operator. This term which is 

added to linear operator, prevents the solution from divergence and it 

causes the rapid convergent and much accurate solution. The only 

difference between present HPM and standard HPM is the linear 

operator, and the other procedures are the same. In the modified form, 

linear operator plays the important role in solution. To demonstrate 

the effectiveness of the proposed modification and to compare the new 

modification of the HPM with the standard HPM, we have chosen the 

following the nonlinear equation. 

 

  5. APPLICATION 

Let us consider the differential equation modeling the free 

undamped simple pendulum [17], 

   0
2  uu sin ,                                             (1) 

with initial conditions, 

https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Industry
https://en.wikipedia.org/wiki/Pure_mathematics
https://en.wikipedia.org/wiki/Pure_mathematics
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,)( Au 0   00  )(u .                                           (2) 

Where u  is the angular displacement, lg / , g  is the 

length of the pendulum and l  is the acceleration due to gravity. A  is 

the amplitude of the oscillation. To apply the modified homotopy 

perturbation method, we introduce the additional term as f(A) for (1). 

Here A comes from the initial condition. We choose an additional term 

function of boundary conditions. In this way we have such studies in 

ref. [18, 19, 20, 21, 22 and 23]. 

0
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Here 
1206

53
uu

uu sin .  Now, we consider just one of the 

additional terms for linear operator: 

uuAfuuL .)(:)( 0                                          (4) 

 

If we consider the solution as  
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and substitute to the characteristic equation of governing 

equation, we have: 
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    (8) 

On the other hand, we hope that the solution of (4) serves as a 

leading term, 0u , in the solution series. Hence, the equation 

satisfied by 0u  should be in the form 

00

2

00  uwuAfu )( .                                        (9) 

 

Characteristic equation of this equation is written as: 

22

0 wAfc  )(                                               (10) 

From (8), we have 
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From (11), we have, 
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Hence, from (10) and (13), we have:   
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Because )(Af  is an integral number, thus we have 
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In view of the (5) and (15), we have: 
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We construct the following homotopy and consider the linear term 

as :])([ u
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u 0
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Substituting (5), (6) and the initial conditions (2) into the 

homotopy (17) and equating the terms with identical powers of p , we 

obtain the following set of linear differential equations: 

:
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Solving the equation (18) is derived as follows: 
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For the first-order approximation we have 1p  
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Substituting (20) and (21) into Eq. (19) yields to: 
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From the equation (23), we can find 
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According to Eqs. (23) and (24), we obtain the solution  
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Thus, we obtain the first-order approximation by setting 1p  
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The first-order approximate solution of HPM of the problem may 

be obtained as 
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We have made the numerical calculations of the solutions (26) 

and (27) for distinct t values and 3 5  ,A .
 
Figure 1 shows the 

comparison of the solutions for distinct   values. It is clear that in 
HPM, the difference between zero-order and the 1st order solutions 

diverges when   gets larger. But, zero-order and the 1st order 

solutions for MHPM are consistent even for large t values. This 

distinction is clearly observed on Figure 1 and Figure 2 for HPM and 

MHPM respectively. Therefore, MHPM works better in comparison with 

HPM.  

 

  
Figure 1. The comparison between 

zero-order and the 1st order 

solutions for HPM and 

.3 5  ,A  

Figure 2. The comparison between 

zero-order and the 1st order for 

solutions for  MHPM for and 

.3 5  ,A  

 

6. DISCUSIONS, CONCLUSION AND RECOMMENDATIONS 

 In this paper, we used the modification form of HPM and showed 

the effectiveness of the modification. The modified form of HPM is 

more accurate than the standard HPM for nonlinear oscillators. This 

method can be applied efficiently for nonlinear oscillators. 
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