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ÖZET 

Bu çalışmada 4-boyutlu Öklit uzayı 𝔼4 de karışık çarpım olarak nitelendirilen yeni 

bir çarpım yüzeyi tanımlanmıştır. Bu tip yüzeylerin Gauss, ortalama ve normal 

eğrilikleri hesaplanmış ve bazı sonuçlar elde edilmiştir. Sonuç olarak, özel 

örnekler verilmiştir.  
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ABSTRACT 

In the present study we define a new kind of product surfaces namely mixed 

products which are the product of two space curves in 4-dimensional Euclidean 

space 𝔼4. We investigate the Gaussian curvature, Gaussian torsion and mean 

curvature of these kind of surfaces. Further, we obtain some original results of 

mixed product surfaces in 𝔼4. Finally, we give some examples of these kind of 

surfaces. 

Keywords: Spherical Product, Gaussian curvature, Gaussian torsion, Mean 

curvature. 
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1. INTRODUCTION 

In classical differential geometry the first and second fundamental 

form provides an important role to describe the shape of the surfaces 

[3]. Gaussian curvature is an intrinsic surface invariant of a local 

surface. Consequently, both Gaussian and mean curvatures are 

important to recover the shape of the objects [6]. 

The rotational embeddings in Euclidean spaces are special products 

which are introduced first by N.H. Kuiper in 1970 [11]. It is known 

that the spherical products of 2D curves are the special type of 

rotational surfaces in 𝔼3 [1]. Quadrics are the simple type of these 

surfaces. So, superquadrics can be also considered as the spherical 

products of two 2D curves. In fact, superquadrics are the solid 

models of the smooth shapes [12, 15]. Superquadrics are the special 

type of supershapes, defined by Gielis and et.al. [9]. In[5], the 

present authors defined the spherical product of a 3𝐷 curve with a 

2𝐷 curve in Euclidean 4-space 𝔼4. For more details see also [8] and 

[13]. 

In the present study we define a new kind of product surfaces that 

are product of a two space curves in 𝔼4 is called mixed product 

surface. Mixed products can be considered as the generalization of 

spherical products. The rest of the paper is organized as follows: In 

Section 2 we give necessary definitions and theorems as basic 

concepts. Section 3 gives the original results of mixed product 

surface patches in 𝔼3 , which is recently, studied the present authors 

[4]. In Section 4 the authors calculate the Gaussian curvature, 

Gaussian torsion and mean curvature of these kind surfaces and give 

some examples. 
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2. BASIC CONCEPTS 

Let 𝑀 be a smooth surface in 𝔼4 given with the local patch 

𝑋(𝑢, 𝑣): (𝑢, 𝑣) ∈ 𝐷 ⊂ 𝔼2. The coefficients of the first fundamental 

form of 𝑀 are given by 

𝐸 =< 𝑋𝑢, 𝑋𝑢 >,  𝐹 =< 𝑋𝑢, 𝑋𝑣 >,  𝐺 =< 𝑋𝑣, 𝑋𝑣 >                          (1) 

where <,> is the inner product in 𝔼4, and 𝑋𝑢, 𝑋𝑣 are the tangent 

vectors of 𝑀. We assume that 𝑊2 = 𝐸𝐺 − 𝐹2 ≠ 0, i.e. the local 

patch 𝑋(𝑢, 𝑣) is regular. Further, given any local vector fields 𝑋𝑖, 𝑋𝑗 

tangent to 𝑀 one can define the second fundamental form of 𝑀 by 

 ℎ(𝑋𝑖, 𝑋𝑗) = ∇̃𝑋𝑖
𝑋𝑗 − ∇𝑋𝑖

𝑋𝑗,   1 ≤ 𝑖, 𝑗 ≤ 2.                                     (2) 

where ∇̃, ∇ are the Riemannian connection and induced connection 

of 𝑀 respectively. This map is well-defined symmetric and bilinear. 

For any arbitrary orthonormal normal frame field {𝑁1, 𝑁2} of M, 

recall the shape operator  

𝐴𝑁𝑖
𝑋𝑖 = −(∇̃𝑋𝑖

𝑁𝑖)
𝑇
,   𝑋𝑖 ∈ 𝜒(𝑀).                                                  (3) 

This operator is bilinear, self-adjoint and satisfies the following 

equation: 

< ANk
Xi, Xj >=< h(Xi, Xj), Nk >= c𝑖𝑗

𝑘 , 1 ≤ i, j, k ≤ 2.                (4) 

The equation (2) is called Gaussian formula, and 

h(Xi, 𝑋𝑗) = ∑ 𝑐𝑖𝑗
𝑘𝑁𝑘

2
𝑘=1 ,    1 ≤ i, j, k ≤ 2                                          (5) 

where c𝑖𝑗
𝑘  are the coefficients of the second fundamental form. 

Further, the Gaussian curvature and Gaussian torsion of a regular 

patch X(u, v) are given by 

K =
1

𝑊2
∑ (𝑐11

𝑘 𝑐22
𝑘 − (𝑐12

𝑘 )
2
)2

𝑘=1 ,                                                      (6) 

and 
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 𝐾𝑁 =
1

𝑊2
(𝐸(𝑐12

1 𝑐22
2 − 𝑐12

2 𝑐22
1 ) − 𝐹(𝑐11

1 𝑐22
2 − 𝑐11

2 𝑐22
1 ) + 𝐺(𝑐11

1 𝑐12
2 −

𝑐11
2 𝑐12

1 )),                                                                                           (7) 

respectively. 

Further, tha mean curvature vector of a regular patch 𝑋(𝑢, 𝑣) is 

defined by 

�⃗⃗� =
1

2𝑊2
∑ (𝑐11

𝑘 𝐺 + 𝑐22
𝑘 𝐸 − 2𝑐12

𝑘 𝐹)𝑁𝑘
2
𝑘=1 .                                    (8) 

Recall that a surface 𝑀 is said to be minimal if its mean curvature 

vector vanishes identically [7]. 

3. MIXED PRODUCT SURFACES IN  𝔼𝟑 

Definition 1. Let 𝛼: 𝐼 ⊂ ℝ → 𝔼2 be Euclidean plane curve and 

𝛽: 𝐽 ⊂ ℝ → 𝔼3 a space curve respectively. Put 𝛼(𝑢) =

(𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) = (𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)). Then we define 

their mixed product patch by 

𝑋 = 𝛼 ⊠ 𝛽:𝔼2 → 𝔼3; 𝑋(𝑢, 𝑣) =

(𝑓1(𝑢)𝑔1(𝑣), 𝑓1(𝑢)𝑔2(𝑣), 𝑓2(𝑢)𝑔3(𝑣));                                       (9) 

where 𝑢 ∈ 𝐼 = (𝑢0, 𝑢1) and 𝑣 ∈ 𝐽 = (𝑣0, 𝑣1) [4]. 

If 𝛼(𝑢) and 𝛽(𝑣) are not straight lines passing through the origin 

then the surface patch 𝑋(𝑢, 𝑣) is regular. 

In [4] the present authors gave the following examples and results; 

Example 1. The mixed product 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) with 𝛽(𝑣) =

(𝑔1(𝑣), 𝑔2(𝑣), 1) forms the surface patch 

𝑋(𝑢, 𝑣) = (𝑓1(𝑢)𝑔1(𝑣), 𝑓1(𝑢)𝑔2(𝑣), 𝑓2(𝑢)), 

which is a spherical product patch [12]. For 𝛽(𝑣) =

(cos 𝑣 , sin 𝑣 , 1) the surface patch 

𝑋(𝑢, 𝑣) = (𝑓1(𝑢) cos 𝑣 , 𝑓1(𝑢) sin 𝑣 , 𝑓2(𝑢)), 

becomes a surface of revolution [14]. 
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Example 2. The mixed product 𝛼(𝑢) = (𝑢, 1) with 𝛽(𝑣) =

(cos 𝑣 , sin 𝑣 , 𝑏𝑣) forms the surface patch 

𝑋(𝑢, 𝑣) = (𝑢 cos 𝑣 , 𝑢 sin 𝑣 , 𝑏𝑣), 

becomes a helicoid which is a minimal surface in 𝔼3 [14]. 

Example 3. The mixed product 𝛼(𝑢) = (𝜆, 𝑢) with 𝛽(𝑣) =

(𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)) forms the surface patch 

𝑋(𝑢, 𝑣) = 𝜆(𝑔1(𝑣), 𝑔2(𝑣), 0) + 𝑢(0,0, 𝑔3(𝑣)) 

which is a ruled surface. Further, for the given vector 𝛾 =

(0,0, 𝑔3(𝑣)) the cross product 𝛾 × 𝛾′ vanishes identically. So the 

ruled surface is cylindrical. 

Definition 2. Let 𝛽: 𝐽 ⊂ ℝ → 𝔼3 be a regular curve in 𝔼3. If <

𝛽, �⃗� >= 0 then 𝛽(𝑣) is called osculating curve in 𝔼3. 

Proposition 1. [4] The mixed product of a straight line 𝛼(𝑢): 𝑦(𝑢) =

𝑥(𝑢) with the space curve 𝛽(𝑣) = (𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)) forms the 

surface patch 

𝑋(𝑢, 𝑣) = 𝑥(𝑢)𝛽(𝑣) 

is a flat conical surface. 

Proposition 2. [4] Let 𝑀 be a mixed product of the straight line 

𝛼(𝑢): 𝑦(𝑢) = 𝑥(𝑢) with unit speed curve 𝛽(𝑢) =

(𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)). If 𝛽(𝑣) is an osculating space curve then 𝑀 

is a minimal surface. 

4. MIXED PRODUCT SURFACES IN  𝔼𝟒 

Definition 3. Let 𝛼: 𝐼 ⊂ ℝ → 𝔼3 and 𝛽: 𝐽 ⊂ ℝ → 𝔼3 be Euclidean 

space curve. Put 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢), 𝑓3(𝑢)) and 𝛽(𝑣) =

(𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)). Then we define their mixed product patch by 

𝑋 = 𝛼 ⊠ 𝛽:𝔼2 → 𝔼4; 

𝑋(𝑢, 𝑣) = (𝑓1(𝑢)𝑔1(𝑣), 𝑓1(𝑢)𝑔2(𝑣), 𝑓2(𝑢)𝑔3(𝑣), 𝑓3(𝑢)𝑔3(𝑣));         (10) 
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𝑢 ∈ 𝐼 = (𝑢0, 𝑢1), 𝑣 ∈ 𝐽 = (𝑣0, 𝑣1). We call the local surface given 

with the patch (10) a mixed product surface. 

We assume that surface patch 𝑋(𝑢, 𝑣) is a regular. So 𝛼(𝑢) and 𝛽(𝑣) 

can not be considered as straight lines passing through the origin. 

A spherical product surface in 𝔼4 has the parametrization 

𝑋(𝑢, 𝑣) = (𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣) cos 𝑢 , 𝑔3(𝑣) sin 𝑢) 

which are studied with many geometers ([2,5,8,10,11]). In fact, these 

surfaces can be considered as the mixed products of the curve 

𝛼(𝑢) = (1, cos 𝑢 , sin 𝑢) with 𝛽(𝑣) = (𝑔1(𝑣), 𝑔2(𝑣), 𝑔3(𝑣)). 

Furthermore, if we take 𝛼(𝑢) = (𝑓(𝑢), cos 𝑢 , sin 𝑢) and 𝛽(𝑣) =

(cos 𝑣 , sin 𝑣 , 𝑔(𝑣)) the mixed product patch becomes 

𝑋(𝑢, 𝑣) = 𝛼(𝑢) ⊠ 𝛽(𝑣) =

(𝑓(𝑢) cos 𝑣 , 𝑓(𝑢) sin 𝑣 , 𝑔(𝑣) cos 𝑢 , 𝑔(𝑣) sin 𝑢),                        (11) 

where 𝑓 and 𝑔 are some smooth functions. 

Then we proved the following result. 

Theorem 3. Let 𝑀 be the mixed product surface given with the patch 

(11). Then the Gaussian curvature 𝐾 and Gaussian torsion 𝐾𝑁 of 𝑀 

become 

 𝐾 = −
1

𝑊4 {
(𝑓(𝑢)2𝑔(𝑣)𝑔′′(𝑣) + 𝑓′(𝑢)2𝑔′(𝑣)2)(𝑔(𝑣)2 + 𝑓′(𝑢)2)

+(𝑔(𝑣)2𝑓(𝑢)𝑓′′(𝑢) + 𝑓′(𝑢)2𝑔′(𝑣)2)(𝑓(𝑢)2 + 𝑔′(𝑣)2)
},          (12) 

and 

 𝐾𝑁 =
1

𝑊4 {
𝑓(𝑢)𝑓′(𝑢)𝑔′(𝑣)(𝑔(𝑣)2 + 𝑓′(𝑢)2)(𝑔(𝑣) − 𝑔′′(𝑣))

+𝑔(𝑣)(𝑓(𝑢)2 + 𝑔′(𝑣)2)(𝑓(𝑢)2𝑔(𝑣) + 𝑓′(𝑢)𝑔′(𝑣)𝑓′′(𝑢))
},     (13) 

respectively. 

Proof. The tangent space of 𝑀 is spanned by the vector fields 

 
𝜕𝑋

𝜕𝑢
= (𝑓′(𝑢) cos 𝑣 , 𝑓′(𝑢) sin 𝑣 , −𝑔(𝑣) sin 𝑢 , 𝑔(𝑣) cos 𝑢),         (14) 

 
𝜕𝑋

𝜕𝑣
= (−𝑓(𝑢) sin 𝑣 , 𝑓(𝑢) cos 𝑣 , 𝑔′(𝑣) cos 𝑢 , 𝑔′(𝑣) sin 𝑢). 
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Hence the coefficients of the first fundamental forms of the surface 

are 

𝐸 =< 𝑋𝑢, 𝑋𝑢 >= 𝑓′(𝑢)2 + 𝑔(𝑣)2, 

𝐹 =< 𝑋𝑢, 𝑋𝑣 >= 0,                                                                     (15) 

𝐺 =< 𝑋𝑣, 𝑋𝑣 >= 𝑓(𝑢)2 + 𝑔′(𝑣)2, 

where <,> is the standard scalar product in 𝔼4. 

The second partial derivatives of 𝑋(𝑢, 𝑣) are expressed as follows 

𝑋𝑢𝑢 = (𝑓′′(𝑢) cos𝑣 , 𝑓′′(𝑢) sin𝑣 ,−𝑔(𝑣) cos 𝑢 ,−𝑔(𝑣) sin 𝑢), 

𝑋𝑢𝑣 = (−𝑓′(𝑢) sin𝑣 , 𝑓′(𝑢) cos 𝑣 , −𝑔′(𝑣) sin𝑢 , 𝑔′(𝑣) cos 𝑢),            (16) 

𝑋𝑣𝑣 = (−𝑓(𝑢) cos 𝑣 ,−𝑓(𝑢) sin𝑣 , 𝑔′′(𝑣) cos 𝑢 , 𝑔′′(𝑣) sin𝑢). 

Further, the normal space of 𝑀 is spanned by the vector fields 

𝑁1 =
1

√𝑓(𝑢)2+𝑔′(𝑣)2
(−𝑔′(𝑣) sin 𝑣 , 𝑔′(𝑣) cos 𝑣 , 𝑓(𝑢) cos 𝑢 , 𝑓(𝑢) sin 𝑢),         (17) 

𝑁2 =
1

√𝑓′(𝑢)2+𝑔(𝑣)2
(𝑔(𝑣) cos 𝑣 , 𝑔(𝑣) sin 𝑣 , 𝑓′(𝑢) sin 𝑢 , −𝑓′(𝑢) cos 𝑢). 

Using (4), (16) and (17) we can calculate the coefficients of the 

second fundamental form as follows: 

𝑐11
1 =< 𝑋𝑢𝑢, 𝑁1 >=

−𝑓(𝑢)𝑔(𝑣)

√𝑓(𝑢)2 + 𝑔′(𝑣)2
, 

𝑐12
1 =< 𝑋𝑢𝑣, 𝑁1 >=

−𝑓′(𝑢)𝑔′(𝑣)

√𝑓(𝑢)2 + 𝑔′(𝑣)2
, 

𝑐22
1 =< 𝑋𝑣𝑣, 𝑁1 >=

𝑓(𝑢)𝑔′′(𝑣)

√𝑓(𝑢)2+𝑔′(𝑣)2
,                                             (18) 

𝑐11
2 =< 𝑋𝑢𝑢, 𝑁2 ≥

𝑓′′(𝑢)𝑔(𝑣)

√𝑓′(𝑢)2 + 𝑔(𝑣)2
, 

𝑐12
2 =< 𝑋𝑢𝑣, 𝑁2 ≥

−𝑓′(𝑢)𝑔′(𝑣)

√𝑓′(𝑢)2 + 𝑔(𝑣)2
, 
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𝑐22
2 =< 𝑋𝑣𝑣, 𝑁2 >=

−𝑓(𝑢)𝑔(𝑣)

√𝑓′(𝑢)2 + 𝑔(𝑣)2
. 

Further, substituting (15) and (18) into (6) and (7) we get (12) and 

(13).                               ∎ 

As a consequence of Theorem 3 we can give the following examples. 

Example 4. The surfaces given with the following mixed product 

patches have vanishing Gaussian curvatures; 

i) 𝑋(𝑢, 𝑣) = (𝜆 cos 𝑣 , 𝜆 sin 𝑣 , 𝜇 cos 𝑢 , 𝜇 sin 𝑢), i.e., a Clifford 

torus, 

ii) 𝑋(𝑢, 𝑣) = (𝜆 cos 𝑣 , 𝜆 sin 𝑣 , (𝜇𝑣 + 𝑎) cos 𝑢 , (𝜇𝑣 + 𝑎) sin 𝑢), 

iii)  𝑋(𝑢, 𝑣) = ((𝜆𝑢 + 𝑏) cos 𝑣 , (𝜆𝑢 + 𝑏) sin 𝑣 , 𝜇 cos 𝑢 , 𝜇 sin 𝑢), 

where 𝑎, 𝑏 ∈ ℝ, 𝜆 and 𝜇 are nonzero real constants. 

Example 5. The surfaces given with the following mixed product 

patches have vanishing Gaussian torsions; 

i) 𝑋(𝑢, 𝑣) = (𝑒𝑢 cos 𝑣 , 𝑒𝑢 sin 𝑣 , 𝑒−𝑣 cos 𝑢 , 𝑒−𝑣 sin 𝑢), 

ii) 𝑋(𝑢, 𝑣) = (𝑒−𝑢 cos 𝑣 , 𝑒−𝑢 sin 𝑣 , 𝑒𝑣 cos 𝑢 , 𝑒𝑣 sin 𝑢). 

By the use of (13) we obtain the following results. 

Proposition 4. Let 𝑀 be the mixed product surface given with the 

patch (11). If the Gaussian torsion 𝐾𝑁 of 𝑀 is a real constant then 

0 = (𝑓2 + 𝑔2){𝑔(𝑓2𝑔 + 𝑓′𝑔′𝑓′′) − 𝑐(𝑔2 + 𝑓′2)2(𝑓2 + 𝑔2)}

+ {𝑓𝑓′𝑔′(𝑔 − 𝑔′′)(𝑔2 + 𝑓′2)} 

holds, where 𝑓 = 𝑓(𝑢), 𝑔 = 𝑔(𝑣) are smooth functions and 𝐾𝑁 =

𝑐 ∈ ℝ.  

As a consequence of Proposition 4 we can give the following 

example. 

Example 6.  The surfaces given with the following mixed product 

patches have constant Gaussian torsions; 
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i) 𝑋(𝑢, 𝑣) = (𝜆 cos 𝑣 , 𝜆 sin 𝑣 ,
𝜆

𝑐
cos 𝑢 ,

𝜆

𝑐
sin 𝑢), i.e., a Clifford 

torus, 

ii) 𝑋(𝑢, 𝑣) = (𝜇 cos 𝑣 , 𝜇 sin 𝑣 , (𝛿𝑢 + 𝑎) cos 𝑢 , (𝛿𝑢 + 𝑎) sin 𝑢), 

where 𝑎, 𝜆, 𝜇 and 𝛿 are nonzero real constants with 𝐾𝑁 = 𝑐2 and 

𝛿 = √−𝜇(𝜇𝑐 ∓ 1) 

Theorem 5. Let 𝑀 be the mixed product surface given with the patch 

(11). Then the mean curvature vector �⃗⃗�  of 𝑀 becomes 

  �⃗⃗� =
𝑓(𝑢)𝑔′′(𝑣)(𝑔(𝑣)2+𝑓′(𝑢)2)−𝑓(𝑢)𝑔(𝑣)(𝑓(𝑢)2+𝑔′(𝑣)2)

2𝑊2√(𝑓(𝑢)2+𝑔′(𝑣)2)
𝑁1                       (19) 

                                 

+
𝑔(𝑣)𝑓′′(𝑢)(𝑓(𝑢)2+𝑔′(𝑣)2)−𝑓(𝑢)𝑔(𝑣)(𝑔(𝑣)2+𝑓′(𝑢)2)

2𝑊2√(𝑔(𝑣)2+𝑓′(𝑢)2)
𝑁2. 

Proof. Using the equations (8), (15) and (18) we get the result. 

Corollary 6. Let 𝑀 be the mixed product surface given with the 

patch (11). If,  𝑓(𝑢) = 𝑒𝑢 ± 𝑒−𝑢 and 𝑔(𝑣) = 𝑒𝑣 ± 𝑒−𝑣 then 𝑀 has 

vanishing mean curvature. 
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