

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Araştırma Makalesi

İki Tabakalı Zemin Profilinde Kazık Temellere Gelen Deprem Yüklerinin Eşdeğer Statik Yük Hesabı

Burak GÖRGÜN^{a,*}, Mehmet İnanç ONUR^b, Ahmet TUNCAN^b

^a İnşaat Müh. Bölümü, Mühendislik Fakültesi, Bilecik Şeyh Edebali Üniversitesi, Bilecik, TÜRKİYE
 ^b İnşaat Müh. Bölümü, Mühendislik Fakültesi, Anadolu Üniversitesi, Eskişehir, TÜRKİYE
 * Sorumlu yazarın e-posta adresi: burak.gorgun@bilecik.edu.tr

<u>Özet</u>

Bu çalışmada, tabakalanmış suya doygun kil ve gevşek kum zeminlerde inşa edilen kazık gruplarına etki eden dinamik yüklerin statik yükler cinsinden uygulanabilirliği incelenmiştir. İki tabakalı zeminlerde oluşturulan kazık temellere üç farklı büyüklükte deprem yükü uygulanmış ve kazıkların yapmış oldukları deformasyonlar belirlenmiştir. Deprem etkisi altında kazık grubunun deformasyonlarının belirlenmesi için iki boyutlu Plaxis programının dinamik modülü kullanılmıştır. Analiz sonuçlarından geri hesap yöntemi ile kazık grubuna aynı deformasyonları yaptıracak eşdeğer statik yükler hesaplanmıştır.

Anahtar Kelimeler: Kazık temel, Deprem yükü, Eşdeğer statik yük

Equivalent Static Load Calculation of Earthquake Loads Acting on Pile Foundations in the Two Layered Soil Profile

ABSTRACT

In this study, the applicability of equivalent static loads instead of dynamic loads acting on pile groups constructed in stratified saturated clay and loose sand was investigated. Three different earthquake loads were applied to pile foundations created in two layered soil and deformations of the piles were determined. Dynamic modulus of the two dimensional Plaxis software was used to determine deformations of pile groups under earthquake effects. Equivalent static loads which gives the same deformations was calculated by back calculation method from the results.

Keywords: Pile foundation, Earthquake load, Equivalent static load

<u>I. Giriş</u>

INŞAAT mühendisliğinin temel amaçlarından biri depremlerde oluşan hasarlar ve can kayıplarını azaltmaktır. Geçmiş yıllarda saf kum ve kil zemin profillerinde oluşturulan kazık temeller ve bunların deprem yükleri altındaki davranışı yoğun biçimde araştırılmıştır. Ancak kum ve killerden oluşan tabakalı zeminler için benzer araştırmalar yeteri kadar yapılmamıştır. Yüksek sismik yoğunluğa sahip bölgelerde yeterli alanın kalmamasından dolayı bu tip zeminlerde bina, köprü vb yapı inşaatı ihtiyacı oluşmuştur. Özellikle tabakalı zeminlerde imal edilen kazık temeller için literatürde sayısal modelleme eksikliği vardır.

Bu nedenle, bu araştırmanın amacı, tabakalı zeminlerde oluşturulan kazığın davranışını karakterize etmek için Winkler analiz metodu kullanarak bir yaklaşım önermektir. Kazık elemanlarına etkiyen yükler, eksenel yönde (kendi ağırlıkları ve üst yapı ağırlığı dahil) ve yanal yönde etkiyen dinamik yükler (rüzgâr, dalga, sismik yük) olmak üzere iki ana sınıfa ayrılabilir [1]. Önemi açısından sismik yüklemeler altında kazık davranışı üzerine çok sayıda araştırma yapılmıştır. Kaynia ve Kausel [2], Sen vd. [3] ve diğer birçok araştırmacı, zeminin lineer davranışını göz önünde bulundurarak analitik çözüm yöntemleri geliştirmişlerdir. Nogami ve Kongai [4], Winkler teoremini kullanarak kazık gruplarının dinamik davranışını incelemiştir. Çalışmalarında doğrusal olmayan zemin davranışını göz önüne alarak birbirinden bağımsız zemin-kütle, yay ve sönümleyici tanımlamışlardır. Naggar ve Novak [5] grup kazıklarda Winkler teoremini kullanarak doğrusal olmayan zaman tanım alanında çalışmalar yapmıştır. Bütün çalışmalarda doğrusal olmayan zemin davranışının, kazık gruplarının dinamik performansına önemli ölçüde etki ettiği görülmüştür. Pratikte yanal yüklü kazıklar kiriş olarak, kazık çevresindeki zemin tabakası ise kısaca "p-y eğrileri" olarak adlandırılan doğrusal olmayan yük transfer fonksiyonları ile tanımlanmaktadır [6]. Sharahi [7], sıvılaşabilir zemin içine gömülmüş tekil bir kazığın yatay yük davranışını modellemek için Winkler metodu ile p-y eğrilerini geliştirmiştir.

Bu çalışmada, sonlu elemanlar yazılım olan Plaxis programı kullanılmış ve program sonuçları back calculation (geri hesap) yöntemi ile sayısal olarak modellenmeye çalışılmıştır. İki tabakalı zeminlerde oluşturulan kazık temellere üç farklı büyüklükte deprem yükü uygulanmış ve kazıkların yapmış oldukları deformasyonlar belirlenmiştir. Analiz sonuçlarından kazık grubuna aynı deformasyonları yaptıracak eşdeğer statik yükler hesaplanmıştır.

II. YÖNTEM

Hesaplarda kullanılan zeminlerin ve kazık temellerin özellikleri literatüre uygun olarak belirlenmiştir (Tablo 1,2 ve 3). Depremi ivme kayıtları için Van Depremi, Volcano Hawaii Depremi ve Petrolia Kalifornya Depremi seçilmiştir (Tablo 4). Tüm analizler iki boyutlu olarak yapılmıştır. Analizler için USGS (United States Geological Survey) verileri kullanılmıştır Kayıtlarda bulunan en büyük ivme değerleri kazık grubuna gelen deprem ivmeleri olarak kullanılmıştır.

Zemin Özellikleri	Yumuşak kil zemin
$\gamma_{dry} (kN/m^3)$	12,0
γ_{sat} (kN/m ³)	17,5
υ	0,2
$E (kN/m^2)$	9500
Ø (°)	5
c (kohezyon, kN/m ²)	25

Tablo 1. Kil zemin özellikleri

Tablo 2. Kum zemin özellikleri

Zemin Özellikleri	Gevşek kum zemin
$\gamma_{dry} (kN/m^3)$	15,5
γ_{sat} (kN/m ³)	19,5
υ	0,3
$E (kN/m^2)$	1500
Ø (°)	22
c (kohezyon, kN/m ²)	2

Tablo 3. Kazık temellerin özellikleri

Çap (D) (m)	0,6	0,8	1,0
Malzeme Modeli	Elastik	Elastik	Elastik
$L=L_b(m)$	15	15	15
EA (kN/m)	$1,08 \times 10^7$	$1,92 \times 10^7$	$3x10^{7}$
EI (kN/m2/m)	$3,24 \times 10^5$	$1,02 \times 10^{6}$	2,50x10 ⁶
Poisson oranı v	0,2	0,2	0,2

Tablo 4. Depremlerin karakteristikleri

Depremin Büyüklüğü	Meydana geldiği	Meydana geldiği
Mw=4,9	11/08/2013	Volcano-Hawai
Mw=5,9	04/02/2010	Petrolia-California
Mw=7,2	23/10/2011	Van-Türkiye

Bu tasarımda Şekil 1'de verildiği gibi iki farklı tipte tabakalanmış gevşek kum ve suya doygun yumuşak kil zeminde 3 farklı kazık çapı ile 0,60m, 0,80m ve 1,00m sürtünme kazıklarının deprem analizleri yapılmıştır. Kazıkların uç ve sürtünme dirençleri hesaplanıp tasarım değeri olarak analizlerde etki ettirilmiştir. Meyerhof metodu uç taşıma gücü hesapları için, a yöntemi kil zeminin sürtünme direnci hesabı için kullanılmıştır [1]. Bu yöntemde sürtünme direnci adhezyon ve drenajsız kohezyona bağlı olarak hesaplanmaktadır. Tekil kazık temel için taşıma gücü hesabı detayları Tablo 5 ve 6 da verilmiştir.

Şekil 1. İki farklı tasarım modeli

Tablo 5. 22,5m kil zemine	oturan tekil	kazık temel için	taşıma gücü hesab	ı

22,5m Kil Zemin+ 7,5m Kum Zemin	0,6m kazık çapı	0,8m kazık çapı	1m kazık çapı
Uç Taşıma Kapasitesi	145,55 kN	258,82 kN	404,37 kN
Sürtünme Direnci [Kil Zemin]	353,43 kN	471,24 kN	589,05 kN
Sürtünme Direnci [Kum Zemin]	78,42 kN	104,42 kN	130,53 kN
Toplam Taşıma Gücü	577,40 kN	834,48 kN	1123,95 kN
Müsaade Edilebilir	577,40 / 3=	834,48 / 3=	1123,95 / 3=
Taşıma Gucu (GS=3)	192,47 kN	278,16 kN	374,65 kN

22,5m Kum Zemin+ 7,5m Kil Zemin	0,6m kazık çapı	0,8m kazık çapı	1m kazık çapı
Uç Taşıma Kapasitesi	657,73 kN	657,73 kN	1827,30 kN
Sürtünme Direnci [Kum Zemin]	75,31 kN	75,31 kN	125,52 kN
Sürtünme Direnci [Kil Zemin]	353,43 kN	353,43 kN	589,05 kN
Toplam Taşıma Gücü	1086,47 kN	1086,47 kN	2541,87 kN
Müsaade Edilebilir	1086,47 / 3=	1741,22 / 3=	2541,87 / 3=
Taşıma Gucu (GS=3)	362,16 kN	580,41 kN	847,29 kN

Tablo 6. 22,5m kum zemine oturan tekil kazık temel için taşıma gücü hesabı

III. BULGULAR ve TARTIŞMA

Modelde 0,6m, 0,8m, 1,0m çapa sahip kazık grubuna uygulanan deprem yüklemeleri ile kazıkların düşey deformasyonu 4 kazıktan oluşan kazık grubu için Şekil 2 de verildiği gibi Plaxis programı ile bulunmuştur. Programda bulunan deformasyon değerleri ampirik hesaplar ile bulunan deformasyon değerleri ile karşılaştırılmıştır (Tablo 7 ve 8).

Şekil 2. Örnek Plaxis programı modeli

Kazık Çapı / Taşıma Gücü	Ampirik Hesap	Plaxis Sonucu
0,6m / 192,47 kN	28,52 mm	22,31mm
0,8m / 278,16 kN	40,49mm	35,27mm
1,0m / 374,65 kN	50,12mm	47,62mm

 Tablo 7. 22,5m kil zemin için deformasyonlar

Tablo 8. 22,5m kum zemin için deformasyonlar

Kazık Çapı / Taşıma Gücü	Ampirik Hesap	Plaxis Sonucu
0,6m / 339,73 kN	28,27mm	24,98mm
0,8m / 540,36 kN	38,53mm	35,05mm
1,0m / 784,98 kN	49,22mm	47,31mm

Kazık gruplarında kazık çapı ve yerleşim aralıklarına göre grup etkinlik faktörü değişmekle birlikte bu çalışmada en kötü durum düşünülerek tüm modellerde grup etkinlik faktörü olarak minimum değer olan E = 0,70 kullanılmıştır. Bulunan taşıma gücü kazık grubu üzerine radye temel tanımlanarak yayılı yük olarak etki ettirilmiştir. Ayrıca dinamik analiz ile deformasyonlar bulunmuştur. Bulunan bu deformasyonlardan Skempton geri hesap metodu yardımıyla tek bir kazığa gelen deformasyonlar tespit edilmiştir (Tablo 9 ve 10).

Tablo 9. 22,5m kil zeminde oluşturulan kazık grubunun deprem etkisi altında deformasyonu

Zemin Türü	Kazık çapı (m)	Büyüklük (Mw)	Kazık grubu düşey deformasyon (mm)	Tek kazığa düşen deformasyon (mm)
		Mw=4,9	41,73	30,27
22,5m	0,6	Mw=5,9	56,75	41,18
Kil		Mw=7,2	68,21	49,50
Zemin		Mw=4,9	61,86	37,08
+	0,8	Mw=5,9	79,57	47,69
7,5m		Mw=7,2	96,31	57,73
Kum Zemin		Mw=4,9	94,73	48,83
Lenin	1,0	Mw=5,9	112,22	57,26
		Mw=7,2	128,62	65,62

Zemin Türü	Kazık çapı (m)	Büyüklük (Mw)	Kazık grubu düşey deformasyon (mm)	Tek kazığa düşen deformasyon (mm)
		Mw=4,9	51,91	37,67
22.5	0,6	Mw=5,9	69,78	50,64
22,5m		Mw=7,2	86,04	62,44
Kum		Mw=4,9	124,81	74,81
Zemin	0,8	Mw=5,9	142,77	85,57
+ 7 5m Kil		Mw=7,2	158,97	95,28
Zemin		Mw=4,9	242,59	123,77
	1,0	Mw=5,9	260,88	133,10
		Mw=7,2	276,69	141,17

Tablo 10. 22,5m kum zeminde oluşturulan kazık grubunun deprem etkisi altında deformasyonu

Bu bölümde, bu düşey deformasyonları yaptıracak eşdeğer yükler tespit edilerek bulunan taşıma güçleri ile karşılaştırılmış ve her bir deprem büyüklüğünde farklı çaplara sahip kazıklarda eş değer statik yük artışı tespit edilmiştir (Tablo 11 ve 12).

Kazık çapı (m)	Büyüklük (Mw)	Eşdeğer Statik Yük (kN)	Eşdeğer Statik Yük Artış (%)
	Mw=4,9	852	11
0,6	Mw=5,9	1014	32
	Mw=7,2	1138	48
	Mw=4,9	1271	14
0,8	Mw=5,9	1481	33
	Mw=7,2	1679	51
	Mw=4,9	1867	25
1,0	Mw=5,9	2088	39
	Mw=7,2	2294	53

Tablo 11. 22.5m killi zemine oturan kazık temele etki eden eşdeğer yükler

Kazık çapı (m)	Büyüklük (Mw)	Eşdeğer Statik Yük (kN)	Eşdeğer Statik Yük Artış (%)
0,6	Mw=4,9	1531	6
	Mw=5,9	1752	21
	Mw=7,2	2043	41
0,8	Mw=4,9	2999	29
	Mw=5,9	3353	44
	Mw=7,2	3673	58
1,0	Mw=4,9	5765	70
	Mw=5,9	6150	82
	Mw=7,2	6482	91

Tablo 12. 22.5m kumlu zemine oturan kazık temele etki eden eşdeğer yükler

Tablolar incelendiğinde; suya doygun 22,5m kil zemin ve 7,5m kum zeminde yapılan 0,60m, 0,80m ve 1,00m çaplarındaki kazıklarda 5,0 büyüklüğündeki depremin etkisi ile eşdeğer statik yük artışı %25 olarak bulunmuştur. 6,0 büyüklüğündeki depremin sistem üzerine etki etmesi durumunda ise statik yük %39, aletsel büyüklüğü 7.0 olan depremde ise %53 bulunmuştur. 22,5m gevşek kum ve 7,5m kil zeminlerde ise kazık temelin oturduğu zeminin deprem etkisiyle stabilitenin kaybolması neticesinde % 91'e varan büyük deformasyon oranları ortaya çıkmıştır [8].

IV. SONUÇ

Bu çalışmada suya doygun yumuşak kil ve gevşek kum zeminin oluşturduğu tabakalı bir zemin içeresinde, sabit boyutlarda bir radye plağa bağlı farklı çaplardaki yüzen kazık grupları, radye plağa gelen toplam statik düşey yük sabit kalacak şekilde statik ve dinamik yükler altında çözümlenmiştir. Zemin türleri olarak yumuşak kil ve gevşek kum alınarak en uygunsuz şartlar altında analiz yapılmıştır. Plaxis programı ile iki boyutlu yapılan çözümler sonucunda kazık gruplarının dinamik yükler etkisinde yaptıkları deformasyonları ve kazık gruplarına bu deformasyonları yaptıracak eşdeğer statik yükler belirlenmiş, elde edilen veriler yorumlanmıştır. Çalışmada verilenlere benzer zemin profilleri ile karşılaşıldığında kazık temel üzerindeki statik yük yukarıda verilen eşdeğer yükler oranında arttırılarak deprem etkisi göz önüne alınabilir. Ancak bu çalışmanın spesifik kazık ve zemin özellikleri için yapılmış olduğu unutulmamalı ve farklı durumlarda statik yük artımlarının belirlenmesi için yeni çalışmalar yapılmalıdır. Diğer yandan, çalışmada kazık gruplarının 3 boyutlu analizler ile incelenmiştir. Gerçekçi sonuçlara ulaşabilmek için kazık gruplarının 3 boyutlu analizler ile incelenmesi gereği açıktır.

V. KAYNAKLAR

- [1] M.J. Das, *Principles of Foundation Engineering*, Brooks/Cole Eng. Division, (1984).
- [2] A.M. Kaynia, E. Kausel, *Dynamic behavior of pile groups*, **2nd International Conference on Numerical Methods in Offshore Piling**, (1982) 509–532.
- [3] R.Sen, T.G. Davis, P.K. Banerjee, *Earthquake Engineering and Structural Dynamics*, **13**(1) (1985) 53-65.
- [4] T. Nogami, K.Konagai, Journal of Engineering Mechanics, ASCE, 112(11) (1986) 1241-1252.
- [5] M.H.E. Naggar, M. Novak, Soil Dynamics and Earthquake Engineering, 15(4) (1996) 233-244.
- [6] J.W. Huang, Development of Modified Py Curves For Winkler Analysis to Characterize the Lateral Load Behavior of A Single Pile Embedded In Improved Soft Clay, Doktora Tezi, Iowa State Üniversitesi. (2011).
- [7] J.M. Sharahi, Performance of piles in liquefiable soils using numerical analysis, **3rd International Conference on New Developments in Soil mechanics and Geotechnical Engineering**, (2012) 271-277.
- [8] B. Görgün, Investigation of the applicability of dynamic loads acting on pile foundations as static loads in the saturated clay and loose sand soils, Yüksek Lisans Tezi, Anadolu Üniversitesi, Eskişehir-Türkiye, (2014).