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ABSTRACT 

 
We present a detailed integrated simulation model for two processes: casualty transportation and emergency room 
management after a major disaster. The two important processes have generally been discussed separately in literature. 
However, to be able to correctly evaluate preparedness of disaster and emergency, and minimize potential loss of lives, it is 
important that these two interconnected processes are analysed together. The purpose of this study is to present an 
integrated simulation model of victim transportation and treatment processes after a major disaster and use the proposed 
model in a case study for Bornova, a district of the city of İzmir in Turkey. Simulation model is run with a detailed 
experimental design and results are statistically analysed. We find out and report the importance of correct distribution of 
ambulances to regions and rules for better management of capacities of constrained medical resources in order to minimize 
total loss of lives. 
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1. INTRODUCTION  
 
A disaster is a calamitous event that happens with or without a warning, which causes loss of life, 
injuries and illnesses and damages infrastructure and environment. A disaster can be natural 
(earthquakes, floods, tsunamis etc.) or man-made (terrorism, technological, fire etc.). For an event to 
be considered as a disaster, it should either cause significant loss of life, or disrupt normal life. To 
prevent increased loss of life, it is important to effectively coordinate operations and activities after a 
disaster (disaster operations). Disaster operations are divided into 4 phases: mitigation, preparedness, 
response and recovery. This study focuses on operations during the third phase, focusing on response 
and first aid. This phase includes emergency relief efforts and activities to minimize probability and 
extent of secondary damage, and to prevent further loss of life. The relevant efforts and activities 
begin and end within a short span of time due to their nature, before steady-state is reached. This 
transient period starts from the time victims are rescued and ends when they are treated and released 
from medical care. To be able to evaluate the effectiveness of, and improve these response activities, 
it is necessary to investigate the response phase as a whole, rather than in separate parts. This is 
especially important for a developing country, regularly hit by damaging earthquakes over the last 
century such as Turkey, and specifically for İzmir, due to its vulnerable location. 
 
Analytical models are mostly inadequate for modeling realistic size complex systems including 
healthcare systems. The fact that managing disaster operations is a transient period problem, the size 
and stochastic nature of the problem all make it challenging to model this problem analytically. Even 
if this kind of problem can be formulated analytically, obtaining a solution for any realistic size may 
not be possible.  
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Flow of patients to the hospitals, scheduling and layout of resources for disaster operations can be 
realistically modeled using discrete event simulation. For this reason, in this paper, activities in 
response phase of disaster management, from rescue of the victims to the end of their treatment, are 
modeled via simulation.  
 
The purpose of this study is to present a detailed simulation model encapsulating both of closely 
related victim transportation and treatment processes, and to use the simulation model with real-life 
data in a case study to find out how to manage the constrained resources better and decrease total 
loss of lives. 
 
Section 2 of this study presents literature review on the subject. The details of the simulation model 
are presented in section 3. The simulation model is built by using real-life data from İzmir Province 
Disaster and Emergency Management Center, İzmir Healthcare System Management and the three 
major hospitals in Bornova, İzmir using ARENA simulation software (version 10.0).  Izmir is the 
third largest city in Turkey and is one of the few metropolitan areas, which has significant 
earthquake risk. Bornova is one of the most populated central districts of Izmir with a population 
approaching 450,000. The detailed case study conducted for Bornova can subsequently be scaled up 
to larger cities. Section 4 includes an extensive experimental design and findings obtained by 
statistical analysis of the results from the experimental design, performed using the proposed. 
Finally, section 5 concludes the paper with suggestions on future work.  
 
2. LITERATURE REVIEW 
 
Due to inadequacy of analytical models in modeling complex systems such as healthcare, discrete 
event system (DES) simulation is used extensively to develop detailed models for problems related 
to healthcare. Especially for incidents causing mass injuries, which may result in the overloading of 
healthcare services, DES appears to be an important tool for measuring system response.  
 
To the best of the authors’ knowledge, literature found on modeling post disaster response falls into 
two categories. One group of studies focuses only on transportation of victims to the medical 
facilities. For instance, Christie and Levary modeled the process of transportation of victims with 
severe injuries due to a man-made disaster from disaster site to hospitals. The study focused on the 
issue of how quickly and effectively casualties should be transported in order to provide timely 
medical treatment and reduce the loss of life [1]. Fawcett and Oliveira suggested a new approach to 
the problem of providing medical assistance to victims after a major earthquake. Based on a 
mathematical model, they tried to determine how regional medical systems should respond to 
earthquake. The inputs of the model are the location and number of non-fatal casualties, the level of 
pre-hospital medical care, and the capacity of hospitals and transportation system post-earthquake. 
The simulation model simulates the flow of the victims from the areas affected by the event to the 
hospitals. Since some or all of the hospitals in the disaster region may be damaged, hospital care 
capacity is also included in the modeling process. In the model, there is no difference among types of 
casualties; all victims in need of hospital care are taken into account. The proposed model also 
estimates the statistics related to the system response such as the number of loss of life, the waiting 
time before treatment etc [2]. Sullivan states that computer simulation can test planning ability under 
different scenarios and can help planners in decision process. For this reason, at the stage of 
emergency service systems planning for the events with mass death and injuries, the author suggests 
that DES should be used as a part of the planning process. In the study, various decision rules related 
to the time of calling outside ambulances are evaluated. It is stated that the simulation model 
accurately models the response to Greensburg tornado occurred in the year of 2008 [3]. Ullrich, 
Debacker and Dhondt developed a simulation model focusing on the prehospital phase consisting of 
field triage, evacuation and medical processes. With the model, they studied the effects of several 
parameters, such as the number of hospitals, medical teams and ambulances on several performance 
indicators [4].  
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The other group of studies focuses on patient flow in emergency department.  Au-Yeung, Harrison 
and Knottenbelt modeled the patient flow in the emergency department of a large hospital using a 
Markov queuing network model, which includes multiple casualty types. To determine the 
parameters of the model, real data were used. Probability density functions and moments related to 
the patient response time were obtained by means of DES. Furthermore, the results were compared 
using different prioritization rules according to the casualty types [5].  Based on the assumption that 
the predictions of hospital capacity will support emergency rescue activities, Paul et al. state that it is 
important to accurately model the system behavior immediately after the event causing a disaster. 
With this aim, they suggest a transient modeling approach which uses simulation and exponential 
functions. In addition, the idea that arriving time from the event region to hospital can affect victim’s 
health status is reflected to modeling process [6].  Patvivatsiri generated a simulation model to 
analyze the patient flow in an emergency department, evaluated the usage of emergency department 
resources and determined appropriate resource and personnel levels [7]. Joshi modeled the effect of 
different arrival processes of patients to hospitals using DES. The study consisted of an analysis of 
patient flow to an emergency department after terrorist attack. They aimed to determine how 
emergency department patient care sufficiency is affected according to different arrival processes 
[8]. Yi et.al. developed a simulation model to represent hospital operations in the disaster situation 
after an earthquake, and obtained generalized regression equations to determine steady-state hospital 
capacity using the results from the simulations. Following this, a parametric metamodel was used to 
estimate transient capacity for multiple hospitals [9]. Based on earthquake data, Cao and Huang 
developed a simulation model to determine the performance of different prioritizing strategies for 
victims in need of medical treatment under varying resource levels [10].  Wang, Jiang and Yu 
developed two models to simulate casualty arrivals in, and medical treatment capacity of a hospital 
for a biochemical terrorist attack scenario. Changing the number of servers, they aimed to determine 
the number of victims treated within an hour, named the golden hour [11].  
 
To the best of the authors’ knowledge, current literature on the subject concentrates on either 
casualty transportation or on emergency room management. However, these processes have input-
output relationships; a change in settings of one process is highly likely to have effects in the 
downstream processes. Because the proposed model incorporates real life data on all processes, it is 
possible to realistically estimate effects of any setting or scenario on saving lives. 
 
3. SCOPE AND MODEL  
 
Worldwide, between 2002 and 2011, an average of 107,000 died annually because of natural 
disasters. During this interval, earthquakes were the leading cause of deaths with an average of 
67,974 deaths annually [12]. Due its global position, Turkey is especially prone to earthquakes. 
Major metropolitan areas, with dense population, are under earthquake threat. Specifically for İzmir, 
the third largest metropolitan area of Turkey, with a population of 4.5 million, earthquake is listed as 
number one cause of life loss and property damage among disasters, according to official Emergency 
Aid Plan [13]. Bornova is chosen for the case study since it is one of the most populated central 
districts of Izmir with a population approaching 450,000. The results and findings from a detailed 
case study for Bornova are appropriate for scaling up. 
 
For these reasons, the proposed model is developed mostly for earthquake scenarios, based on 
assumptions from previous earthquake related studies, making the model and its output realistic. The 
model includes first medical aid, triage, victim classification into priority classes, and transportation 
to hospital using ambulances and treatment in emergency rooms. The actual rescue of victims is 
excluded. To ensure that the proposed simulation model accurately represents real life system, the 
details of listed individual processes are modeled based either on manuals, emergency plans, or on 
expert interviews. In addition, static data used are either real life data or taken from previous similar 
subject studies in literature, as listed.  To ensure that the model is built correctly as regards to the 
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conceptual model, animation is utilized. Smaller test problems are run first to ensure that the 
proposed simulation model is in line with the conceptual model.  
 
We first present the general settings and assumptions for the proposed model developed in ARENA 
simulation software below. The flow of the simulation model is provided in Figure 1. (The specific 
setting and any additional assumptions made for Bornova case study will be presented later.)  
 
Simulation Model Settings 
 
1. Victims are defined as people who are injured in an earthquake and are in need of medical 
help. The victims are placed in one of three (3) priority classes. Priority class 1 victims are seriously 
injured and face imminent loss of life if not treated. Priority class 2 victims are those who can wait 
for treatment but have to be admitted to a hospital for recovery. Finally, priority class 3 victims can 
be treated without being admitted to a hospital.  
 
2. Each victim generated will be assigned a number of attributes. These attributes include region 
where the victim is from (the area affected by disaster is divided into regions), the severity of 
sustained injury (therefore priority class), expected remaining lifetime if untreated, etc. 
 
3. After a location for triage is secured, it becomes a casualty collection point (CCP), which a 
field first-aid unit is settled. The field first-aid unit is responsible for classifying victims into priority 
classes and providing initial (basic) treatment.  
 
Simulation Model Assumptions 
 
1. It is assumed that, after an earthquake, the available standing medical facilities are known. The 
model can easily be used for varying assumptions of available (standing) facilities. 
 
2. The process of rescuing victims is excluded from the simulation model. Modeling actual 
rescue efforts requires extensive information and expertise on earthquakes, building structures and 
damage created, and changes significantly based on location and actual building inventory. Also 
after a disaster, e.g., a major earthquake, a large proportion of uninjured survivors participate in 
search and rescue efforts alongside professional teams and efforts. For these reasons, rescue efforts 
are not relevant to the scope of this paper, which is limited to modeling response activities in regard 
to victims. The purpose of this research is to concentrate on the transportation and treatment of 
victims after a major disaster. Modeling rescue efforts in a post-disaster environment will therefore 
not contribute to the usefulness of results for this study. 
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Figure 1.  Flow chart of the simulation model 
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Figure 1. (Continued) Flow chart of the simulation model 
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3. Interarrival times of victims are assumed to be exponentially distributed. The interarrival time 
can be adjusted to cover a wide range of distributions. Nevertheless, exponential distribution is a 
good assumption when little information is available. Once the victims arrive into the model, they 
are assigned one of the three priority classes. The arrival rate is time heterogeneous and is 
determined based on previous studies using past earthquake data [14-16].  It is therefore assumed 
that 20% of victims are rescued within the first 30 minutes, 40% within the first 3 hours, and 47.5% 
within the first 8 hours. The fraction reaches to 55% within the first 12 hours, 70% within the first 24 
hours and 85% within the first 48 hours. The interarrival times of victims are calculated using 
population numbers and rescue fractions mentioned above. 
 
4. The casualty collection points are assumed to be operating at the predetermined tent-city 
locations [17].  
 
5. The model assumes that the first medical teams arriving after the earthquake set up at the 
casualty collection points and form field first-aid units. Depending on the existence of field first-aid 
units, victims are either directed to CCP or to medical facilities. Casualties are sent either to field 
first-aid units, if established in the region, or to hospitals according to user defined preset fractions. 
According to Mirhashemi et al., due to sun-dried construction of 80% of houses, majority of the 
buildings were destroyed during Bam earthquake and it took the first rescuers 1.7 hours on average 
to reach the scene [18]. Considering its stronger and the existence of a well-rehearsed emergency aid 
action plan, we can assume for Izmir, the time to reach incident site would be shorter. The model 
assumes a 45 minutes delay for the first responders to setup casualty collection and triage areas, start 
treatment of patients, and direct them to hospitals. 
 
6. Rescued victims are transported to the hospitals using ambulances at a CCP or by other means 
if at other locations. Fractions of victims using each mode of transportation are user set, and can be 
used at different values for the experimental design. Victims categorized into priority class 3 are 
assumed not to require ambulances. 

 
7. The simulation model assumes that the area affected is divided into regions. These regions can 
be towns, neighborhoods, municipalities etc. As per common real-life practice, the closest 
ambulance available to the region is sent, when required. 

 
8. The transportation of patients from either the wreckage sites or triage areas is performed 
according to priority classes. A first priority class victim will have access to an ambulance before the 
second. Each ambulance will leave as soon as it receives a 1st priority class victim; but can 
accommodate two victims.  

 
9. The time for a triage is assumed to be 1 minute [19]. Upon arrival to the hospital, treatment of 
victims is conducted according to the priority classes assigned during triage.  

 
10. 65% of priority 2 victims arriving at the hospitals require X-ray machine. 

 
11. The third priority class patients are treated by nurses and treatment time is assumed to be 
distributed according to U~ (5, 20 min.). After treatment, patients leave the system as healed. Other 
treatment time distributions used in the simulation model along with references are given in Table 1.  
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Table 1. Treatment time distributions used in the simulation model 

  * Distributions given in Table 1 are based on referred publications. In cases where more than one reference provided or 
where the   referred publication does not provide exact details of the distributions, information is combined from multiple 
sources and/or  necessary extrapolations based on provided data are made. 

 
Bornova Case Settings  
 
1. According to Emergency Aid Plan created by İzmir Governorship, tent-cities are to be constructed 
in the following four locations: The vicinity of Bornova Teacher's House, Bornova Anatolian High 
School, Bornova Youth and Sports Park, and Trailer Park in the 4th Industrial Site. These locations 
are marked on the Figure 2. 
 
Bornova Case Assumptions 
 
1. Total number of victims in the simulation model is created based on official estimates of İzmir 
Emergency Aid Plan and the population of Bornova, İzmir. İzmir Emergency Aid Plan estimates the 
total number of victims in the range from 0.5% to 1.5% of population. Using 1.0% as a medium 
level, experiments are constructed for 0.5%, 1.0% and 1.5% of population for the total number of 
victims in Bornova. These values, together with time-heterogeneous rescue rate of victims, are used 
to generate victim interarrival times.  
 
2. The thirty three (33) neighborhoods of Bornova are grouped into 5 regions, based on İzmir 
Emergency Aid Plan and their proximity to each other.  

 

Figure 2. Bornova map 

 
1st priority 

casualty 
2nd priority  

casualty 
Reference * 

Max. waiting time without treatment  (min.) TRIA(45,80,150) TRIA(180,360,480) [6] 
Time for first aid administered on rescue site (min.) TRIA(10,20,30) TRIA(5,10,15) [21]-[22] 
First treatment time in trauma room for unstable patients (min.) TRIA(5,20,50) - [20] 
First treatment time in trauma room for stable patients (min.) TRIA(15,45,90) - [20] 
CT Scan time (min.) TRIA(10,30,55) - [23] 
Treatment time of patients in observation room (min.) - TRIA(20,40,75) [20] 
X-ray time(min.) - TRIA(10,20,40) [20] 



Kılıç et al. / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (2) - 2016 
 

345 

3. As of the study date, based on official numbers from İzmir Healthcare System Administration, 
there are a total of 278 ambulances in İzmir, 73 of which are for emergency use and the rest, for 
patient transportation. In proportion to its population, Bornova is assumed to have 12 emergency and 
34 patient transportation ambulances available.  
 
4. There are two (2) ambulance-waiting locations in Bornova, one near each major hospital, as 
presented in Figure 2. In accordance with the population of the regions, it is assumed that 31 
ambulances will be available at location 1 near Hospital 1, and 15 at location 2, near hospital 2.  
 
4. EXPERIMENTAL DESIGN AND ANALYSIS 
 
The proposed simulation model for Bornova is used to analyze ambulance waiting times and trauma 
and observation room waiting times of recovered patients, in subsections 4.1, 4.2 and 4.3, 
respectively. Assuming a significance level of α=0.05, 30 replications were found to be sufficient for 
the experiments. Results are analyzed using statistical package SPSS (version 15.0).  These analyses 
and their results are given in subsections 4.1, 4.2, and 4.3 respectively.   
 
4.1. Regression Analysis of Mean Waiting Time for Ambulance  
 
The variables used in experimental design effecting ambulance waiting times and their different 
levels are listed in the Table 2 given below. 

 
Table 2. Experimental design factors for ambulance waiting times 

Variables Levels 
Number of ambulances  (x1) 46(31-15)-51(34-17)-59(39-20) 
Fraction of the people who know the existence of casualty collection 
points (x2) 

0.10-0.30-0.50-0.70 

Fraction of the people who want to go to the casualty collection 
points in the site (x3) 

0.20-0.40-0.60-0.80 

Fraction of the priority 1 casualties (x4) 0.10-0.15-0.25 
Fraction of the priority 2 casualties (x5) 0.25-0.35 
Fraction of the total of casualties (x6) 0.005-0.010-0.015 

 
In order to determine mean ambulance waiting times of each region, dummy variables are used as 
defined below: 






otherwise  ,0

region  if  ,1 i
di         i = 2, 3, 4, 5 

If a particular di is 1, the resulting estimate from the regression will give expected ambulance waiting 
time in region i. If di = 0 for i = 2, 3, 4, 5, regression gives expected ambulance waiting time for 
region 1. The resulting regression model is given below:  
 

ln ොݕ ൌ 	2.372 െ ଵݔ0.016 ൅ ଶݔ0.516 ൅ ଷݔ0.368 ൅ ସݔ1.357 ൅ ହݔ	2.112 ൅ 	଺ݔ84.108
													െ0.179݀ଶ െ 0.654݀ଷ െ 0.349݀ସ 	െ 0.757݀ହ 

 
In order to determine whether the assumptions of regression analysis are satisfied and the model is 
valid, first, the existence of multi-collinearity is examined. In order to comment on multi-collinearity 
problem, it is necessary to examine tolerance or variance inflation factor (VIF) values obtained via 
SPSS output (Table 3). Tolerance is an indication of how much of the variation in an independent 
variable is explained by the other independent variables. If the value of tolerance is less than 0.1, the 



Kılıç et al. / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (2) - 2016 
 

346 

multiple correlation related to the other independent variables is high, indicating the existence of 
multi-collinearity. VIF is the inverse of tolerance value. A calculated VIF value greater than 10 is 
considered a possible indicator of multi-collinearity.  According to the SPSS output, it is seen that 
these values do not exceed the reference values; therefore multi-collinearity can be considered not to 
exist. In order to comment on outliers, Mahalanobis distances can be used. In the output, minimum 
and maximum values of Mahalanobis distances are given. For 10 independent variables, the critical 
value is 29.59. In the results obtained at the end of regression analysis, it is seen that the maximum 
value of Mahalanobis distances is 13.408, which does not exceed the critical value. The situation that 
Cook’s distance is not greater than 1 indicates no important problem in the data. In order to test the 
assumption that errors in regression are independent, Durbin-Watson test statistic is used. If 
calculated value of the statistic is close to 2, then this assumption is almost certainly satisfied. For 
these data, the value of the statistic is 2.080, therefore the assumption of independent errors is 
considered to be satisfied. To check whether the assumptions of homoscedasticity and linearity are 
met, a plot of standardized residuals against standardized predicted values shows that the data points 
are randomly dispersed around zero, indicating that these assumptions are satisfied. In addition, to 
test the normality of residuals, histogram and normal probability plot are drawn.  The histogram of 
residuals shows a bell-shaped curve and points in the normal probability plot of residuals form a 
straight line, showing no evidence of significant deviation from the normality. The result of 
Kolmogorov-Smirnov test on standardized residuals (Kolmogorov-Smirnov Z= 1.169, p= 0.130) also 
supports this conclusion. 
 

Table 3. SPSS output related to regression coefficients and collinearity statistics 

 
 
The regression model and all of the coefficients in the model are statistically significant (p=0.0001 < 
0.05). According to the regression model, it can be said that the fraction of total of casualties is the 
factor with the greatest effect on ambulance waiting times. The number of the ambulances does not 
have significant effect on waiting times. The number of ambulances decreases waiting times, but due 
to the overwhelming number of casualties relative to the available ambulances, an additional 
ambulance has no significant effect on ambulance waiting time. 
 
Figure 3 presents ambulance waiting times for 5 regions at different levels of total casualty fraction 
and priority 1 victim fraction (source data for Figure 3 is provided in Appendix). Each row shows 

                                                            
1  SPSS analyses are done with 4 significant digits. For this reason, p=0.0000 should be evaluated as almost zero. 

Coefficientsa

2,372 ,020 116,703 ,000

-,016 ,000 -,174 -67,314 ,000 1,000 1,000

,516 ,006 ,230 88,973 ,000 1,000 1,000

,368 ,006 ,164 63,401 ,000 1,000 1,000

1,357 ,033 ,147 41,355 ,000 ,526 1,900

2,112 ,036 ,211 59,082 ,000 ,526 1,900

84,108 ,318 ,685 264,758 ,000 1,000 1,000

-,179 ,004 -,143 -43,613 ,000 ,625 1,600

-,654 ,004 -,521 -159,354 ,000 ,625 1,600

-,349 ,004 -,278 -84,993 ,000 ,625 1,600

-,757 ,004 -,604 -184,594 ,000 ,625 1,600

(Constant)

x1

x2

x3

x4

x5

x6

d2

d3

d4

d5

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF

Collinearity Statistics

Dependent Variable: ln_ya. 
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expected ambulance waiting times for varying number of ambulances and total casualty fractions, 
when fraction of the people who know the existence of casualty collection points (x2)=0.1, fraction of 
the people who want to go to the casualty collection points in the site (x3)=0.2, fraction of the 
priority 2 casualties (x5)=0.25. The first priority casualty fraction is low for column 1 (fraction of the 
priority 1 casualties (x4)=0.1) and high for column 2 ((x4)=0.25).  
 
From the data, one can calculate that each 0.5% increase in total casualty fraction is expected to 
increase ambulance waiting time by approximately 52.27%. Expected ambulance waiting times are 
seen to be longest for casualties in region 1 and shortest for region 5. It can also be calculated that 
about 13 extra ambulances are needed to provide the same ambulance waiting time when the first 
priority casualty fraction increases 15% (from low level to high level), meaning that for each 5% 
increase in the first priority casualties, a corresponding increase in ambulance waiting time can be 
offset by the addition of approximately 4.24 ambulances. A similar analysis for second priority 
casualties reveals that 13 extra ambulances can cover only a 10% increase in the second priority 
casualties. 
 
Regions 1 and 2 have significantly longer expected average ambulance waiting times compared to 
regions 3 and 5. In addition, the effect of number of ambulances to expected average ambulance 
waiting times (slope) is significantly larger for regions 1 and 2 compared to regions 3 and 5. 
Therefore, any additional ambulance would have greater immediate impact in regions 1 and 2, 
compared to other regions. 
 
From Figure 3, we can also understand that the effect of the first priority casualty fraction on 
ambulance waiting times is significantly greater in regions 1 and 2, compared to other regions. 
Therefore, any effort to decrease the first priority casualty fraction would have greater immediate 
impact on ambulance waiting times in regions 1 and 2. 
 
There is an apparent imbalance of ambulance waiting times between regions. When the number of 
ambulances is limited, the regression model can be used to find optimum distribution of the 
ambulances among the regions. Chaotic conditions can occur after a disaster. However, this 
regression model obtained as a result of extensive simulation experiments can be used to estimate the 
effect of any particular distribution of ambulances across the regions, by calculating the expected 
average ambulance waiting times. For this reason, the model will be one of the most important inputs 
for an ambulance-distribution optimization study. 
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Figure 3. Ambulance waiting times for 5 regions for varying total casualty fractions (0.5%, 1% and 
1.5%) at low level of priority 1 casualties (column 1) and high level of priority 1 
casualties (column 2) 
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4.2 Mean Waiting Time for Treatment in Trauma Rooms 
 
In this section, trauma room waiting times are analyzed. It is important to know which factors affect 
waiting times at trauma rooms, so that before a disaster strikes, resources can be more effectively 
distributed in order to decrease waiting times, and reduce resulting loss of lives. Table 4 shows 
factors and the levels used in the experiments implemented in order to determine how various factors 
are effective on the waiting times for treatment of priority 1 casualties. 
 

Table 4. Experimental design factors for mean treatment waiting time in trauma rooms 
 

Variables Levels 

Number of beds in trauma 
rooms 

Hospital 1 7-12-20 
Hospital 2 2-4-8 
Hospital 3 3-6-12 

Number of triage personnel in hospital 1-3-5 
Priority 1 casualty fraction in the population  0.15-0.25 
Unstable casualty fraction 0.15-0.20-0.25-0.35 
Total casualty fraction 0.005-0.010-0.015 

 
Results of analysis of variance (ANOVA) for each hospital are similar. For this reason, only results 
of ANOVA for hospital 1 are presented here.  Assumptions of ANOVA are also tested. Normality 
assumption of error terms is tested in two ways, using the histogram of residuals, and also 
Kolmogorov-Smirnov test (Kolmogorov-Smirnov Z= 1.259, p= 0.084). The plot of residuals against 
fitted values shows that the linearity assumption is satisfied. According to the results of analysis of 
variance, it is seen that main effects of all factors are statistically significant at the 0.05 level.  In 
addition to this, the interactions between the number of triage personnel and the number of beds, 
total casualty fraction and priority 1 casualty fraction are also statistically significant at the 0.05 
level. The F-value computed for the number of triage personnel (F=12119.41; p=0.000) is higher 
compared to the other factors, showing that this factor is highly influential on mean waiting time. 
This is due to the increased number of patients treated in the trauma room per unit time increases as 
the number of triage personnel increases. Other factors that have important effect are total casualty 
fraction (F=1057.07; p=0.000), priority 1 casualty fraction (F=719.40; p=0.000) and the interaction 
between the number of triage personnel and total casualty fraction (F=377.18; p=0.000). These two 
factors also contribute to higher number of casualties, and hence increase total number of victims for 
trauma room.   
 
When variance homogeneity cannot be satisfied, as in this case (Levene’s test result of equality of 
error variances: F=8.660, p=0.000), Games-Howell test can be used to determine if there is 
statistically significant difference between the levels of any one given factor. Games-Howell multi-
comparison test is applied to all factors for trauma room waiting time. We present the results on the 
mean waiting time for treatment in the trauma room which belong to the factors having statistically 
significant differences between their levels are interpreted as follows:  
 
i) The number of triage personnel: According to the test results, as the number of triage personnel 
increases, it is observed that mean waiting times for treatment also increase (Figure 4) and this 
increase is statistically significant (for all levels, p=0.000). From the simulation results, long queues 
are observed (in front of triage process) although the duration of triage operation is short. The longer 
the waiting time for treatment, the higher the number of fatalities in the queue; therefore, the 
response of system for the available capacity is evaluated at different triage staff levels.  Based on 
the results, it is recommended that, for each treatment entry point, there should be one member of 
triage staff or a two member triage team. In this situation, different levels of triage staff would 
require alternative treatment areas with capacity to conduct emergency service operations, to be 
constructed in or around hospital. In other words, changes in the levels of triage and trauma room 
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capacity should be closely linked and changed (increased or decreased) together. The relationship 
between increase in trauma room waiting time with increased triage staff level can be explained by 
the notion of the shifting bottleneck. Increase in triage staff level allows more victims into the trauma 
room for treatment per unit time, effectively making the trauma room the new bottleneck. In Figures 
4-5, the averages calculated over all the results of the simulation for values of the factor in horizontal 
axis, are shown by black straight line. In real life, it is quite probable that theoretical distributions 
will not be (partially) linear. The red dashed lines in Figures 4-5, illustrate the authors’ theoretical 
distribution predictions (convex/concave) based on the obtained results. In this manner, Figure 4 
shows the effect of triage personnel on treatment waiting time in trauma rooms.   
 
ii) Total casualty fraction: According to the result of the multiple comparison test, as the casualty 
fraction increases, it is observed that waiting time decreases (Figure 5). This decrease is statistically 
significant for only the 1st and 3rd levels of the factor (p=0.000).  It seems counterintuitive that mean 
waiting time increases with increased total casualty fraction. Remember that total casualty fraction 
was also the factor that most affected ambulance waiting time in section 4.1. With increased number 
of casualties, victims spend more of their remaining life time waiting for ambulances. As the number 
of casualties increases, it is seen that the number of losses in the treatment queue at the third level of 
the factor (0.015) is three times greater compared to the first level (0.005).  This shows that many are 
lost before receiving treatment, therefore reducing mean waiting time for those who survive long 
enough to get treatment.  
 

 
 

Figure 4. Effect of the number of triage personnel on mean waiting time for treatment (min.) in 
trauma room 
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Figure 5. Effect of victim fraction on mean waiting time for treatment (min.) in trauma room 

4.3 Mean Waiting Time for Treatment in Observation Rooms 

Lastly, we present an analysis determining the effects of various factors on mean waiting times at 
observation rooms. The second (2nd) class priority victims are forwarded to observation rooms. Table 
5 shows the factors and the levels used in the experiments implemented in order to determine 
effectiveness of various factors on the waiting times for treatment of priority 2 casualties. 

 
Table 5. Experimental design factors for mean treatment waiting time in observation rooms 

Variables Levels 

Number of beds in 
observation rooms 

Hospital 1 15-25-35 
Hospital 2 4-8-15 
Hospital 3 4-8-15 

Number of triage personnel in hospital 1-3-5 
Priority 2 casualty fraction in the population  0.25-0.35 
Total casualty fraction 0.005-0.010-0.015 

 
Analysis of variance (ANOVA) is performed based on the results of the experimentation. As in 
section 4.2, the results of ANOVA are similar for each hospital, and therefore results for only 
hospital 1 are discussed here. Again, normality assumption of error terms is tested by both analyzing 
the histogram of residuals, and conducting Kolmogorov-Smirnov test (Kolmogorov-Smirnov Z= 
0.922, p= 0.363). The plot of residuals against fitted values shows that the linearity assumption is 
satisfied. According to the results of ANOVA, main effects of all factors, except number of beds, are 
statistically significant. However, similar to the previous analysis results, interactions between 
priority 2 casualty fraction, total casualty fraction and the number of triage personnel are also 
statistically significant. We also observe that the factor with the greatest impact on the average 
waiting time in the observation room is the number of triage staff (F=9451.33, p=0.000). The second 
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greatest effect was the interaction of this factor with total casualty fraction (F=1741.54, p=0.000). 
For the reason explained in section 4.2, increasing levels of mentioned factors will increase the 
number of victims reaching the observation room in the given time interval, resulting in increased 
waiting times in the observation room.  
 
When variance homogeneity can be satisfied, as in this case, (Levene’s test result of equality of error 
variances: F=1.278, p=0.125), Tukey HSD test can be used to determine if there is statistically 
significant difference between the levels of any one given factor. Tukey HSD multi-comparison test 
is applied to all factors relating to observation room waiting time. According to Tukey HSD multiple 
comparison test, the effects on the average waiting time for treatment in the observation room which 
belong to the factors having statistically significant differences between their levels are as follows:  
 
i) Number of triage personnel: When the number of triage staff at the entry of emergency room is 

increased from 1 to 3, an average of 19-minute increase in the waiting time is observed. Similarly, 
when the number of triage staff is increased from 3 to 5, an increase in the waiting time of 
approximately 1 minute is observed (Figure 6). According to the test results obtained, it can be 
said that differences for all levels are statistically significant (p=0.000). The mean waiting time in 
observation rooms is higher when compared to trauma rooms. This is due to priority 2 casualty 
fraction being larger than priority 1 fraction, and priority 2 patients’ ability to survive for longer 
without treatment. 
 

 

Figure 6. Effect of the number of triage personnel on mean waiting time for treatment in observation 
room 

 
ii) Total casualty fraction: According to the simulation results, when total casualty fraction is 

increased from level 1 to the level 3 (a three-fold increase); 5.5 times increase in loss of life is 
observed. This situation explains the reduction in mean waiting time for treatment of increasing 
total casualty fraction. While this decrease is not statistically significant for levels 1 and 2, it is 
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significant for levels 1-3 and levels 2-3 (p=0.000 for those who are significant). Increasing total 
casualty fraction from level 2 to level 3 causes an approximately 7-minute decrease in the mean 
waiting time. Therefore, in terms of waiting time in the observation room, there is a critical value 
for total casualty fraction between 0.01 and 0.015. The exact identification of this value requires a 
more detailed simulation study, with more steps between the 0.01 and 0.015 (Figure 7). 
 

 
 
Figure 7. The effect of victim fraction on mean waiting time for treatment (min.) in observation 

room 
 

5. CONCLUSIONS 
 
The preparedness and planning activities related to emergency aid services in the event of disaster 
are important in saving lives and returning to normal life conditions quicker after the disaster had 
occurred. In Turkey, many large cities, including İzmir, are under the significant risk of a major 
earthquake. Emergency rescue activities in such situations can be modeled analytically; however it is 
challenging to solve analytical models constructed for the problems with realistic dimensions.  
 
With this aim in mind, a unified simulation model was developed for transporting casualties to 
medical care centers and their treatment processes in a disaster situation. Victim transportation and 
treatment processes are clearly linked and it is essential to analyze these two processes 
simultaneously to achieve optimum results. We propose a simulation model, which includes both 
victim transportation and treatment, and perform verification& validation steps. The model was 
developed in accordance with manual and rules, and a case study using real life data from Bornova 
was presented. The proposed simulation model can easily be adapted to different locations with 
adaptation of relevant data. 
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Based on the real data, for Bornova district of İzmir City, this model was applied to the 
transportation processes to medical treatment locations (treatment points to be built in the site, 
hospitals) and also treatment processes in the hospitals after a major earthquake.  
 
Based on the results of the extensive experimental design performed, using statistical methods, 
following were computed: ambulance waiting times, waiting times for treatment in trauma and 
observation rooms in hospital emergency departments and how various parameters affect these 
times.  
 
We find that for Bornova case, differences in ambulance waiting times among different regions are 
substantial. Either a new distribution of ambulances or additional ambulance waiting locations are 
recommended.   

 
When the number of the triage staff is increased to reduce waiting time for triage operation, the 
number of medical personnel should be increased accordingly or alternative treatment areas should 
be constructed parallel to increasing number of triage staff, since it was discovered that waiting times 
in trauma and observation rooms will also increase. Total casualty fraction also affects waiting times, 
and at the maximum level of this factor, large number patients lose their lives in the triage and 
treatment queues are at the large numbers. Significant effects of total casualty fraction were found 
both on ambulance waiting time and waiting time for treatment. Therefore the analysis of the results 
shows that before the actual disaster, any activity which will decrease the total casualty fraction will 
be highly effective in reducing total loss.  
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Appendix 1: Data for Figure 3 
 

                          

  Total casualties Total casualties   

      Low Medium High     Low Medium High   

  

# 
of

 
am

b
u

la
n

ce
s 

46 17.209 26.206 39.906 

# 
of

 
am

b
u

la
n

ce
s 

46 21.094 32.122 48.914   

  51 15.886 24.191 36.838 51 19.472 29.652 45.154   

  59 13.977 21.285 32.412 59 17.133 26.089 39.729   

    

  Total casualties Total casualties   

      Low Medium High     Low Medium High   

  

# 
of

 
am

b
u

la
n

ce
s 

46 14.389 21.911 33.365 

# 
of

 
am

b
u

la
n

ce
s 

46 17.637 26.857 40.898   

  51 13.282 20.226 30.800 51 16.281 24.792 37.753   

  59 11.687 17.796 27.100 59 14.325 21.814 33.217   

    

  Total casualties Total casualties   

      Low Medium High     Low Medium High   

  

# 
of

 
am

b
u

la
n

ce
s 

46 8.948 13.626 20.749 

# 
of

 
am

b
u

la
n

ce
s 

46 10.968 16.702 25.434   

  51 8.260 12.578 19.154 51 10.125 15.418 23.478   

  59 7.268 11.067 16.853 59 8.908 13.566 20.657   

    

  Total casualties Total casualties   

      Low Medium High     Low Medium High   

  

# 
of

 
am

b
u

la
n

ce
s 

46 12.139 18.485 28.149 

# 
of

 
am

b
u

la
n

ce
s 

46 14.880 22.658 34.504   

  51 11.206 17.064 25.985 51 13.736 20.916 31.851   

  59 9.860 15.014 22.863 59 12.085 18.403 28.024   

    

  Total casualties Total casualties   

      Low Medium High     Low Medium High   

  

# 
of

 
am

b
u

la
n

ce
s 

46 8.072 12.292 18.719 

# 
of

 
am

b
u

la
n

ce
s 

46 9.895 15.067 22.944   

  51 7.452 11.347 17.279 51 9.134 13.909 21.180   

59 6.556 9.984 15.203 59 8.036 12.238 18.636   

                          

 
 


