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Abstract

In this study, a new algorithm is introduced for the numerical solution of equal width (EW) equation.
This algorithm is created by using the collocation finite element method based on decic B-spline
functions for the space discretization of the EW equation and the Crank-Nicolson method for the time
discretization of his equation. The obtained results are compared with the previous ones to see the
efficiency and accuracy of the proposed method.
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1. Introduction

The frequently occurred nonlinear phenomena in the mathematical models of some nonlinear
evolution equations are the propagation of the solitary waves in nonlinear dispersive media.
This dispersive waves can be described using the following EW equation with the positive
parameters € and u [1]:

Up + EUU, — UUyye = 0. Q)

The EW equation appears as an alternative form of the regularized long wave and Korteweg-
de Vriese equations in the literature. The solutions of the EW equation have been studied for
many years by researchers. Mostly the Galerkin [2-8] and collocation [9-14] finite element
methods based on various B-spline functions have been used. Also some other methods are
proposed to solve the EW equation numerically as the finite differences method, method of
lines based on Runge-Kutta integration, least square method, Galerkin method, Petrov-Galerkin
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method, RBF-PS scheme, meshless kernel-based method, multi quadratic quasi-interpolation
method, Haar Wavelet method, numerical method using polynomial scaling functions [15-25].

In this study, the decic (tenth degree) B-spline function is used as a trial function for obtaining
the numerical solution of Eq. (1) by the collocation method. Although the using of the high
degree B-spline functions are not as famous as the low degree B-spline functions in the
literature, this study is a new experiment to get the numerical solutions of the nonlinear partial
differential equations. The main aim in this paper is to see that when the collocation method
based on decic B-spline functions is applied for the numerical solution of the EW equation,
what is the effect of using the high degree B-spline functions in the space discretization of the
equation.

The organization of paper is as follows. In section 2, the time discretization of the Eq. (1) is
obtained by using the Crank-Nicolson method and then collocation method based on the decic
B-spline functions is described for getting the fully discretized form of the EW equation. In
section 3, two test problems are considered to see the efficiency of the proposed method. Lastly,
the results obtained by the proposed method for the numerical experiments are compared with
each other and with other methods in the literature.

2. Decic B-spline collocation methods

Let consider a solution domain [a4, @,] by the equal space step h and the following conditions
for the Eq.(1):

u(ay, t) = a,u(a,,t) =b,
U, (ag,t) = 0,u,(ayt) =0,t € (0,T], 2
u(x, O) = f(x),x € [aly aZ]'
The analytical solutions of the EW equation are described as follows
u(x,, t;) =uy,r=20,1,..,N;s =0,1,2, ...
where x, = a; + rh, ty = sAt and the the numerical value of u$ at the grid points are shown
by the notation U;.

Applying the Crank-Nicolson method to the Eq. (1) to find the time discretized form of the EW
equation, the following equation is obtained

At At
w4 e 2 et gt — pugtt = us - 2 (uu) — 3)

The decic B-spline ¢,.(x) the details of which are produced in [26] is defined as
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(01 Xpo5 S X < Xp_y

Oy Xp—g S X < Xp_3
03 ,Xp3 S X< Xpp
Oy Xp—p S X< Xp_q
Osg y Xpr—1 <x< Xy
06 JXp S X < Xpyq
or(x) = hlo 07 Xp41 S X < Xy @

O3 »Xp42 S X < Xpy3
O9 1 Xr43 S X < Xpyq
O10 »Xr44 S X < Xpys
011 1 Xr45 S X < Xpge

\ 0 , otherwise

where
gm 5(X)

JoRegt ) = h1% + 10h°g,,_4(x) + 45h8g2,_,(x) + 120n"7 g3, _,(x) +
Im-4X
+252h°g> _,(x) + 210h4g A(x) +120h3g7 _,(x) + 45h%g8 _,(x)
+10hgpm,_s(x) — 10g;5)_4(x),
o3 = 1013h1° + 5010h%g,,_5(x) + 11025h8 g2, _5(x) + 14040h7 g3,_5(x)
+11130h%g _5(x) + 5292h5g>,_5(x) + 1050h4g 3(x)
—360h3g] _3(x) —315h%g3 _ (x) —90hg,_3(x) + 45910 2 (x),
01 = 4784011" + 141060h°g,— 00 1 171000h°g5,_,(x)
+100080K7 g2 _, (x) + 16800hS g% _, (x) — 13608h5g5._, (x)
—8400h*gS,_ (x) — 720h3g] _ (x) + 900h%g8 _ (x)
0s = 455192h° + 73626Oh9gm_1(x) + 327600h8g,2n_1(x)
—95760h7 g3,_,(x) — 8400h*g8,_,(x) — 720h3g) _,(x)
00071 () +900h2g83 _,(x) — 8400h*gS,_,(x) — 720h3g7 _,(x) +
Im-2\X
+360hg,,_,(x) — 120930, (x),
128N (0)6 = 1310354h'° + 67956Oh9gm(x) —509670h8g2, (x) —
g3.(x
10080R% 47 () +91140hgt (x) + 69552h° g2, (x) — 9660h* g8, (x) —
g (x
+630h%g8 (x) + 1260hg,,(x) — 252910 (x),
o, = 1310354h1° — 679560h%g,,, . (x) — 509670h8g2,, , (x)
+312480h7 g3,,,(x) + 91140h%g} ., (x) — 69552h%g>, .1 (x)
—9660h*g$, .1 (x) + 10080h3g7 ., (x) + 630h?g8, ., (x)
—1260hgm 11 (x) + 210g5741 (%),
0g = 455192010 — 736260h°g,,, ., (x) + 327600h8 g2, , ,(x)
+95760h7 g3,,,(x) — 119280h°g2 ., (x) + 13608h°g>, ., (x)
+16800h*g$,.,(x) — 5040h3g7 ., (x) — 1260h%g8 ., (x)
+840hgm+2(x) 120gm+2(x)
gy = 47840h™0 — 141060h%g,, , 5 (x) + 171000h8 g2, (x)
—100080h7 g3,,3(x) + 16800h°g2 .5 (x) + 13608h°g>, 5 (x)
—8400h* g, 3 (x) + 720h° g3 (x) + 900R? g5, 45 (x)
_360hgm+3(x) + 459m+3(x)
010 = 1013h*° — 5010h°g,, 4 (x) + 11025h8 g2, ,(x) — 14040h7 g3, ,(x)
+11130h°g; 4 (x) — 5292R5 g2, 4(x) + 1050h* g5, , 4 (x)
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+360h3gm+4(x) - 315h29m+4(x) + 90hg%+4(x) 109m+4(x):
o1 =[h— gm+5(x)]

To set up the space discretization of the Eq. (3), the approximate solution U is obtained in
terms of the decic B-splines ¢ as

Ux,) = U, = 3127 5 0i(0)6;, (5)

where §; are time dependent unknowns which will be calculated. So, the approximate solution,
its first and second derivatives at the knots can be written by the help of the Eq. (4) as

U, = (8,_s + 101368,_, + 478406,_5 + 4551925,_, + 13103545, _,
+13103548, + 45519268, , + 478408, ,, + 10138, .5 + 5,14),
10

Uj =+ (=85 — 5018,_ — 141066,_3 — 736266, — 679566,_;
+679566, + 736268,4, + 1410668,,, + 5018, 15 + 0,44),
90

Uy’ = o5 (8r—s + 2456,_y + 38005,_3 + 72805, — 113265,._,
—113266, + 72808,,, + 38008, ,, + 2458,45 + 5,44,

Using the above equations in Eqg. (3), a fully discretized form of the Eq. (1) is obtained as

A+ y$™ESEE + (1013 + y5t1) 855 + (47840 + y5+1)6541 + (455192 + y5t1)65%2
+(1310354 + y£*t1)854 ] + (1310354 + ySt1)651 + (455192 + ys+1)§5tH
+(47840 + y5tH65E + (1013 + 565 + (L + yig D6t
=(1—y9)85 s + (1013 Y385, + (47840 — ¥$)85_5 + (455192 — y5)52_,
+(1310354 Y85, + (1310354 — )85 + (455192 — y3)65,,
+(47840 — y3)674, + (1013 —¥5)87,3 + (1 —¥70)07 44 (6)

where

SeAt . i —90u JJ ; j ;
Br=——1.By =51 = =Bl + Boy; = —501B; + 2454,

v = —141065’1 + 3800[5’2,)/4 = —73626[?1 + 7280[32,)/5 = —6795631' — 11326p,,

vl = 679563 — 11326ﬁ2,y7 = 73626B] + 72808,,v] = 14106B] + 38008,

ng = 501,81 + 2458,, V10 :81 + B2,

nl =6 _+101368) _, + 478408/ . + 4551926/ , +13103545),_,)
+13103546), + 45519268, ,, + 4784067 ,, + 10136/, , + d,fn+4,] =s+1,5).

m+2

Thus, we have a system of N + 1 equationand N + 10 unknowns. The conditions u(a,,t) =
a, u(a,,t)=>b are help us to eliminate the parameters
O_5,0_4,0_3,0_2,0_1,0042,0n43,0n4+4 aNd Sy, SO that we have a solvable matrix system of
N + 1 equation and N + 1 unknowns which is easily solved with Matlab packet program. To
start the iteration of system, §° has been determined by using the conditions in Eq. (2), so then
we can obtain iteratively the §° at time t° = sAt. Also an inner iteration is used due to the
system (6) is an implicit system according to

the term 6.

4. Test problems
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To demonstrate the efficiency of the proposed algorithm, two test problems, namely the motion
of the single solitary wave and the interaction of two solitary waves, are studied. The
conservation laws satisfied by the EW equation:

C = [Cudx,Cy = [T W + u(u)Ddx, € = [0 udx @)

are calculated by use of the trapezoidal rule in the numerical experiments. The space
convergence order of the method is determined by the following formula:

(Loo)p,

log

(Leo)p
hrT+1 . (8)
|

hr41

order =

log|
The accuracy of the method is calculated by the error norm:
Lo = mﬁleur —-U,|. 9
4.1 Test problem 1 (Motion of single solitary wave)
The exact solution of EW equation is
u(x, t) = 3csech®(k[x — %, — vt]) (10)

where k = \/42;1 The initial condition is worked out by taking t = 0 in Eq. (10). We have used

the values of the boundary conditions as zero.The values of the parameters are chosen as ¢ =
0.1, x, = 10, e =1 and u = 1. The motion of the obtained single solitary wave with these
parameters has been come about the interval —15 < x < 45 in time period 0 < t < 80. The
solution profiles are depicted in Figure 1 with h = 0.03 and At = 0.05. In this figure, it can
be said that the peak of the solitary wave remained almost the same throughout the study period.

0.3 5
0.2 4

0.1

40
O O
t X

Figure 1. The numerical solutions at the various times.
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The distribution of absolute errors at t = 80 with h = 0.03 and A4t = 0.05 is given in Figure
2.

xl()'

1.5

absolute error

-10 0 10 20 30 40
X

Figure 2. Absolute error with h = At = 0.05 for the proposed methods

To make a comparison with some early studies, the absolute error norms and the calculated
conservation invariants C;, C,, C; of the proposed method and the previous studies are listed at
the time ¢t = 80 and the space domain [0,30] in Table 1. From this table, it can be seen that
the decic B-spline collocation method is one of the most accurate method. The analytical values
of the conservation constants for a solitary wave with amplitude 3¢ and width depending on k
can evaluated as in [2] by

+48kczu c _ 144c3
k 5 ' 37 5k °

The numerical values of invariants obtained by the decic B-spline method are ¢; = 1.19999,
C, = 0.28800 and C; = 0.05760 at the time t = 80 while their analytical values obtained

from Eq. (11) are C; = 1.2, C, = 0.288 and C5; = 0.0576 for ¢ = 0.1.

Table 1. Invariants and error norms with ¢ = 0.1,4t = 0.05,h = 0.03,0 < x < 30

Method Lx10* C, C, C;
Decic B-spline collocation method 0.0737 1.19999 0.28800 0.05760
Exponential cubic 0.54 1.1999 0.2880 0.05760
B-spline collocation (p=1) [11]
Exponential cubic B-spline 0.073 1.2000 0.2880 0.05760
collocation (p=0.0000340714) [11]
Quartic B-spline Galerkin method [6] 0.0737 1.20000 0.28800 0.05760
Differential quadrature method [6] 0.07373 |1.19999 0.28800 0.05760
Meshless method with 0.20296 |1.20003 0.28801 0.05761
radial-basis functions [6]
Petrov-Galerkin method [2] 26.46 1.1910 0.2855 0.05582
Cubic spline collocation method [13] 0.53 1.20005 0.28800 0.05760
Cubic B-spline collocation method [10] |0.53 1.19998 0.28798 0.05759
Lumped Galerkin method [8] 0.21 1.19995 0.28798 0.05759
Galerkin method [18] 164.25 1.23387 0.29915 0.06097
Cubic B-spline collocation method [14] |0.336 1.19999 0.28800 0.05756
EXxact 1.2 0.288 0.0576
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4.2 Test problem 2 (Interaction of two solitary wave)

Secondly, by using the following initial condition

u(x,0) = 3¢1sech2 (kl(x — X — qbl)) + 3¢>zsech2 (kz (x—x, — ¢2)) (11)

the problem in which two single solitary waves is interacted, is considered. The boundary
conditions for this problem are chosen as u(0,t) = u(80,t) = 0. In consistent with the
previous studies, the other parameters are takenas u =1, e =1, k; = 0.5, k, = 0.5, x; =
10, x, =25, ¢, = 1.5 and ¢, = 0.75 in the calculations. The analytical values of the
invariants can be found from Eq. (11) as C; = 27, C, = 8 and C; = 218.7. The simulation of
the interaction of two single solitary waves can observed in Figure 3 with the time step At =
0.1 and the space step h = 0.1 over the space domain [0,80]. From the figure, it can be seen
that the rise of the two single solitary waves, then the waves interact and finally the waves occur
their original shapes. The Table 2 is given to see the effect of choosing the smaller step sizes
for the calculations of the invariants. From the table it is seen clearly that the obtained
conservation constants by choosing smaller values for the time and space steps gives nearly the
same values with the exact ones.

—t=0

ab ||
L
U3 [
2f ‘
I
1 /]
/ ‘\ /
oS NS
0 20 40 60 80
X
5, -
—t=15
4+
U
2
1
0
0 20 40 60 80
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—t=30

0 20
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X

Figure 3. The simulation of the interacted wave solutions.

Table 2. Invariants for the various values of the space and time steps

h=A4t=0.1

t C, C, C;

1 26.993302378591750 | 80.991136106784495 | 218.660792457023400
5 26.985543145640346 | 80.954025171222781 | 218.494098806768280
10 26.976201331621599 | 80.914847637768275 | 218.311510240538810
15 26.970649371206846 | 80.941311146473225 | 218.365614712728900
20 26.965596614631067 | 80.866647798397310 | 218.101358339337030
25 26.956455573585203 | 80.814638952319768 | 217.879664665904900
30 26.946745247721164 | 80.767859034837628 | 217.671712922420880
h = At = 0.05

t C, C, C;

1 26.990461050320302 | 80.999371980781348 | 218.697544042151320
5 26.989499238661029 | 80.994707811248304 | 218.676538542650550
10 26.988249282271042 | 80.990557601268890 | 218.656042086919340
15 26.987485867694875 | 81.000608829039905 | 218.684248795519240
20 26.986763460419446 | 80.984584309319814 | 218.629651649602890
25 26.985527466074423 | 80.977048015978198 | 218.598548488278770
30 26.984220259670970 | 80.971057218965811 | 218.571956196134580
h = At =0.01

t Cl CZ 63

1 26.953994253516079 | 81.002573270696047 | 218.702757879260470
5 26.952646451957293 | 81.002552372020247 | 218.702591702971490
10 26.950797888136012 | 81.002573139408995 | 218.702589848684800
15 26.948880619314313 | 81.003091871507038 | 218.704173167737140
20 26.946887864441052 | 81.002563709534769 | 218.702396599911480
25 26.944811921568093 | 81.002468848617525 | 218.701957922997790
30 26.942652695479943 | 81.002451995919174 | 218.701735540488670

192




5. Conclusion

The collocation finite element method based on the decic B-spline functions as trial functions
for space discretization and Crank-Nicolson method for time discretization have been proposed
to get numerical solution to the EW equation. By investigating the motion of the single solitary
wave and the interaction of the two solitary waves problems to see the effectiveness and
accurate of the proposed method, it is seen that the proposed method has the reliable results.
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