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Abstract  

Fractional calculus and its generalizations are used for the solutions of some classes of linear ordinary and partial 

differential equations of the second and higher orders and fractional differential equations. In this paper, our aim 

is that obtaining fractional solutions of the associated Legendre equation via N-fractional calculus operator 𝑁𝜇 

method.  

 

Keywords: Fractional Calculus, N-Fractional Calculus Operator 𝑁𝜇 Method, Legendre Equation, Ordinary 

Differential Equation, Generalized Leibniz Rule, Index Law. 

 

1. Introduction 

 

The fractional calculus theory enables a set of axioms and methods to generalize the coordinate and 

corresponding derivative notions from integer 𝑘 to arbitrary order 𝜇, {𝑥𝑘, 𝜕𝑘 𝜕𝑥𝑘⁄ } → {𝑥𝜇 , 𝜕𝜇 𝜕𝑥𝜇⁄ } in 

a good light. Fractional calculus that is an important subject of applied mathematics can be used in many 

fields such as robot technology, PID control systems, Schrödinger equation, heat transfer, relativity 

theory, economy, filtration, controller design, mechanics, optics, modelling and so on. Thus, this popular 

subject has contributed to science for 300 years [1-3]. Bas and Metin [4] defined a fractional singular 

Sturm-Liouville operator having Coulomb potential of type 𝐴 𝑥⁄ . Theory of spectral properties for 

eigenvalues and eigenfunctions of Bessel type of fractional singular Sturm-Liouville problem is 

presented [5]. Explicit solutions of Bessel equation by means of fractional calculus techniques are 

obtained [6]. Yilmazer and Bas [7] introduced fractional solutions of a confluent hypergeometric 

equation by using N-fractional calculus operator. This method presents successful results for some 

singular differential equations [8,9]. And, we also apply this operator to the associated Legendre 

equation in this paper.  

Some of most obvious formulations based on the fundamental definitions of Riemann-Liouville 

fractional integration and fractional differentiation are, respectively, 

 

𝐷𝑎 𝑡
−𝜇

𝑓(𝑡) = [𝑓(𝑡)]−𝜇 =
1

Г(𝜇)
∫ 𝑓(𝜉)(𝑡 − 𝜉)𝜇−1

𝑡

𝑎

𝑑𝜉     (𝑡 > 𝑎, 𝜇 > 0), 

𝐷𝑎 𝑡
𝜇

𝑓(𝑡) = [𝑓(𝑡)]𝜇

=
1

Г(𝑘 − 𝜇)
(

𝑑

𝑑𝑡
)

𝑘

∫ 𝑓(𝜉)(𝑡 − 𝜉)𝑘−𝜇−1

𝑡

𝑎

𝑑𝜉     (𝑘 − 1 ≤ 𝜇 < 𝑘, 𝑘 ∈ ℕ), 

(1) 

 

where Γ stands for Euler’s function gamma [10]. 
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2. Preliminaries 

 

Definition 2.1 If the function 𝑓(𝑧) is analytic (regular) inside and on 𝐶, where 𝐶 = {𝐶−, 𝐶+}, 𝐶− is a 

contour along the cut joining the points 𝑧 and −∞ + 𝑖Im(𝑧), which starts from the point at −∞, encircles 

the point 𝑧 once counter-clockwise, and returns to the point at −∞, and 𝐶+ is a contour along the cut 

joining the points 𝑧 and ∞ + 𝑖Im(𝑧), which starts from the point at ∞, encircles the point 𝑧 once counter-

clockwise, and returns to the point at ∞, 

 

𝑓𝜇(𝑧) = (𝑓(𝑧))
𝜇

=
Г(𝜇 + 1)

2𝜋𝑖
∫

𝑓(𝑡)𝑑𝑡

(𝑡 − 𝑧)𝜇+1

𝐶

     (𝜇 ≠ −1, −2, … ), 

𝑓−𝑘(𝑧) = lim
𝜇→−𝑘

𝑓𝜇(𝑧)     (𝑘 ∈ ℤ+), 

(2) 

 

where 𝑡 ≠ 𝑧, 

 

−𝜋 ≤ arg(𝑡 − 𝑧) ≤ 𝜋     for  𝐶−, 

0 ≤ arg(𝑡 − 𝑧) ≤ 2𝜋     for  𝐶+. 
(3) 

 

In that case, 𝑓𝜇(𝑧) (𝜇 > 0) is the fractional derivative of 𝑓(𝑧) of order 𝜇 and𝑓𝜇(𝑧) (𝜇 < 0)  is the 

fractional integral of 𝑓(𝑧) of order −𝜇, confirmed (in each case) that 

 

|𝑓𝜇(𝑧)| < ∞     (𝜇 ∈ ℝ). (4) 

 

[10]. 

 

Lemma 2.1 (Linearity) Let 𝑓(𝑧) and 𝑔(𝑧) be single-valued and analytic functions. If 𝑓𝜇 and 𝑔𝜇 exist, 

then  

(𝐾𝑓 + 𝐿𝑔)𝜇 = 𝐾𝑓𝜇 + 𝐿𝑔𝜇 , (5) 

 

hold, where 𝐾 and 𝐿 are constants and 𝜇 ∈ ℝ, 𝑧 ∈ ℂ [10]. 

 

Lemma 2.2 (Index law) Let 𝑓(𝑧) be single-valued and analytic function. If (𝑓𝜈)𝜇 and (𝑓𝜇)
𝜈
 exist, then 

 

(𝑓𝜈)𝜇 = 𝑓𝜈+𝜇 = (𝑓𝜇)
𝜈

, (6) 

 

where 𝜈, 𝜇 ∈ ℝ, 𝑧 ∈ ℂ and |
Г(𝜈+𝜇+1)

Г(𝜈+1)Г(𝜇+1)
| < ∞ [10]. 

 

Lemma 1.3 (𝑵𝝁 method) Let 𝑓(𝑧) and 𝑔(𝑧) be single-valued and analytic functions. If 𝑓𝜇  and 𝑔𝜇 exist, 

then, generalized Leibniz rule is defined by 

 

𝑁𝜇(𝑓. 𝑔) = (𝑓. 𝑔)𝜇 = ∑
Г(𝜇 + 1)

Г(𝜇 − 𝑘 + 1)Г(𝑘 + 1)

∞

𝑘=0

𝑓𝜇−𝑘. 𝑔𝑘 , (7) 
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where 𝜇 ∈ ℝ, 𝑧 ∈ ℂ  and  |
Г(𝜇+1)

Г(𝜇−𝑘+1)Г(𝑘+1)
| < ∞ [10]. 

 

Property 2.1 

(𝑒𝜔𝑧)𝜇 = 𝜔𝜇𝑒𝜔𝑧     (𝜔 ≠ 0, 𝜇 ∈ ℝ, 𝑧 ∈ ℂ), (8) 

(𝑒−𝜔𝑧)𝜇 = 𝑒−𝑖𝜋𝜇𝜔𝜇𝑒−𝜔𝑧     (𝜔 ≠ 0, 𝜇 ∈ ℝ, 𝑧 ∈ ℂ), (9) 

(𝑧𝜔)𝜇 = 𝑒−𝑖𝜋𝜇
Γ(𝜇 − 𝜔)

Γ(−𝜔)
𝑧𝜔−𝜇      (𝜇 ∈ ℝ, 𝑧 ∈ ℂ, |

Γ(𝜇 − 𝜔)

Γ(−𝜔)
| < ∞), (10) 

 

where 𝜔 is a constant [10]. 

 

Remark 2.1 The familiar Bessel differential equation of general order 𝑙: 

 

𝑧2
𝑑2𝑓

𝑑𝑧2
+ 𝑧

𝑑𝑓

𝑑𝑧
+ (𝑧2 − 𝑙2)𝑓 = 0, (11) 

 

which is named after F. Wilheim Bessel. More precisely, just as in the earlier works [11,12], we aim 

here at demonstrating how the underlying simple fractional-calculus approach to the solutions of the 

classical differential equation (11), which were considered in the earlier works [11,12], would lead us 

analogously to several interesting consequences including (for example) an alternative investigation of 

solutions of the following family of differential equations (cf. [13, vol. I, p. 121, Eq. 3.2(1)]; see also 

[14, Chapter 15]): 

 

(1 − 𝑧2)𝑓2 − 2𝑧𝑓1 + [𝑙(𝑙 + 1) −
𝑚2

1 − 𝑧2
] 𝑓 = 0, (12) 

 

known as Legendre’s differential equation where 𝑓𝑘 = 𝑑𝑘𝑓 𝑑𝑧𝑘⁄   (𝑘 = 0,1,2, … ), 𝑓0 = 𝑓 = 𝑓(𝑧), 𝑧 ∈

ℂ. 

3. Fractional Solutions of the Associated Legendre Equation 

 

Theorem 3.1 Let 𝑓 ∈ {𝑓: 0 ≠ ⎸𝑓𝜇⎸ < ∞; 𝜇 ∈ ℝ}. Eq. (12) has particular solutions as follows 

 

𝑓(I) = 𝐴(𝑧2 − 1)𝑚 2⁄ [(𝑧2 − 1)−𝜎 2⁄ ]
(𝑚−2(𝜆+1)) 2⁄

, (13) 

𝑓(II) = 𝐵(𝑧2 − 1)𝑚 2⁄ [(𝑧2 − 1)−𝜏 2⁄ ]
(𝑚+2(𝜆−1)) 2⁄

, (14) 

 

where 𝐴 and 𝐵 are arbitrary constants, 𝜎, 𝜏 and 𝜆 will define in the proof. 

 

Proof. Let 𝜑 = 𝜑(𝑧). Set 

 

𝑓 = (𝑧2 − 1)𝑚 2⁄ 𝜑     (𝑧 ∈ ℂ\{−1,1}). (15) 

 

Hence 

 

𝑓1 = (𝑧2 − 1)𝑚 2⁄ [𝑚𝑧(𝑧2 − 1)−1𝜑 + 𝜑1], (16) 

 

and 
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𝑓2 = (𝑧2 − 1)𝑚 2⁄ {𝑚(𝑧2 − 1)−1[1 + (𝑚 − 2)𝑧2]𝜑 + 2𝑚𝑧(𝑧2 − 1)−1𝜑1 + 𝜑2}. (17) 

 

By substituting (15), (16) and (17) into (12), we have 

 

(1 − 𝑧2)𝜑2 − 2(𝑚 + 1)𝑧𝜑1 − (𝑚 − 𝑙)(𝑚 + 𝑙 + 1)𝜑 = 0      (𝑚, 𝑙 ∈ ℝ), (18) 

 

the homogeneous as well as nonhomogeneous versions of which (together with their numerous 

interesting special cases for different choices of the parameters 𝑚 and 𝑙, and the nonhomogeneous 

terms) were considered recently by Lin and Nishimoto (see, for details, [15,16]). 

By applying the operator 𝑁𝜇 to Eq. (18), we have 

 

(1 − 𝑧2)𝜑2+𝜇 − 2(𝜇 + 𝑚 + 1)𝑧𝜑1+𝜇 − 2 [𝜇2 + 𝑚𝜇 +
𝜅

2
] 𝜑𝜇 = 0, (19) 

 

where 𝜅 = (𝑚 − 𝑙)(𝑚 + 𝑙 + 1). 

Now, we choose 𝜇 such that 𝜇2 + 𝑚𝜇 + 𝜅 2⁄ = 0, that is, 

 

𝜇 = (−𝑚 ± 2𝜆) 2⁄ , (20) 

 

where 𝜆 = √𝑚2 − 2𝜅 2⁄ . 

 

(i) Let 𝜇 = (−𝑚 + 2𝜆) 2⁄ . By substituting 𝜇 into (19), we have 

 

(1 − 𝑧2) [𝜑(−𝑚+2(𝜆+1)) 2⁄ ]
1

− 𝜎𝑧𝜑(−𝑚+2(𝜆+1)) 2⁄ = 0, (21) 

 

where 𝜎 = 𝑚 + 2(𝜆 + 1). 

Set  

    

𝜑(−𝑚+2(𝜆+1)) 2⁄ = 𝑢 = 𝑢(𝑧)     (𝜑(𝑧) = 𝑢(𝑚−2(𝜆+1)) 2⁄ ), (22) 

 

then, we have  

 

𝑢1 +
𝜎𝑧

(𝑧2 − 1)
𝑢 = 0, (23) 

 

from (21). A particular solution of ordinary differential equation (23) is given by 

 

𝑢 = 𝐴(𝑧2 − 1)−𝜎 2⁄ . (24) 

 

Inversely, (24) satisfies (23), then 

 

𝜑(𝑧) = 𝐴[(𝑧2 − 1)−𝜎 2⁄ ]
(𝑚−2(𝜆+1)) 2⁄

, (25) 

 

satisfies (21). By substituting (25) into (15), we have 
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𝑓(𝑧) = 𝐴(𝑧2 − 1)𝑚 2⁄ [(𝑧2 − 1)−𝜎 2⁄ ]
(𝑚−2(𝜆+1)) 2⁄

. (26) 

 

(ii) Let 𝜇 = −(𝑚 + 2𝜆) 2⁄ . By substituting 𝜇 into (19), we have 

 

(1 − 𝑧2) [𝜑(−𝑚−2(𝜆−1)) 2⁄ ]
1

− 𝜏𝑧𝜑(−𝑚−2(𝜆−1)) 2⁄ = 0, (27) 

 

where 𝜏 = 𝑚 − 2(𝜆 − 1). Set 

     

𝜑(−𝑚−2(𝜆−1)) 2⁄ = 𝜗 = 𝜗(𝑧)     (𝜑(𝑧) = 𝜗(𝑚+2(𝜆−1)) 2⁄ ), (28) 

 

then, we have  

 

𝜗1 +
𝜏𝑧

(𝑧2 − 1)
𝜗 = 0, (29) 

 

from (28). A particular solution of ordinary differential equation (29) is given by 

 

𝜗 = 𝐵(𝑧2 − 1)−𝜏 2⁄ . (30) 

 

Inversely, (30) satisfies (29), then 

 

𝜑(𝑧) = 𝐵[(𝑧2 − 1)−𝜏 2⁄ ]
(𝑚+2(𝜆−1)) 2⁄

, (31) 

 

satisfies (27). By substituting (31) into (15), we have 

 

𝑓(𝑧) = 𝐵(𝑧2 − 1)𝑚 2⁄ [(𝑧2 − 1)−𝜏 2⁄ ]
(𝑚+2(𝜆−1)) 2⁄

. (32) 

 

4. Hypergeometric Forms of the Fractional Solutions 

 

Theorem 4.1 We have [17] 

(i) 

 

{[(𝑧 − 𝑏)𝛽 − 𝑐]
𝛼

}
𝛾

= 𝑒−𝑖𝜋𝛾(𝑧 − 𝑏)𝛼𝛽−𝛾 ∑
[−𝛼]𝑘Γ(𝛽𝑘 − 𝛼𝛽 + 𝛾)

Γ(𝛽𝑘 − 𝛼𝛽)Γ(𝑘 + 1)

∞

𝑘=0

(
𝑐

(𝑧 − 𝑏)𝛽
)

𝑘

, (33) 

(|
Γ(𝛽𝑘 − 𝛼𝛽 + 𝛾)

Γ(𝛽𝑘 − 𝛼𝛽)
| < ∞), 

 

(ii) 

 

{[(𝑧 − 𝑏)𝛽 − 𝑐]
𝛼

}
𝑛

= (−1)𝑛(𝑧 − 𝑏)𝛼𝛽−𝑛 ∑
[−𝛼]𝑘[𝛽𝑘 − 𝛼𝛽]𝑛

Γ(𝑘 + 1)

∞

𝑘=0

(
𝑐

(𝑧 − 𝑏)𝛽
)

𝑘

, (34) 

(𝑛 ∈ ℤ0
+, |

𝑐

(𝑧 − 𝑏)𝛽
| < 1), 
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where symbol of Pochhammer is defined by [𝛼]𝑘 = 𝛼(𝛼 + 1) … (𝛼 + 𝑘 − 1) = Γ(𝛼 + 𝑘) Γ(𝛼)⁄  and 

[𝛼]0 = 1. 

 

Property 4.1 We have [17] 

 

Γ(2𝜌) =
22𝜌−1

√𝜋
Γ(𝜌)Γ (𝜌 +

1

2
), (35) 

Γ(2𝑘 + 𝜌) = Γ (2 (𝑘 +
𝜌

2
)) =

22𝑘+𝜌−1

√𝜋
Γ (𝑘 +

𝜌

2
) Γ (𝑘 +

𝜌

2
+

1

2
), 

                                                                =
22𝑘+𝜌−1

√𝜋
Γ (

𝜌

2
) Γ (

𝜌 + 1

2
) [

𝜌

2
]

𝑘
[
𝜌 + 1

2
]

𝑘
, 

(36) 

√𝜋

2𝜌−1
Γ(𝜌) = Γ (

𝜌

2
) Γ (

𝜌 + 1

2
). (38) 

 

Theorem 4.2 Let |[(𝑧2 − 1)−𝜎 2⁄ ]
𝜈−𝜎

| < ∞ (𝑛 ∈ ℤ0
+) , 𝑧 ≠ 0 and |

1

𝑧2| < 1. Eq. (13) can be written as 

follows 

 

𝑓(I) = 𝐴(𝑧2 − 1)𝑚 2⁄ 𝑒−𝑖𝜋(𝜈−𝜎)𝑧−𝜈
Γ(𝜈)

Γ(𝜎)
𝐹2 1 (

𝜈

2
,
𝜈 + 1

2
;
𝜎 + 1

2
;

1

𝑧2
) , (39) 

 

where 𝐹12  is the Gauss hypergeometric function and 𝜈 =
2𝜎+𝑚−2(𝜆+1)

2
. 

 

Proof. By applying (33) to (13), we have 

 

𝑓(I) = 𝐴(𝑧2 − 1)𝑚 2⁄ 𝑒−𝑖𝜋(𝜈−𝜎)𝑧−𝜈 

× ∑
[

𝜎

2
]

𝑘
Γ(2𝑘 + 𝜈)

Γ(2𝑘 + 𝜎)Γ(𝑘 + 1)

∞

𝑘=0

(
1

𝑧2
)

𝑘

     (|
Γ(2𝑘 + 𝜈)

Γ(2𝑘 + 𝜎)
| < ∞).   

(40) 

 

By using (35) and (36), we obtain 

 

𝑓(I) = 𝐴(𝑧2 − 1)𝑚 2⁄ 𝑒−𝑖𝜋(𝜈−𝜎)𝑧−𝜈2𝜈−𝜎
Γ (

𝜈

2
) Γ (

𝜈+1

2
)

Γ (
𝜎

2
) Γ (

𝜎+1

2
)

∑
[

𝜈

2
]

𝑘
[

𝜈+1

2
]

𝑘

[
𝜎+1

2
]

𝑘
𝑘!

∞

𝑘=0

(
1

𝑧2
)

𝑘

. (41) 

 

By applying (38) to (41), then we have 

 

𝑓(I) = 𝐴(𝑧2 − 1)𝑚 2⁄ 𝑒−𝑖𝜋(𝜈−𝜎)𝑧−𝜈
Γ(𝜈)

Γ(𝜎)
𝐹2 1 (

𝜈

2
,
𝜈 + 1

2
;
𝜎 + 1

2
;

1

𝑧2
) . (42) 

 

Theorem 4.3 Let |[(𝑧2 − 1)−𝜏 2⁄ ]
𝜐−𝜏

| < ∞ (𝑛 ∈ ℤ0
+) , 𝑧 ≠ 0 and |

1

𝑧2| < 1. Eq. (14) can be written as 

follows 

 

𝑓(II) = 𝐵(𝑧2 − 1)𝑚 2⁄ 𝑒−𝑖𝜋(𝜐−𝜏)𝑧−𝜐
Γ(𝜐)

Γ(𝜏)
𝐹2 1 (

𝜐

2
,
𝜐 + 1

2
;
𝜏 + 1

2
;

1

𝑧2
) , (43) 
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where 𝐹12  is the Gauss hypergeometric function and 𝜐 =
2𝜏+𝑚+2(𝜆−1)

2
. 

 

 

 

5. Conclusion 

 

In this paper, we used 𝑁𝜇 method for the associated Legendre equation. We also obtained 

hypergeometric forms of the fractional solutions.  The most important advantage of this method is 

applicable for singular equations. 
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