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Abstract

The aim of this study is to give spinor representation of successor curves in three-
dimensional Euclidean space. In this study, the spinor representations of a curve with
arc-length parameter and a successor curve of this curve with some arc-length parameter
in three dimensional Euclidean space have been studied. For this, first of all, the curve
with unit speed and its successor curve have been corresponded to two different spinors.
Then, using the relationships between these curves, the relationships between the spinors
corresponding to these curves have been given. Therefore, geometric interpretations of these
curves and corresponding spinors have been made. In addition, different spinor equations of
the mates and derivatives of these spinors have been examined and geometric interpretations
of these spinor equations have been given. Then, spinor equations have been obtained in
case the successor curves are helices. Consequently, two examples have been given.

1. Introduction

Curve theory is one of the most studied areas of differential geometry, with studies in different dimensions and spaces. Curve and curvature
studies by Newton and Leibniz form the basis of curve theory. After giving the definition of curvature by Euler in the 18th century, space
curves were defined by Monge. Later, in the 19th century, the equations, known today as Serret-Frenet frame and formulas, were studied by
Serret and Frenet at different times. In general, the geometric locus of different positions taken by a moving point in space during motion is a
curve. In this motion, the parameter range of the curve represents the time elapsed during the motion. In addition, the parameter of the curve
has an important place in characterizing the curve. That is, the parameter of a given curve has many differences depending on whether the
curve is parameterized in terms of arc length. The parametrization of the curve in terms of arc length provides great convenience in the
characterization of the curve. On the other hand, considering any two curves in space, various special curves are defined by establishing
some different relations between the Frenet vectors at the opposite points of these curves such as, in 1850, Bertrand curve pair was defined
by establishing a special relationship between the normal vectors of any two curves. Another special curve pair is the Mannheim curve pair,
which was given by A. Mannheim in 1878 and obtained by establishing a relationship between the normal of one of the two curves and the
binormal of the other [23]. Another is the involute evolute curves obtained by establishing a special relationship between the tangents of any
two curves [14]. There are a lot of studies about curve theory [4, 17]. The curves that form the basis of this study are the successor curves.
The definition of successor curves as “Consider a unit speed curve (α) in three-dimensional Euclidean space. If the normal vector field of a
curve (β ) with the same arc-length parameter as the curve (α) is the tangent vector field of the curve (α), the curve (β ) is called a successor
curve of the curve (α). Every Frenet curve has a family of successor curves” was given by Menninger where both the curve (α) and the
curve (β ) are unit speed curves with the same arc-length parameter. Therefore, there are relationships between Frenet frames and Frenet
curvatures of both curves [13]. Later, Masal obtained relations depending on the ground vectors of the successor curves by defining the
successor planes and investigating the geometric meanings of the successor curvatures [13]. Before from that, the predecessor transformation,
as opposed to the successor transformation, although not well defined in general, was given by Bilinski [2].

Spinors are physical structures used in many fields of applied sciences. It is used in physics, especially in quantum mechanics, applications
of spinor theory, electron spin and theory of relativity. The wave function of a particle with a spin of 1/2 is called a spinor. Also, the
application of spinors in electromagnetic theory is very important. A spin structure in four-dimensional space is an extension of spinors to
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obtain Dirac spinors in physics [5, 11, 22]. Spinors are column vectors and act on Pauli spin matrices that are 2x2 dimensional complex
matrices. In quantum theory, spin is expressed in Pauli matrices. Cartan [3] first studied spinors geometrically. In that study by Cartan the
spinor representations of basic geometric definitions were given. In Cartan’s study, it was emphasized that the set of isotropic vectors in
the vector space C3 creates a two-dimensional surface in the space C2. In that study of Cartan, it is seen that each isotropic vector in the
complex vector space C3 corresponds to a vector with two components in the space C2. Cartan named these two-dimensional vectors as
spinors [3]. The spinor algebra with two complex components acting on Pauli matrices representing SU(2), a group of 2x2 dimensional
unitary matrices, gives a different representation of rotations in three-dimensional real vector space. Using this information, Vivarelli
established a relationship between spinors and quaternions and obtained the quaternion representation of rotations in three-dimensional
Euclidean space with spinors [21]. Then, the spinor representation of curves in three-dimensional Euclidean space was given by Torres del
Castillo and Barrales [18]. They expressed the Frenet vectors and curvatures of curves in terms of spinors in that study [18]. Therefore, that
study greatly has contributed to this our study. Based on this study, a spinor formulation of the Darboux frame of a curve on a surface of
three-dimensional Euclidean space and the relationship between Frenet and Darboux frames was given by Kişi and Tosun [10]. After that, in
another study, the spinor formulation of Bishop’s frame of curves in three-dimensional Euclidean space was obtained [20]. In addition, Erişir
and Kardaǧ obtained spinor equations of involute-evolute curve pairs in three-dimensional Euclidean space [7]. In another study, spinor
formulation of Bertrand curves was given [8]. Moreover, the spinor formulations of some special curves in three-dimensional Minkowski
space were obtained based on these studies in three-dimensional Euclidean space [1, 6, 9].
In this study, a curve (α) with unit speed and a successor curve (β ) with the same arc-length parameter of the curve (α) have been considered.
In addition, two spinor have been corresponded to the curve (α) and the successor curve (β ) of the curve (α). After that, considering the
relationships between these curves, the relationships between the spinors corresponding to these curves have been obtained. In addition,
the geometric interpretations have been given for the angles between these spinors. Then, the spinor equations have been obtained for the
mates and derivatives of these spinors corresponding to the curve (α) and the successor curve (β ), and the geometric interpretations of these
equations have been made. After that, considering that the successor curve (β ) is helix, some theorems and results have been obtained for
the spinor equations of this curve. Consequently, two examples have been given.

2. Preliminaries

In this section, firstly, the basic definitions and theorems about successor curves have been given. Then, the basic definitions and theorems
about spinors introduced by Cartan [3], which is a fundamental study for spinors, have been mentioned. In addition, the spinor equations
given by Torres del Castillo and Barrales have been expressed [18]. Consequently, the spinor formulation of curves in three-dimensional
Euclidean space is given.

Definition 2.1. Consider that the curves α : I→ E3 and β : I→ E3 have the same arc-length parameter. In that case, if the tangent vector
field of the curve (α) is the normal vector field of the curve (β ), then the curve (β ) is defined as a successor curve of the curve (α). Each
Frenet curve has a family of successor curves [13].

Theorem 2.2. Let α,β : I→ E3 be two curves which have same arc-length parameter and the curve (β ) be the successor curve of the curve
(α). In that case, we consider that the Frenet system of the curve (α) is F = {T,N,B,κ,τ} and the successor system of the successor curve
(β ) is F1 = {T1,N1,B1,κ1,τ1}. Therefore, there are the relationships between of these systems as T1

N1
B1

=

 0 −cosϑ sinϑ

1 0 0
0 sinϑ cosϑ

 T
N
B

 (2.1)

and (
κ1
τ1

)
= κ

(
cosϑ

sinϑ

)
(2.2)

where the angle ϑ is the angle between the binormal vectors B and B1. Moreover, for the torsion τ of the curve (α) the equation

ϑ(s) = ϑ0 +
∫

τ(s)ds

is hold where ϑ0 = constant ∈ R [13].

Theorem 2.3. Suppose that the curve (β ) is successor curve of the curve (α) and the vector D1 is Darboux vector of the successor curve
(β ). Therefore, Darboux vector is

D1 = κB (2.3)

where κ and B are the curvature and binormal vector field of the curve (α), respectively [13].

Theorem 2.4. Consider that the curve (β ) is successor curve of the curve (α) and the successor system of the successor curve (β ) is
F1 = {T1,N1,B1,κ1,τ1}. If the angle of intersection of tangent vector field T1 with a constant vector is always constant, then the successor
curve (β ) is defined helix [12, 13].

Theorem 2.5. Let the curve (β ) be successor curve of the curve (α). In that case, if the successor curve (β ) is helix, then the ratio of the
curvatures of (β ) κ1

τ1
is constant [12].

Theorem 2.6. Consider that the curve (β ) is successor curve of the curve (α). The successor curve (β ) is helix, then the necessary and
sufficient condition is that the curve (α) is planar curve [13].
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Spinors construct a vector space usually built on complex numbers with the aid of a linear group representation of the spin group. Cartan [3]
expressed the spinors over the complex numbers geometrically. Therefore, Cartan gave that a vector γ with two complex components
corresponds to an isotropic vector x = (x1, x2, x3) in three dimensional complex vector space C3. In that case, the isotropic vectors in
C3 form a surface with two dimensional in C2. Now, we consider that this surface is written by the parameters γ1 and γ2, therefore,

x1 = γ1
2− γ2

2, x2 = i(γ1
2 + γ2

2), x3 =−2γ1γ2 and γ1 =±
√

x1−ix2
2 , γ2 =±

√
−x1−ix2

2 [3]. Cartan called these complex vectors mentioned
here as spinors

γ =

(
γ1
γ2

)
[3]. With the aid of the study [3], in [18] it was matched the isotropic vector a+ ib ∈ C3 with spinor γ = (γ1,γ2) where a, b ∈ R3. In that

case, considering the Pauli matrices (P1,P2,P3), the 2x2 dimensional complex symmetric matrices σ , can be created as

σ1 =CP1 =

(
1
0

0
−1

)
, σ2 =CP2 =

(
i
0

0
i

)
, σ3 =CP3 =

(
0
−1

−1
0

)

where C =

(
0 1
−1 0

)
[15, 16, 18]. In that case, in [18] the spinor equations are given by

a+ ib = γ
t
σγ,

c =−γ̂
t
σγ

where a+ ib is the isotropic vector in the space C3, c ∈ R3 and the spinor mate γ̂ of the spinor γ is

γ̂ =−
(

0 1
−1 0

)
γ =−

(
0 1
−1 0

)(
γ1
γ2

)
=

(
−γ2
γ1

)
.

For the vectors a, b and c we know that these vectors have the same length ‖a‖ = ‖b‖ = ‖c‖ = γ
t
γ and are orthogonal to each other. In

addition to that, the triads {a,b,c}, {b,c,a} and {c,a,b} correspond to different spinors [18].

Proposition 2.7. Let two arbitrary spinors be γ and ψ . Then, the following statements hold;

i) ψtσγ =−ψ̂tσγ̂

ii) ̂λψ +µγ = λψ̂ +µγ̂

iii) ˆ̂γ =−γ

iv) ψtσγ = γtσψ

where λ , µ ∈ C and “−” is complex conjugate [18].

Now, let a curve parameterized by arc-length be α : I→ E3, (I ⊆ R). Therefore, ‖α ′ (s)‖= 1 where s is the arc-length parameter of (α). In
addition to that, consider that the Frenet frame of this curve {N,B,T} and the spinor ξ represents Frenet frame {N,B,T}. Therefore, from
equation (2.3) the following equations can be written as

N+ iB = ξ tσξ = (ξ 2
1 −ξ 2

2 , i(ξ 2
1 +ξ 2

2 ), −2ξ1ξ2),

T =−ξ̂ tσξ = (ξ1ξ2 +ξ1ξ2, i(ξ1ξ2−ξ1ξ2), |ξ1|2−|ξ2|2)

with ξ
t
ξ = 1 [18]. Moreover, the following theorem can be given.

Theorem 2.8. If the spinor ξ with two complex components represents Frenet frame {N,B,T} of a curve (α) parameterized by its arc-length
s, the Frenet curvatures are equivalent to the single spinor equation

dξ

ds
=

1
2
(−iτξ +κξ̂ ) (2.4)

where κ and τ are the curvature and torsion of (α), respectively [18].

3. Main Theorems and Proofs

3.1. Spinor Representation of Successor Curves

Let α : I→ E3 be a curve with unit speed which has the arc-length parameter s and Frenet frame of this curve be {T,N,B}. Therefore, we
know that if the spinor corresponds to Frenet frame {N,B,T} of the curve (α), then the spinor equations of these Frenet vectors can be
written

N+ iB = ξ
t
σξ ,

T =−ξ̂
t
σξ
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[18]. In addition, the vectors of Frenet frame {N,B,T} can be written as

T =−ξ̂
t
σξ ,

N =
1
2
(ξ t

σξ − ξ̂
t
σξ̂ ), (3.1)

B =
−i
2
(ξ t

σξ + ξ̂
t
σξ̂ )

in terms of spinors, separately [7].

Now, consider that the curve (β ), which has the same arc-length-parameter s with the curve (α), is a successor curve of the curve (α).
Moreover, suppose that Frenet frame of the successor curve (β ) is {T1,N1,B1} and the spinor φ corresponds to Frenet frame {B1,T1,N1} of
the successor curve (β ) where we know that the different spinors correspond to Frenet frames {T1,N1,B1}, {N1,B1,T1} and {B1,T1,N1}.
In that case, we can write

B1 + iT1 = φ
t
σφ ,

N1 =−φ̂
t
σφ (3.2)

and give the following theorem.

Theorem 3.1. Suppose that the curve (β ) is a successor curve of the curve (α) and the curves (α) and (β ) have the same arc-length
parameter s. In that case, if the spinor φ corresponds to Frenet frame {B1,T1,N1} of the successor curve (β ), then the spinor equation of
the curvatures {κ1,τ1} of the successor curve (β ) is

dφ

ds
=

τ1− iκ1

2
φ̂ . (3.3)

Proof. Let φ be the spinor corresponding to Frenet frame {B1,T1,N1} of the successor curve (β ) of the curve (α). Therefore, since the
spinor pair

{
φ , φ̂

}
forms a basis in the spinor space, the spinor dφ

ds can be written

dφ

ds
= f φ +gφ̂ (3.4)

where f and g are two arbitrary complex functions. On the other hand, if we take derivative of the complex vector B1 + iT1 in the equation
(3.2) in terms of the arc-length parameter s ∈ I, we get

dB1

ds
+ i

dT1

ds
=

dφ

ds

t
σφ +φ

t
σ

dφ

ds

and with the aid of the equation (3.4) we have

(−τ1 + iκ1)N1 = f φ
t
σφ +gφ̂

t
σφ + f φ

t
σφ +gφ

t
σφ̂ .

In addition to that, if we use the option iv) in Proposition 2.7, we have

(−τ1 + iκ1) N1 = 2 f (φ t
σφ)+2g(φ̂ t

σφ).

Therefore, we obtain f = 0 and g = τ1−iκ1
2 . As a result, we get dφ

ds =
(

τ1−iκ1
2

)
φ̂ . Consequently, the proof is completed by expressing the

curvature κ1 and torsion τ1 of the successor curve (β ) as a single spinor equation.

Theorem 3.2. Let (α) and (β ) be two curves which have the same arc-length parameter in Euclidean space E3 and the curve (β ) be the
successor curve of the curve (α). Therefore, the spinor equations of the Frenet frame {B1,T1,N1} of the successor curve (β ) are

B1 =
1
2
(φ t

σφ − φ̂
t
σφ̂),

T1 =
−i
2
(φ t

σφ + φ̂
t
σφ̂), (3.5)

N1 =−φ̂
t
σφ .

Proof. Consider that the curve (β ) is the successor curve of the curve (α) and the spinor φ corresponds to Frenet frame {B1,T1,N1} of the
successor curve (β ). Therefore, considering the spinor equation B1 + iT1 = φ tσφ in the equation (3.2) we see that

T1 = Im(φ t
σφ),

B1 = Re(φ t
σφ).

In that case, we obtain T1 =
−i
2 (φ tσφ −φ tσφ), B1 =

1
2 (φ

tσφ +φ tσφ) and, consequently, considering the option i) in Proposition 2.7 we
have

T1 =
−i
2
(φ t

σφ + φ̂
t
σφ̂),

B1 =
1
2
(φ t

σφ − φ̂
t
σφ̂).

We also know the spinor equation of the normal vector field N1 =−φ̂ tσφ in the equation (3.2).
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In addition to Theorem 3.2, we see that Frenet frame {B1,T1,N1} of the successor curve (β ) can be written

B1 =
1
2

(
φ

2
1 −φ

2
2 −φ2

2
+φ1

2
, i(φ 2

1 +φ
2
2 −φ1

2−φ2
2
),−2φ1φ2−2φ1 φ2

)
,

T1 =
−i
2

(
φ

2
1 −φ

2
2 +φ2

2−φ1
2
, i(φ 2

1 +φ
2
2 +φ1

2
+φ2

2
),−2φ1φ2 +2φ1 φ2

)
, (3.6)

N1 =
(

φ1φ2 +φ1φ2, i(φ1φ2−φ1φ2), |φ1|2−|φ2|2
)

in terms of the components of the spinor φ =

[
φ1
φ2

]
with easy calculations.

Now, we give the relationship between the spinors ξ and φ with following theorem.

Theorem 3.3. Suppose that (α) and (β ) have the same arc-length parameter in Euclidean space E3 and the curve (β ) is the successor
curve of the curve (α). In addition, the spinor pair (ξ ,φ) corresponds to the Frenet frames {N,B,T} and {B1,T1,N1} of the curves (α,β ),
respectively. Therefore, there is the relationship between these spinors ξ and φ as

ξ =±ei( π

4−
ϑ

2 )φ (3.7)

where the angle ϑ is the angle between the binormal vector fields B and B1.

Proof. Let ξ be the spinor corresponding to the Frenet frame {N,B,T} of the curve (α) and φ be the spinor corresponding to the Frenet
frame {B1,T1,N1} of the successor curve (β ). In that case, we can write for the complex vector B1 + iT1 ∈ C3

B1 + iT1 =−ieiϑ (N+ iB)

and

ξ
t
σξ = ei( π

2−ϑ)
φ

t
σφ (3.8)

with the aid of the equation (2.1). Therefore, we obtain that

ξ1 =± ei( π

4−
ϑ

2 )φ1,

ξ2 =± ei( π

4−
ϑ

2 )φ2

and, consequently

ξ =± ei( π

4−
ϑ

2 )φ

where the spinors ξ and −ξ correspond to the same Frenet frame {N,B,T} and, similarly, the spinors φ and −φ correspond to the same
Frenet frame {B1,T1,N1}.

Now, we give a geometric interpretation of spinor representations of the successor curves with following corollary.

Corollary 3.4. Consider that the curve (β ) is the successor curve of the curve (α) and the spinor pair (ξ ,φ) corresponds to the Frenet

frames {N,B,T} and {B1,T1,N1} of the curves (α,β ), respectively. Therefore, the angle between the spinors ξ and φ is
(

π

4 −
ϑ

2

)
where

the angle ϑ is the angle between the binormal vector fields B and B1.

In addition to that, similar to Theorem 3.3 we can give a relationship between the mates of spinors ξ and φ with following corollary.

Corollary 3.5. Suppose that the spinors ξ and φ correspond to the Frenet frames {N,B,T} of the curve (α) and {B1,T1,N1} of the
successor curve (β ), respectively. In that case, there is the relationship between the mates of spinors ξ and φ as

φ̂ =±ei( π

4−
ϑ

2 )ξ̂

where the angle ϑ is the angle between the binormal vector fields B and B1.

Proof. Let ξ and φ be two spinors corresponding to the Frenet frames of the (α) and the successor curve (β ). In that case, if the operation

of spinor mate is applied to both sides of the equation (3.7), we get ξ̂ =±
(

̂
ei( π

4−
ϑ

2 )φ

)
. We know ii) in Proposition 2.7, therefore, we have

ξ̂ =±ei( π

4−
ϑ

2 )φ̂ and, consequently,

φ̂ =±ei( π

4−
ϑ

2 )ξ̂ .

Therefore, we can obtain a geometric interpretation of spinor representations of the successor curves below.

Corollary 3.6. Suppose that the spinors ξ and φ correspond to the Frenet frames {N,B,T} of the curve (α) and {B1,T1,N1} of the

successor curve (β ), respectively. In this case, while the spinor φ rotates at an angle
(

π

4 −
ϑ

2

)
to the spinor ξ , the spinor φ̂ makes a rotation

in the negative direction with the same angle to the spinor ξ̂ .

Corollary 3.7. There is the relationship between the derivative spinors dξ

ds and dφ

ds that

dξ

ds
=±ei( π

4−
ϑ

2 )
(

dφ

ds
− i

2
dϑ

ds
φ

)
where dϑ

ds = τ is the torsion of the curve (α).
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3.2. Some Applications

In this section, firstly, we give the spinor equations of the Darboux vector of the successor curve (β ). After that, we assume that the successor
curve (β ) of the curve (α) is helix and we give the spinor equations in that case. Therefore, we can express the following theorems and
corollaries.

Theorem 3.8. Let the curve (β ) be the successor curve of the curve (α) and (α), (β ) be the curves which have the same arc-length
parameter s. If we consider that the spinor φ corresponds to Frenet frame {B1,T1,N1} of the successor curve (β ) and Darboux vector of
the successor curve (β ) is D1, then the spinor equation of Darboux vector of the successor curve is

D1 =
κ

2

[
e−iϑ

φ
t
σφ − eiϑ

φ̂
t
σφ̂

]
where ϑ is the angle between the binormal vector fields B of the curve (α) and B1 of the successor curve (β ).

Proof. Suppose that the successor curve of the curve (α) is (β ), the spinor φ corresponds to Frenet frame {B1,T1,N1} of the successor
curve (β ) and Darboux vector of the successor curve (β ) is D1. On the other hand, we know that Darboux vector of the successor curve is
D1 = τ1T1 +κ1B1. Therefore, considering the equations (2.2) and (3.6) we have

D1 =
1
2
[
(κ1− iτ1)φ

t
σφ − (κ1 + iτ1) φ̂

t
σφ̂
]

and consequently,

D1 =
κ

2

[
e−iϑ

φ
t
σφ − eiϑ

φ̂
t
σφ̂

]
where the angle ϑ is the angle between the binormal vector fields B and B1.

We can give the following corollary with the aid of the equations (2.3) and (3.1), and Theorem 3.3.

Corollary 3.9. Consider that the curve (β ) is the successor curve of the curve (α) and (α,β ) have the same arc-length parameter s. Now,
we assume that the spinor φ corresponds to Frenet frame {B1,T1,N1} of the successor curve (β ) and Darboux vector of the successor
curve (β ) is D1. In that case, Darboux vector of the successor curve (β ) can be written as

D1 =−
iκ
2

(
ξ

t
σξ + ξ̂

t
σξ̂

)
in terms of the spinor ξ corresponding to the curve (α).

Now, we consider that the successor curve (β ) of the curve (α) is helix and we give the spinor equations in that case with following theorems
and corollaries.

Theorem 3.10. Suppose that the curve (β ) is the successor curve of the curve (α) and the successor curve is helix. In addition, the spinor
φ corresponds to the Frenet frame {B1,T1,N1} of the successor curve (β ). Therefore, the spinor dφ

ds is

dφ

ds
=

τ1

2cosθ
e−iθ

φ̂ (3.9)

where s is the arc-length parameter of both the curve (α) and the successor curve (β ), τ1 is the torsion of the successor curve (β ), and
θ = arccos〈T1,U〉= constant.

Proof. Let the successor curve (β ) of the curve (α) be helix and φ be corresponds to the Frenet frame {B1,T1,N1} of the successor curve
(β ). In that case, if the equation κ1

τ1
= tanθ = constant is considered since the successor curve is helix, the equation (3.3) can be written as

dφ

ds
=

τ1− i tanθτ1

2
φ̂ =

τ1

2cosθ
(cosθ − isinθ) φ̂

and consequently,

dφ

ds
=

τ1

2cosθ
e−iθ

φ̂ .

We know that if the successor curve (β ) of the curve (α) is helix, then the curve (α) is planar curve and τ = 0 in Theorem 2.6. Therefore
with the aid of the equation (2.4) we can give the following corollary.

Corollary 3.11. Consider that the curve (β ) is the successor curve of the curve (α) and the successor curve is helix. In addition, the spinor
ξ corresponds to the Frenet frame {N,B,T} of the curve (α). In that case, the spinor dξ

ds can be written that

dξ

ds
=

κ

2
ξ̂

where s is the arc-length parameter of both the curve (α) and the successor curve (β ) and κ is the curvature of the curve (α).
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Corollary 3.12. Consider that the spinors ξ and φ correspond to the Frenet frames {N,B,T} of the curve (α) and {B1,T1,N1} of the
successor curve (β ), selected as helix, respectively. Therefore, there is the relationship between the spinors dξ

ds and dφ

ds as

dφ

ds
=± sinϑ

cosθ
ei( π

4−
ϑ

2 −θ) dξ

ds

where the angle ϑ is the angle between the binormal vector fields B and B1 and θ = arccos〈T1,U〉= constant.

Corollary 3.13. Suppose that the curve (β ) is the successor curve of the curve (α) and the spinor φ corresponds to the Frenet frame
{B1,T1,N1} of the successor curve (β ), respectively. In that case, the successor curve (β ) is helix with constant angle θ and axis U, then
the necessary and sufficient condition is that the constant vector U can be written

U =
1
2

(
ei(θ− π

2 )φ
t
σφ + e−i(θ− π

2 )φ̂
t
σφ̂

)
. (3.10)

Proof. (⇒) : Let the successor curve (β ) of the curve (α) be helix. In that case, there is a constant vector U making a constant angle θ with
tangent vector T1 at all points of the curve (β ) and it can be written U = cosθT1 + sinθB1. On the other hand, consider that the spinor φ

corresponds to the Frenet frame {B1,T1,N1} of the successor curve (β ). Therefore, if we use the equation (3.5) in the equation U, then we
get

U =
1
2

(
ei(θ− π

2 )φ
t
σφ + e−i(θ− π

2 )φ̂
t
σφ̂

)
.

Now, if we take the derivative of the vector U with respect to the arc-length parameter s, then we have

U′ =
1
2

[
ei(θ− π

2 )

((
dφ

ds

)t
σφ +φ

t
σ

(
dφ

ds

))
+ e−i(θ− π

2 )

((
d̂φ

ds

)t

σφ̂ + φ̂
t
σ

(
d̂φ

ds

))]
.

and with the aid of the equation (3.9) we get

U′ =
i
2

[
− τ1

2cosθ

(
φ̂

t
σφ +φ

t
σφ̂
)
+

τ1

2cosθ

(
φ̂

t
σφ +φ

t
σφ̂
)]

,

U′ = 0

and consequently, the vector U is constant.

(⇐) : Let the successor curve of the curve (α) be (β ). Moreover, we suppose that a constant vector U as

U =
1
2

(
ei(θ− π

2 )φ
t
σφ + e−i(θ− π

2 )φ̂
t
σφ̂

)
.

Therefore, with the aid of the equation (3.6) we can obtain

〈T1,U〉=−
1
4


(

eiθ (φ 2
1 −φ 2

2
)
+ e−iθ

(
−φ1

2
+φ2

2
))(

φ 2
1 −φ 2

2 +φ2
2−φ1

2
)

−
(

eiθ (φ 2
1 +φ 2

2
)
+ e−iθ

(
φ1

2
+φ2

2
))(

φ 2
1 +φ 2

2 +φ1
2
+φ2

2
)

+
(
−2φ1φ2 +φ1 φ2

)(
−2eiθ φ1φ2 +2e−iθ φ1 φ2

)


and

〈T1,U〉=
1
2

(
|φ1|2 + |φ2|2

)(
eiθ + e−iθ

)
= cosθ

(
|φ1|2 + |φ2|2

)
.

We know that the spinor φ corresponds to the unit vectors, Frenet frame {B1,T1,N1}, therefore, φ
t
φ = |φ1|2+ |φ2|2 = 1 and 〈T1,U〉= cosθ .

On the other hand, since the vector U is constant as per the theorem, U′ = 0 is hold. Therefore, we obtain

U′ =
1
2

[
iθ ′
(

ei(θ− π

2 )φ
t
σφ − e−i(θ− π

2 )φ̂
t
σφ̂

)
+ φ̂

t
σφ

(
(τ1− iκ1)ei(θ− π

2 )− (τ1 + iκ1)e−i(θ− π

2 )
)]

and if we make necessary adjustments in last equation, then we get

U′ = 0 = i
[
θ
′
(

cos(θ − π

2
)B1− sin(θ − π

2
)T1

)
−
(

τ1 sin(θ − π

2
)+κ1 cos(θ − π

2
)
)

N1

]
.

As a result, we have

θ
′ sin(θ − π

2
) = 0,

θ
′ cos(θ − π

2
) = 0,

and θ ′ = 0 and θ = constant. Consequently, 〈T1,U〉= cosθ = constant and the successor curve (β ) is helix.

Corollary 3.14. Let the curve (β ), selected as helix, be the successor curve of the curve (α). In addition, the spinor ξ corresponds to the
Frenet frame {N,B,T} of the curve (α). Therefore, the spinor equation of axis U of the helix successor curve can be written

U =
1
2

[
−ei(θ+ϑ)

ξ
t
σξ + e−i(θ+ϑ)

ξ̂
t
σξ̂

]
.
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Proof. Consider that the successor curve (β ) of the curve (α) is helix. Therefore, there is the constant angle θ such as 〈T1,U〉= cosθ =
constant. If we use the equations (3.8) and (3.10) we get easily

U =
1
2

[
−ei(θ+ϑ)

ξ
t
σξ + e−i(θ+ϑ)

ξ̂
t
σξ̂

]
where the successor curve (β ) is helix, therefore, the curve (α) is planar curve. In that case, τ = 0 = ϑ ′ = 0 and the angles θ , ϑ are constant
angles.

Now, we give two examples.

Example 3.15. Let α : I→ E3 be curve with arc-length parameter s such as

α(s) =
(

2√
5

coss,
2√
5

sins,
s√
5

)
.

Therefore, we obtain that Frenet apparatus {T,N,B,κ,τ} of (α) are

T(s) =
1√
5
(−2sins,2coss,1),

N(s) = (−coss,−sins,0),

B(s) =
1√
5
(sins,−coss,2)

and

κ =
2√
5
, τ =

1√
5
.

Now, we assume that the spinor ξ corresponds to Frenet frame {N,B,T} of the curve (α). In that case, we obtain

ξ1 =±

√√
5+1

2
√

5
ie
−is
2 ,

ξ2 =±

√√
5−1

2
√

5
e

is
2

where s is the arc-length parameter of the curve (α). Moreover, we get

dξ

ds
=

1
2
√

5
(−iξ +2ξ̂ ).

On the other hand, consider that the curve (β ) be a representation of the family of successor curves of the curve (α). In that case, if we take
Frenet frame {T1,N1,B1} of the successor curve (β ) and the relationship T = N1, we have

T1 =


cos
(

1√
5

s+ c
)

coss+ 1√
5

sin
(

1√
5

s+ c
)

sins,

cos
(

1√
5

s+ c
)

sins− 1√
5

sin
(

1√
5

s+ c
)

coss,
2√
5

sin
(

1√
5

s+ c
)

 ,

N1 =
1√
5
(−2sins,2coss,1) ,

B1 =


−sin

(
1√
5

s+ c
)

coss+ 1√
5

cos
(

1√
5

s+ c
)

sins,

−sin
(

1√
5

s+ c
)

sins− 1√
5

cos
(

1√
5

s+ c
)

coss,
2√
5

cos
(

1√
5

s+ c
)


where τ = dϑ

ds = 1√
5

and as a result, ϑ = 1√
5

s+c, and c = constant. In addition to that, the curvatures κ1 and τ1 of the successor curve (β )
can be obtained

κ1 =
2√
5

cos
(

1√
5

s+ c
)
,

τ1 =
2√
5

sin
(

1√
5

s+ c
)
.

Therefore, if we assume that the spinor φ corresponds to Frenet frame {B1,T1,N1}, then the spinor components of φ can be given

φ1 =±

√√
5+1

2
√

5
ei( π

4 +
ϑ−s

2 ),

φ2 =±

√√
5−1

2
√

5
ei( π

4−
ϑ+s

2 )
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where ϑ = 1√
5

s+ c and consequently, we have

dφ

ds
=

1
2
√

5

(
sin
(

1√
5

s+ c
)
−2icos

(
1√
5

s+ c
))

φ̂ .

Example 3.16. Consider that the helix β (s) =
(

cos s√
2
,sin s√

2
, s√

2

)
be a successor curve of the curve (α). In that case, the successor

system {T1,N1,B1,κ1,τ1} can be calculated as

T1 =
1√
2

(
−sin

s√
2
,cos

s√
2
,1
)
,

N1 =

(
−cos

s√
2
,−sin

s√
2
,0
)
,

B1 =
1√
2

(
sin

s√
2
,−cos

s√
2
,1
)

and

κ1 =
1
2
, τ1 =

1
2

where we can take θ = π

4 since τ1
κ1

= cotθ = 1. Moreover, the torsion of the curve (α) is τ = ϑ ′ = 0 as per Theorem 2.6 and the curvature
of the curve (α) is κ = 1√

2
since κ1 = κ cosϑ .

On the other hand, let φ be the spinor corresponding to Frenet frame of the successor curve (β ). In that case, we obtain that the components
of this spinor are

φ1 =±

√
1+ i
2
√

2
e−i s

2
√

2 ,

φ2 =±

√
1+ i
2
√

2
ei s

2
√

2 .

Now, we give the curve (α). We know that T = N1 therefore,

T =

(
−cos

s√
2
,−sin

s√
2
,0
)

and, as a result, we can take

α (s) =
√

2
(
−sin

s√
2
,cos

s√
2
,1
)
.

In that case, we have

N =

(
sin

s√
2
,−cos

s√
2
,0
)
,

B = (0,0,1) .

Consequently, if we assume the spinor ξ corresponding to Frenet frame of the curve (α), then we have

ξ1 =±
1√
2

e
i
(

π

4−
s

2
√

2

)
,

ξ2 =±
1√
2

e
i
(

π

4 +
s√
2

)
.
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