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Abstract. In this paper, we characterize explicitly the separation properties
T0 and T1 at a point p in the topological category of quantale-valued preordered

spaces and investigate how these characterizations are related. Moreover, we

prove that local T0 and T1 quantale-valued preordered spaces are hereditary
and productive.

1. Introduction

Classical separation axioms of topology have been extended to topological cat-
egory by several authors. Baran [2], in 1991, introduced these axioms in a set-
based topological category in terms of initial, final structures and discreteness. He
defined separation properties first locally, i.e., at a point p [4], then they are ex-
panded to point-free concepts. Using local lower separation axioms, Baran [2, 3]
introduced the notion of (strongly) closedness in set-based topological categories
that creates closure operators in sense of Dikranjan and Giuli [16] in some well-
known topological categories Conv (the category of convergence spaces and filter
convergence maps) [11], Lim (the category of limit spaces and filter convergence
maps) [9], Prord (the category of preordered sets and monotone maps) [12] and
SUConv (the category of semiuniform convergence spaces and uniformly continu-
ous maps) [14]. The other significant use of these concepts to define the notions of
Hausdorffness [5], compactness, perfectness [9], connectedness [10], regular, com-
pletely regular, normal objects [7, 8] in set-based topological categories.

A topological space defines a preorder (reflexive and transitive) relation, and a
topology can be obtained from a preorder relation on a set [17, 20]. This indicates
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a connection between topology and order. Domain theory that was introduced by
Dana Scott in the 1960s, is a branch of order theory which studies special kinds of
partially ordered sets generally named as domains. In computer science, this field is
used to establish denotational semantics, particularly for functional programming
languages [18,29]. Domain theory is closely related to topology and formalizes the
intuitive principles of convergence and approximation in a general way.

With the advancement of lattice theory, distinct mathematical frameworks have
been studied with lattice structures including lattice-valued topology [15], quantale-
valued approach space [23,24,28], quantale-valued metric space [25], lattice-valued
convergence space [22] and lattice-valued preordered space [15]. This motivates us
to study local T0 and T1 separation axioms in quantale-valued preordered spaces.

The main purpose of this paper is to give an explicit characterization for the
local T0 and T1 separation axioms in the category of quantale-valued preordered
spaces as well as to examine the relationship between them and to investigate their
some invariance properties.

2. Preliminaries

Recall [24] that a partially ordered set (L,≤) is called a complete lattice if all
subsets of L have both infimum (

∧
) and supremum (

∨
). For any complete lattice,

the bottom element and top element is denoted by ⊥ and ⊤, respectively.

Definition 1. Let (L,≤) be a complete lattice. We identify

(1) α ◁ β (the well-below relation) if ∀X ⊆ L such that β ≤
∨

X there exists
δ ∈ X such that α ≤ δ.

(2) α ≺ β (the well-above relation) if ∀X ⊆ L such that
∧
X ≤ α there exists

δ ∈ X such that δ ≤ β.

Definition 2. A complete lattice (L,≤) is called a completely distributive iff for
any α ∈ L, α =

∨
{β : β ◁ α} .

Definition 3. The triple (L,≤, ∗) is called a quantale if the following conditions
are satisfied.

(1) (L,≤) is a complete lattice.
(2) (L, ∗) is a semi group.
(3) (

∨
i∈I αi)∗β =

∨
i∈I(αi∗β) and β∗(

∨
i∈I αi) =

∨
i∈I(β∗αi) for all αi, β ∈ L,

Note that if (L, ∗) is a commutative semi group, then the quantale (L,≤, ∗) is
named as commutative and if for all α ∈ L, α ∗ ⊤ = ⊤ ∗ α = α, then it is called
integral.

We denote a quantale by L = (L,≤, ∗) if it is integral and commutative, where
(L,≤) is completely distributive.

A quantale L = (L,≤, ∗) is named as a value quantale if (L,≤) is completely
distributive lattice such that ∀α, β ◁⊤, α ∨ β ◁⊤ [19].
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Definition 4. [25, 30] Let X ̸= ∅ be a set. A map R : X × X → L = (L,≤, ∗)
is called an L-preorder relation on X and the pair (X,R) is called an L-preordered
space if it satisfies

(1) reflexivity, i.e., for all x ∈ X, R(x, x) = ⊤,
(2) transitivity, i.e., for all x, y, z ∈ X, R(x, y) ∗ R(y, z) ≤ R(x, z).

Note that an L-preordered space (X,R) is named as an L-equivalence space (X,R)
if for all x, y ∈ X, R(x, y) = R(y, x) (symmetry). Also, (X,R) is called separated
L-preordered space if x = y whenever R(x, y) = ⊤.

A map f : (X,RX) → (Y,RY ) is called an L-order preserving map if for all
x1, x2 ∈ X, RX(x1, x2) ≤ RY (f(x1), f(x2)).

Let L-Prord denotes the category whose objects are L-preordered spaces and
morphisms are L-order preserving mappings.

Example 1. (i) For L = 2 = ({0, 1},≤,∧), 2-Prord ∼= Prord, where Prord
is the category of preordered sets and order preserving maps.

(ii) For L = ([0,∞],≥,+) (Lawvere’s quantale), [0,∞]-Prord ∼= ∞qMet,
where ∞qMet is the category of extended quasi metric spaces and non-
expansive maps.

(iii) For L = (△+,≤, ∗) (distance distribution functions quantale defined in
[24]), then △+-Prord ∼= ProbqMet, where ProbqMet is the category of
probabilistic quasi metric spaces and non-expansive maps [19].

Note that in some literature, L-preordered space is often called a continuity space
if L is a value quantale (see [19]), an L-metric space (see [25]) and an L-category
(see [21]).

Recall [1], let E be a category, Set be the category of sets and functions and
U : E → Set be a functor. U is called topological or E is called topological category
on Set if

(i) U is amnestic and faithful (i.e., concrete),
(ii) U consists of small fibers,
(iii) Every U-source has a unique initial lift.

In addition, a topological functor is said to be normalized if constant objects,
i.e., subterminals, have a unique structure.

Note that the forgetful functor U : L-Prord → Set is topological (see [21]) and
it is also normalized.

Lemma 1. [21] Let (Xi,Ri) be a collection of L-preordered spaces. A source (fi :
(X,R) → (Xi,Ri))i∈I is initial in L-Prord iff ∀a, b ∈ X,

R(a, b) =
∧
i∈I

Ri(fi(a), fi(b)).

Lemma 2. [21] Let X be a non-empty set and (X,R) be an L-preordered space.
For all a, b ∈ X,
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(i) The discrete L-preorder structure on X is stated by

Rdis(a, b) =

{
⊤, a = b,

⊥, a ̸= b.

(ii) The indiscrete L-preorder structure on X is stated by

Rind(a, b) = ⊤.

3. Local T0 and T1 Objects

Let X be a set, p ∈ X be a point and X ∨p X be the wedge product of X at
p [2], i.e., two separate copies of X identified at p.

In the wedgeX∨pX, a point x is represented as xk if it lies in the k-th component
for k = 1, 2.

Definition 5. [2] Let X ∨p X be the wedge product at p and X2 be the cartesian
product of X.

(1) Ap : X ∨p X → X2 (the principal p-axis mapping) is given by

Ap(x1) = (x, p) and Ap(x2) = (p, x).

(2) Sp : X ∨p X → X2 (the skewed p-axis mapping) is given by

Sp(x1) = (x, x) and Sp(x2) = (p, x).

(3) ∇p : X ∨p X → X (the fold mapping at p) is given by

∇p(x1) = ∇p(x2) = x.

Definition 6. Let (X, τ) be topological space and p ∈ X. For each point x ̸= p,
there exists an open set A such that p ∈ A, x /∈ A or (resp. and) there exists an
open set B such that x ∈ B, p /∈ B, then (X, τ) is said to be T0 (resp. T1) at
p [2, 6].

Theorem 1. Let (X, τ) be topological space and p ∈ X. Then (X, τ) is T0 (resp.
T1) at p iff the initial topology induced by {Ap (resp. Sp) : X ∨p X → (X2, τ∗) and
∇p : X ∨p X → (X,P (X))} is discrete, where τ∗ is the product topology on X2.

Proof. The proofs are given in [6]. □

Definition 7. [2] Let U : E → Set be topological functor, X ∈ Ob(E) with U(X) =
B and p ∈ B.

(i) X is T0 at p provided that the initial lift of the U-source {Ap : B ∨p B →
U(X2) = B2 and ∇p : B ∨p B → UD(B) = B} is discrete, where D is the
discrete functor that is a left adjoint to U.

(ii) X is T1 at p provided that the initial lift of the U-source {Sp : B ∨p B →
U(X2) = B2 and ∇p : B ∨p B → UD(B) = B} is discrete.
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Remark 1. (1) Separation axioms T 0 at p and T1 at p are used to identify the
notions of (strong) closedness in arbitrary set-based topological categories
[2, 3].

(2) In Top (the category of topological spaces and continuous mappings), by
Theorem 1, T 0 at p and T1 at p reduce to Definition 6 [2].

(3) A topological space X is Ti, i = 0, 1 if and only if X is Ti, i = 0, 1, at p for
all points p in X ( [6], Theorem 1.5(5)).

(4) Let U : E → Set be a topological functor, X an object in E and p ∈ U(X) be
a retract of X, i.e., the initial lift h : 1 → X of the U-source p : 1 → U(X)
is a retract, where 1 is the terminal object in Set. Then if X is T0 (resp.
T1), then X is T0 at p (resp. T1 at p) but the converse of implication is not
true, in general ( [4], Theorem 2.6).

(5) Specially, if U : E → Set is normalized, then T0 and T1 imply T0 at p and
T1 at p, respectively. ( [4], Corollary 2.7).

Theorem 2. An L-preordered space (X,R) is T0 at p iff R(x, p) ∧ R(p, x) = ⊥ for
all x ∈ X distinct from p.

Proof. Assume (X,R) is T0 at p and x ∈ X with x ̸= p. Let Rdis be the discrete
L-preorder relation on X and for i = 1, 2, πi : X

2 → X be the projection maps.
For x1, x2 ∈ X ∨p X,

R(π1Ap(x1), π1Ap(x2)) = R(π1(x, p), π1(p, x)) = R(x, p)

R(π2Ap(x1), π2Ap(x2)) = R(π2(x, p), π2(p, x)) = R(p, x)

Rdis(∇p(x1),∇p(x2)) = Rdis(x, x) = ⊤

Since (A,R) is T0 and x1 ̸= x2, by Definition 7 and Lemmas 1, 2,

⊥ =
∧

{R(π1Ap(x1), π1Ap(x2)),R(π2Ap(x1), π2Ap(x2)),Rdis(∇p(x1),∇p(x2))}

=
∧

{R(x, p),R(p, x),⊤}
= R(x, p) ∧ R(p, x)

Hence, we have R(x, p) ∧ R(p, x) = ⊥.
Conversely, let R′ be the initial L-preorder relation on X ∨p X induced by Ap :

X ∨p X → U(X2,R2) = X2 and ∇p : X ∨p X → U(X,Rdis) = X, where R2 is the
product structure on X2 induced by the projection maps π1 and π2.

Assume that the condition holds, i.e., for all x ∈ X distinct from p, R(x, p) ∧
R(p, x) = ⊥. Let v and w be any points in the wedge.

(1) If v = w, then R′(v, w) = ⊤.
(2) If v ̸= w and ∇pv ̸= ∇pw, then Rdis(∇pv,∇pw) = ⊥. By Lemma 1,

R′(v, w) =
∧

{R(π1Apv, π1Apw),R(π2Apv, π2Apw),Rdis(∇pv,∇pw)}
= ⊥
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(3) Suppose v ̸= w and ∇pv = ∇pw. It follows that ∇pv = x = ∇pw for some
points x ∈ X with x ̸= p. We must have v = x1 and w = x2 or v = x2 and
w = x1 since v ̸= w.
(a) If v = x1 and w = x2, then

R(π1Apv, π1Apw) = R(x, p)

R(π2Apv, π2Apw) = R(p, x)

Rdis(∇pv,∇pw) = Rdis(x, x) = ⊤
and it follows that

R′(v, w) =
∧

{R(π1Apv, π1Apw),R(π2Apv, π2Apw),Rdis(∇pv,∇pw)}

=
∧

{R(x, p),R(p, x),⊤}
= R(x, p) ∧ R(p, x)

By the assumption R(x, p) ∧ R(p, x) = ⊥, we get R′(v, w) = ⊥.
(b) Similarly, if v = x2 and w = x1, then R′(v, w) = ⊥.

Consequently, for all v, w in the wedge X ∨p X, we obtain

R′(v, w) =

{
⊤, v = w

⊥, v ̸= w

By Lemma 2, R′ is the discrete L-preorder relation on the wedge. Hence, by Defi-
nition 7, (X,R) is T0 at p. □

Theorem 3. An L-preordered space (X,R) is T1 at p iff R(x, p) = ⊥ = R(p, x) for
all x ∈ X distinct from p.

Proof. Assume that (X,R) is T1 at p and x ∈ X with x ̸= p. Let v = x1, w = x2 ∈
X ∨p X. Note that,

R(π1Spv, π1Spw) = R(π1(x, x), π1(p, x)) = R(x, p)

R(π2Spv, π2Spw) = R(π2(x, x), π2(p, x)) = R(x, x) = ⊤
Rdis(∇pv,∇pw) = Rdis(x, x) = ⊤

where Rdis is the discrete L-preorder relation on X and for each i = 1, 2, πi : X
2 →

X is the projection map. Since v ̸= w and (X,R) is T1 at p, by Definition 7 and
Lemmas 1, 2,

⊥ =
∧

{R(π1Spv, π1Spw),R(π2Spv, π2Spw),Rdis(∇pv,∇pw)}

=
∧

{R(x, p),⊤}
= R(x, p)

Similarly, if v = x2, w = x1 ∈ X ∨p X, then by Lemma 1, we have

⊥ =
∧

{R(p, x),⊤} = R(p, x)
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Conversely, let R′ be the initial L-preorder relation on X ∨p X induced by Sp :
X ∨p X → U(X2,R2) = X2 and ∇p : X ∨p X → U(X,Rdis) = X, where R2 is the
product structure on X2 induced by the projection maps π1 and π2.

Assume that for all x ∈ X distinct from p, R(x, p) = ⊥ = R(p, x). Let v and w
be any points in the wedge.

(1) If v = w, then R′(v, w) = ⊤.
(2) If v ̸= w and ∇pv ̸= ∇pw, then Rdis(∇pv,∇pw) = ⊥ since Rdis is the

discrete structure. By Lemma 1,

R′(v, w) =
∧

{R(π1Spv, π1Spw),R(π2Spv, π2Spw),Rdis(∇pv,∇pw)}
= ⊥

(3) Suppose v ̸= w and ∇pv = ∇pw. It follows that we must have v = x1 and
w = x2 or v = x2 and w = x1.

If v = x1 and w = x2, then by Lemma 1,

R′(v, w) =
∧

{R(x, p),⊤} = R(x, p)

By the assumption R(x, p) = ⊥ = R(p, x), we get R′(v, w) = ⊥.
Similarly, we obtain R′(v, w) = ⊥ for v = x2 and w = x1.

Hence, for all v, w ∈ X ∨p X, we have

R′(v, w) =

{
⊤, v = w

⊥, v ̸= w

By Lemma 2, it follows that R′ is the discrete L-preorder relation on the wedge.
Consequently, by Definition 7, (X,R) is T1 at p. □

Example 2. Let ∗ be a binary operation identified as ∀α, β ∈ [0, 1], α ∗ β =
(α − 1 + β) ∨ 0 and L = ([0, 1],≤, ∗) be a triangular norm (Lukasiewicz t-norm)
[26], where the bottom and top elements are ⊥ = 0 and ⊤ = 1, respectively. Let
X = {a, b, c} and an L-preorder relation R : X ×X → L defined by

R(v, w) =


⊤, v = w
1

2
, (v, w) = (a, c)

⊥, otherwise.

Clearly, (X,R) is an L-preordered space. By Theorem 2, (X,R) is T 0 at p for all
p ∈ X, and by Theorem 3, (X,R) is T1 at b but it is neither T1 at a nor at c.

Remark 2. (1) By Theorems 2 and 3, if an L-preordered space (X,R) is T1 at
p, then it is T 0 at p. But in general, the converse is not true (see previous
Example).

(2) In an arbitrary set-based topological category, T0 at p and T1 at p objects
may be equivalent, for example, in Prox (the category of proximity spaces
and p-maps) [27], CP (the category of pairs and pair preserving maps) [3],
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Born (the category of bornological spaces and bounded maps) [3], SULim
(the category of semiuniform limit spaces and uniformly continuous maps)
[13], Remark 3.6.

4. Hereditary and Productive Properties

Definition 8. Let (X,R) be an L-preordered space and A ⊂ X. A subspace (A,RA)
is defined by RA(x, y) = R(x, y) for all x, y ∈ A, where RA is the initial L-preorder
structure on A induced by the inclusion map i : A → X.

Theorem 4. Let (X,R) be an L-preordered space, A ⊂ X and p ∈ A.

(i) If (X,R) is T 0 at p, then (A,RA) is T 0 at p.
(ii) If (X,R) is T1 at p, then (A,RA) is T1 at p.

Proof. (i) Suppose that p ∈ A and (X,R) is T 0 at p. By Theorem 2, R(x, p)∧
R(p, x) = ⊥ for x ∈ A ⊂ X with x ̸= p. By Definition 8, we have RA(x, p) =
R(x, p) and RA(p, x) = R(p, x) for x, p ∈ A ⊂ X. It follows that RA(x, p) ∧
RA(p, x) = ⊥. Hence, by Theorem 2, the subspace (A,RA) is also T 0 at p.

(ii) Similarly, let p ∈ A and (X,R) be T1 at p. By Theorem 3 and Definition
8, we have RA(x, p) = R(x, p) = ⊥ = R(p, x) = RA(p, x) for x, p ∈ A ⊂ X
with x ̸= p. Hence, by Theorem 3, the subspace (A,RA) is also T1 at p.

□

Theorem 5. Let (Xi,Ri) be an L-preordered space for each i ∈ I and (X,R) be the
product of the spaces {(Xi,Ri) : i ∈ I}, where X =

∏
i∈I Xi and for all x, y ∈ X,

R(x, y) =
∧

i∈I Ri(πi(x), πi(y)). For all i ∈ I, the L-preordered space (Xi,Ri) is
isomorphic to a subspace of the product space (X,R).

Proof. Suppose that (Xi,Ri) is an L-preordered space for each i ∈ I and (X,R) is
the product space. Firstly, we choose a fixed point zj in Xj for each j ∈ I with
j ̸= i. Let A = {z1} × {z2} × ... × {zi−1} ×Xi × {zi+1} × ... ⊂ X. Then, (A,RA)
is a subspace of the product space (X,R), where RA(x, y) = R(x, y) for all x, y ∈
A. Clearly, i-th projection map πi : (A,RA) → (Xi,Ri) defined by for ai ∈ Xi,
πi(z1, z2, ..., zi−1, ai, zi+1, ...) = ai is bijective. For all (z1, z2, ..., zi−1, ai, zi+1, ...),
(z1, z2, ..., zi−1, bi, zi+1, ...) ∈ A, we have

RA((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= R((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

=
∧
j ̸=i

{Ri(ai, bi),Rj(zj , zj) = ⊤}

≤ Ri(ai, bi)

= Ri(πi(z1, z2, ..., zi−1, ai, zi+1, ...), πi(z1, z2, ..., zi−1, bi, zi+1, ...))

and it follows that πi is an L-order preserving map.
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On the other hand, let fi : (Xi,Ri) → (A,RA) be function defined by fi(ai) =
(z1, z2, ..., zi−1, ai, zi+1, ...) for ai ∈ Xi. Then, we have

(πi ◦ fi)(ai) = πi(fi(ai))

= πi(z1, z2, ..., zi−1, ai, zi+1, ...)

= ai

= 1Xi
(ai)

and

(fi ◦ πi)(z1, z2, ..., zi−1, ai, zi+1, ...) = fi(πi(z1, z2, ..., zi−1, ai, zi+1, ...))

= fi(ai)

= (z1, z2, ..., zi−1, ai, zi+1, ...)

= 1A(z1, z2, ..., zi−1, ai, zi+1, ...)

It follows that fi = (πi)
−1 since πi ◦ fi = 1Xi

and fi ◦ πi = 1A.
For all ai, bi ∈ Xi, we obtain

Ri(ai, bi) =
∧
j ̸=i

{Ri(ai, bi),Rj(zj , zj) = ⊤}

= R((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= RA((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= RA(fi(ai), fi(bi)) ≤ RA(fi(ai), fi(bi))

and it follows that fi is an L-order preserving map.
Consequently, L-preordered space (Xi,Ri) and the subspace (A,RA) are isomor-

phic. □

Theorem 6. Let {(Xi,Ri) : i ∈ I} be a collection of L-preordered spaces and (X,R)
be the product space, where X =

∏
i∈I Xi and R(x, y) =

∧
i∈I Ri(πi(x), πi(y)) for

x, y ∈ X. Let p = (pi)i∈I be a point in X.

(i) (X,R) is T 0 at p iff (Xi,Ri) is T 0 at pi for each i ∈ I.
(ii) (X,R) is T1 at p iff (Xi,Ri) is T1 at pi for each i ∈ I.

Proof. (i) Assume that the product space (X,R) is T 0 at p. By Theorem 5, for
each i ∈ I, (Xi,Ri) is isomorphic to a subspace of (X,R) and by Theorem
4, a subspace of a local T 0 L-preordered space is T 0 at p. Since (X,R) is
T 0 at p, it follows that (Xi,Ri) is T 0 at pi for each i ∈ I.

Conversely, suppose that (Xi,Ri) is T 0 at pi for each i ∈ I. Let x =
(xi)i∈I be a point in X with x ̸= p = (pi)i∈I . Since x ̸= p, there exists
i0 ∈ I such that xi0 ̸= pi0 . By the assumption L-preordered space (Xi0 ,Ri0)
is T 0 at p and by Theorem 2, we have Ri0(xi0 , pi0) ∧ Ri0(pi0 , xi0) = ⊥. It
follows that

R(x, p) =
∧
i∈I

{Ri(xi, pi)} ≤ Ri0(xi0 , pi0)
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and

R(p, x) =
∧
i∈I

{Ri(pi, xi)} ≤ Ri0(pi0 , xi0)

Since Ri0(xi0 , pi0) ∧ Ri0(pi0 , xi0) = ⊥, we get R(x, p) ∧ R(p, x) = ⊥. Hence,
by Theorem 2, the product space (X,R) is T 0 at p.

(ii) Similarly, suppose that the product space (X,R) is T1 at p. By the assump-
tion and Theorems 4 and 5, we have (Xi,Ri) is T1 at pi for each i ∈ I.

Conversely, assume that (Xi,Ri) is T1 at pi for each i ∈ I. Let x ∈
X with x ̸= p. Then, there exists i0 ∈ I such that xi0 ̸= pi0 . By the
assumption L-preordered space (Xi0 ,Ri0) is T1 at p and by Theorem 3, we
have Ri0(xi0 , pi0) = Ri0(pi0 , xi0) = ⊥. It follows that

R(x, p) =
∧

{R1(x1, p1),R2(x2, p2), ...,Ri0−1(xi0−1, pi0−1),

Ri0(xi0 , pi0) = ⊥,Ri0+1(xi0+1, pi0+1), ...}
= ⊥

and similarly,

R(p, x) =
∧

{R1(p1, x1), ...,Ri0(pi0 , xi0) = ⊥, ...}
= ⊥

Consequently, by Theorem 3, we get the product space (X,R) is T1 at p.
□

Author Contribution Statements The authors jointly worked on the results
and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no
competing interest.

Acknowledgements The authors are thankful to the editor and referees for their
valuable comments and suggestions which helped very much in improving the pa-
per. This work was supported by Research Fund of the Nevşehir Hacı Bektaş Veli
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