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Abstract 

 

In this study, a new algorithm is introduced for the numerical solution of equal width (EW) equation. 

This algorithm is created by using the collocation finite element method based on decic B-spline 

functions for the space discretization of the EW equation and the Crank-Nicolson method for the time 

discretization of his equation. The obtained results are compared with the previous ones to see the 

efficiency and accuracy of the proposed method. 
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1. Introduction 
 

The frequently occurred nonlinear phenomena in the mathematical models of some nonlinear 

evolution equations are the propagation of the solitary waves in nonlinear dispersive media. 

This dispersive waves can be described using the following EW equation with the positive 

parameters 𝜀 and 𝜇 [1]: 

 

𝑢𝑡 + 𝜀𝑢𝑢𝑥 − 𝜇𝑢𝑥𝑥𝑡 = 0.  (1) 

 

The EW equation appears as an alternative form of the regularized long wave and Korteweg-

de Vriese equations in the literature. The solutions of the EW equation have been studied for 

many years by researchers. Mostly the Galerkin [2-8] and collocation [9-14] finite element 

methods based on various B-spline functions have been used. Also some other methods are 

proposed to solve the EW equation numerically as the finite differences method, method of 

lines based on Runge-Kutta integration, least square method, Galerkin method, Petrov-Galerkin 
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method, RBF-PS scheme, meshless kernel-based method, multi quadratic quasi-interpolation 

method, Haar Wavelet method, numerical method using polynomial scaling functions [15-25]. 

 

In this study, the decic (tenth degree) B-spline function is used as a trial function for obtaining 

the numerical solution of Eq. (1) by the collocation method. Although the using of the high 

degree B-spline functions are not as famous as the low degree B-spline functions in the 

literature, this study is a new experiment to get the numerical solutions of the nonlinear partial 

differential equations. The main aim in this paper is to see that when the collocation method 

based on decic B-spline functions is applied for the numerical solution of the EW equation, 

what is the effect of using the high degree B-spline functions in the space discretization of the 

equation. 

 

The organization of paper is as follows. In section 2, the time discretization of the Eq. (1) is 

obtained by using the Crank-Nicolson method and then collocation method based on the decic 

B-spline functions is described for getting the fully discretized form of the EW equation. In 

section 3, two test problems are considered to see the efficiency of the proposed method. Lastly, 

the results obtained by the proposed method for the numerical experiments are compared with 

each other and with other methods in the literature. 

 

2. Decic B-spline collocation methods 
 

Let consider a solution domain [𝛼1, 𝛼2] by the equal space step ℎ and the following conditions 

for the Eq.(1): 

 

 𝑢(𝛼1, 𝑡) = 𝑎, 𝑢(𝛼2, 𝑡) = 𝑏, 
 𝑢𝑥(𝛼1, 𝑡) = 0, 𝑢𝑥(𝛼2, 𝑡) = 0, 𝑡 ∈ (0, 𝑇],     (2) 

 𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ [𝛼1, 𝛼2]. 
 

The analytical solutions of the EW equation are described as follows 

 

 𝑢(𝑥𝑟 , 𝑡𝑠) = 𝑢𝑟
𝑠, 𝑟 = 0,1, … ,𝑁; 𝑠 = 0,1,2,…   

 

where 𝑥𝑟 = 𝛼1 + 𝑟ℎ, 𝑡𝑠 = 𝑠𝛥𝑡 and the the numerical value of 𝑢𝑟
𝑠 at the grid points are shown 

by the notation 𝑈𝑟
𝑠. 

Applying the Crank-Nicolson method to the Eq. (1) to find the time discretized form of the EW 

equation, the following equation is obtained  

 

 𝑢𝑠+1 + 𝜀
𝛥𝑡

2
(𝑢𝑠+1𝑢𝑥

𝑠+1) − 𝜇𝑢𝑥𝑥
𝑠+1 = 𝑢𝑠 − 𝜀

𝛥𝑡

2
(𝑢𝑠𝑢𝑥

𝑠) − 𝜇𝑢𝑥𝑥
𝑠 .  (3) 

 

The decic B-spline 𝜑𝑟(𝑥) the details of which are produced in [26] is defined as 
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 𝜑𝑟(𝑥) =
1

ℎ10

{
 
 
 
 
 

 
 
 
 
 
𝜎1 , 𝑥𝑟−5 ≤ 𝑥 < 𝑥𝑟−4
𝜎2 , 𝑥𝑟−4 ≤ 𝑥 < 𝑥𝑟−3
𝜎3 , 𝑥𝑟−3 ≤ 𝑥 < 𝑥𝑟−2
𝜎4 , 𝑥𝑟−2 ≤ 𝑥 < 𝑥𝑟−1
𝜎5 , 𝑥𝑟−1 ≤ 𝑥 < 𝑥𝑟
𝜎6 , 𝑥𝑟 ≤ 𝑥 < 𝑥𝑟+1
𝜎7 , 𝑥𝑟+1 ≤ 𝑥 < 𝑥𝑟+2
𝜎8 , 𝑥𝑟+2 ≤ 𝑥 < 𝑥𝑟+3
𝜎9 , 𝑥𝑟+3 ≤ 𝑥 < 𝑥𝑟+4
𝜎10 , 𝑥𝑟+4 ≤ 𝑥 < 𝑥𝑟+5
𝜎11 , 𝑥𝑟+5 ≤ 𝑥 < 𝑥𝑟+6
0 , otherwise

 (4) 

where 

 

 𝜎1 = 𝑔𝑚−5
10 (𝑥), 

 𝜎2 = ℎ
10 + 10ℎ9𝑔𝑚−4(𝑥) + 45ℎ

8𝑔𝑚−4
2 (𝑥) + 120ℎ7𝑔𝑚−4

3 (𝑥) +
210ℎ6𝑔𝑚−4

4 (𝑥) 
           +252ℎ5𝑔𝑚−4

5 (𝑥) + 210ℎ4𝑔𝑚−4
6 (𝑥) + 120ℎ3𝑔𝑚−4

7 (𝑥) + 45ℎ2𝑔𝑚−4
8 (𝑥) 

           +10ℎ𝑔𝑚−4
9 (𝑥) − 10𝑔𝑚−4

10 (𝑥), 
 𝜎3 = 1013ℎ

10 + 5010ℎ9𝑔𝑚−3(𝑥) + 11025ℎ
8𝑔𝑚−3

2 (𝑥) + 14040ℎ7𝑔𝑚−3
3 (𝑥) 

           +11130ℎ6𝑔𝑚−3
4 (𝑥) + 5292ℎ5𝑔𝑚−3

5 (𝑥) + 1050ℎ4𝑔𝑚−3
6 (𝑥) 

           −360ℎ3𝑔𝑚−3
7 (𝑥) − 315ℎ2𝑔𝑚−3

8 (𝑥) − 90ℎ𝑔𝑚−3
9 (𝑥) + 45𝑔𝑚−3

10 (𝑥), 
 𝜎4 = 47840ℎ

10 + 141060ℎ9𝑔𝑚−2(𝑥) + 171000ℎ
8𝑔𝑚−2

2 (𝑥) 
           +100080ℎ7𝑔𝑚−2

3 (𝑥) + 16800ℎ6𝑔𝑚−2
4 (𝑥) − 13608ℎ5𝑔𝑚−2

5 (𝑥) 
           −8400ℎ4𝑔𝑚−2

6 (𝑥) − 720ℎ3𝑔𝑚−2
7 (𝑥) + 900ℎ2𝑔𝑚−2

8 (𝑥) 
 𝜎5 = 455192ℎ

10 + 736260ℎ9𝑔𝑚−1(𝑥) + 327600ℎ
8𝑔𝑚−1

2 (𝑥) 
           −95760ℎ7𝑔𝑚−1

3 (𝑥) − 8400ℎ4𝑔𝑚−2
6 (𝑥) − 720ℎ3𝑔𝑚−2

7 (𝑥) 
           +900ℎ2𝑔𝑚−2

8 (𝑥) − 8400ℎ4𝑔𝑚−2
6 (𝑥) − 720ℎ3𝑔𝑚−2

7 (𝑥) +
900ℎ2𝑔𝑚−2

8 (𝑥) 
           +360ℎ𝑔𝑚−2

9 (𝑥) − 120𝑔𝑚−2
10 (𝑥), 

 𝜎6 = 1310354ℎ
10 + 679560ℎ9𝑔𝑚(𝑥) − 509670ℎ

8𝑔𝑚
2 (𝑥) −

312480ℎ7𝑔𝑚
3 (𝑥) 

           +91140ℎ6𝑔𝑚
4 (𝑥) + 69552ℎ5𝑔𝑚

5 (𝑥) − 9660ℎ4𝑔𝑚
6 (𝑥) −

10080ℎ3𝑔𝑚
7 (𝑥) 

           +630ℎ2𝑔𝑚
8 (𝑥) + 1260ℎ𝑔𝑚

9 (𝑥) − 252𝑔𝑚
10(𝑥), 

 𝜎7 = 1310354ℎ
10 − 679560ℎ9𝑔𝑚+1(𝑥) − 509670ℎ

8𝑔𝑚+1
2 (𝑥) 

           +312480ℎ7𝑔𝑚+1
3 (𝑥) + 91140ℎ6𝑔𝑚+1

4 (𝑥) − 69552ℎ5𝑔𝑚+1
5 (𝑥) 

           −9660ℎ4𝑔𝑚+1
6 (𝑥) + 10080ℎ3𝑔𝑚+1

7 (𝑥) + 630ℎ2𝑔𝑚+1
8 (𝑥) 

           −1260ℎ𝑔𝑚+1
9 (𝑥) + 210𝑔𝑚+1

10 (𝑥), 
 𝜎8 = 455192ℎ

10 − 736260ℎ9𝑔𝑚+2(𝑥) + 327600ℎ
8𝑔𝑚+2

2 (𝑥) 
           +95760ℎ7𝑔𝑚+2

3 (𝑥) − 119280ℎ6𝑔𝑚+2
4 (𝑥) + 13608ℎ5𝑔𝑚+2

5 (𝑥) 
           +16800ℎ4𝑔𝑚+2

6 (𝑥) − 5040ℎ3𝑔𝑚+2
7 (𝑥) − 1260ℎ2𝑔𝑚+2

8 (𝑥) 
           +840ℎ𝑔𝑚+2

9 (𝑥) − 120𝑔𝑚+2
10 (𝑥), 

 𝜎9 = 47840ℎ
10 − 141060ℎ9𝑔𝑚+3(𝑥) + 171000ℎ

8𝑔𝑚+3
2 (𝑥) 

           −100080ℎ7𝑔𝑚+3
3 (𝑥) + 16800ℎ6𝑔𝑚+3

4 (𝑥) + 13608ℎ5𝑔𝑚+3
5 (𝑥) 

           −8400ℎ4𝑔𝑚+3
6 (𝑥) + 720ℎ3𝑔𝑚+3

7 (𝑥) + 900ℎ2𝑔𝑚+3
8 (𝑥) 

           −360ℎ𝑔𝑚+3
9 (𝑥) + 45𝑔𝑚+3

10 (𝑥), 
 𝜎10 = 1013ℎ

10 − 5010ℎ9𝑔𝑚+4(𝑥) + 11025ℎ
8𝑔𝑚+4

2 (𝑥) − 14040ℎ7𝑔𝑚+4
3 (𝑥) 

           +11130ℎ6𝑔𝑚+4
4 (𝑥) − 5292ℎ5𝑔𝑚+4

5 (𝑥) + 1050ℎ4𝑔𝑚+4
6 (𝑥) 
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           +360ℎ3𝑔𝑚+4
7 (𝑥) − 315ℎ2𝑔𝑚+4

8 (𝑥) + 90ℎ𝑔𝑚+4
9 (𝑥) − 10𝑔𝑚+4

10 (𝑥), 
 𝜎11 = [ℎ − 𝑔𝑚+5(𝑥)]

10. 
 

To set up the space discretization of the Eq. (3), the approximate solution 𝑈 is obtained in 

terms of the decic B-splines 𝜑 as 

 

 𝑈(𝑥𝑟) = 𝑈𝑟 = ∑ 𝜑𝑖(𝑥)𝛿𝑖
𝑟+5
𝑖=𝑟−5 ,  (5) 

 

where 𝛿𝑖 are time dependent unknowns which will be calculated. So, the approximate solution, 

its first and second derivatives at the knots can be written by the help of the Eq. (4) as 

 

𝑈𝑟 = (𝛿𝑟−5 + 1013𝛿𝑟−4 + 47840𝛿𝑟−3 + 455192𝛿𝑟−2 + 1310354𝛿𝑟−1 
          +1310354𝛿𝑟 + 455192𝛿𝑟+1 + 47840𝛿𝑟+2 + 1013𝛿𝑟+3 + 𝛿𝑟+4), 

𝑈𝑟
′ =

10

ℎ
(−𝛿𝑟−5 − 501𝛿𝑟−4 − 14106𝛿𝑟−3 − 73626𝛿𝑟−2 − 67956𝛿𝑟−1 

          +67956𝛿𝑟 + 73626𝛿𝑟+1 + 14106𝛿𝑟+2 + 501𝛿𝑟+3 + 𝛿𝑟+4), 

𝑈𝑟
′′ =

90

ℎ2
(𝛿𝑟−5 + 245𝛿𝑟−4 + 3800𝛿𝑟−3 + 7280𝛿𝑟−2 − 11326𝛿𝑟−1 

          −11326𝛿𝑟 + 7280𝛿𝑟+1 + 3800𝛿𝑟+2 + 245𝛿𝑟+3 + 𝛿𝑟+4), 
 

Using the above equations in Eq. (3), a fully discretized form of the Eq. (1) is obtained as 

 

 (1 + 𝛾1
𝑠+1)𝛿𝑟−5

𝑠+1 + (1013 + 𝛾2
𝑠+1)𝛿𝑟−4

𝑠+1 + (47840 + 𝛾3
𝑠+1)𝛿𝑟−3

𝑠+1 + (455192 + 𝛾4
𝑠+1)𝛿𝑟−2

𝑠+1 
+(1310354 + 𝛾5

𝑠+1)𝛿𝑟−1
𝑠+1 + (1310354 + 𝛾6

𝑠+1)𝛿𝑟
𝑠+1 + (455192 + 𝛾7

𝑠+1)𝛿𝑟+1
𝑠+1 

+(47840 + 𝛾8
𝑠+1)𝛿𝑟+2

𝑠+1 + (1013 + 𝛾9
𝑠+1)𝛿𝑟+3

𝑠+1 + (1 + 𝛾10
𝑠+1)𝛿𝑟+4

𝑠+1 

= (1 − 𝛾1
𝑠)𝛿𝑟−5

𝑠 + (1013 − 𝛾2
𝑠)𝛿𝑟−4

𝑠 + (47840 − 𝛾3
𝑠)𝛿𝑟−3

𝑠 + (455192 − 𝛾4
𝑠)𝛿𝑟−2

𝑠  
   +(1310354 − 𝛾5

𝑠)𝛿𝑟−1
𝑠 + (1310354 − 𝛾6

𝑠)𝛿𝑟
𝑠 + (455192 − 𝛾7

𝑠)𝛿𝑟+1
𝑠  

                 +(47840 − 𝛾8
𝑠)𝛿𝑟+2

𝑠 + (1013 − 𝛾9
𝑠)𝛿𝑟+3

𝑠 + (1 − 𝛾10
𝑠 )𝛿𝑟+4

𝑠  (6) 

 

where 

 

𝛽1 =
5𝜀𝛥𝑡

ℎ
𝜂𝑗 , 𝛽2

𝑗
=
−90𝜇

ℎ2
, 𝛾1

𝑗
= −𝛽1

𝑗
+ 𝛽2, 𝛾2

𝑗
= −501𝛽1

𝑗
+ 245𝛽2, 

𝛾3
𝑗
= −14106𝛽1

𝑗
+ 3800𝛽2, 𝛾4

𝑗
= −73626𝛽1

𝑗
+ 7280𝛽2, 𝛾5

𝑗
= −67956𝛽1

𝑗
− 11326𝛽2, 

𝛾6
𝑗
= 67956𝛽1

𝑗
− 11326𝛽2, 𝛾7

𝑗
= 73626𝛽1

𝑗
+ 7280𝛽2, 𝛾8

𝑗
= 14106𝛽1

𝑗
+ 3800𝛽2, 

𝛾9
𝑗
= 501𝛽1

𝑗
+ 245𝛽2, 𝛾10

𝑗
= 𝛽1

𝑗
+ 𝛽2, 

𝜂𝑗 = 𝛿𝑚−5
𝑗

+ 1013𝛿𝑚−4
𝑗

+ 47840𝛿𝑚−3
𝑗

+ 455192𝛿𝑚−2
𝑗

+ 1310354𝛿𝑚−1
𝑗

) 

               +1310354𝛿𝑚
𝑗
+ 455192𝛿𝑚+1

𝑗
+ 47840𝛿𝑚+2

𝑗
+ 1013𝛿𝑚+3

𝑗
+ 𝛿𝑚+4

𝑗
, 𝑗 = 𝑠 + 1, 𝑠). 

 

Thus, we have a system of 𝑁 + 1 equation and 𝑁 + 10 unknowns. The conditions 𝑢(𝛼1, 𝑡) =
𝑎,  𝑢(𝛼2, 𝑡) = 𝑏  are help us to eliminate the parameters 

𝛿−5, 𝛿−4, 𝛿−3, 𝛿−2, 𝛿−1, 𝛿𝑁+2, 𝛿𝑁+3, 𝛿𝑁+4 and 𝛿𝑁+5 so that we have a solvable matrix system of 

𝑁 + 1 equation and 𝑁 + 1 unknowns which is easily solved with Matlab packet program. To 

start the iteration of system, 𝛿0 has been determined by using the conditions in Eq. (2), so then 

we can obtain iteratively the 𝛿𝑠 at time 𝑡𝑠 = 𝑠𝛥𝑡. Also an inner iteration is used due to the 

system (6) is an implicit system according to 

the term 𝛿. 

4. Test problems 
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To demonstrate the efficiency of the proposed algorithm, two test problems, namely the motion 

of the single solitary wave and the interaction of two solitary waves, are studied. The 

conservation laws satisfied by the EW equation: 

 

 𝐶1 = ∫ 𝑢𝑑𝑥
+∞

−∞
, 𝐶2 = ∫ (𝑢2 + 𝜇(𝑢𝑥)

2)𝑑𝑥
+∞

−∞
, 𝐶3 = ∫ (𝑢3)𝑑𝑥

+∞

−∞
  (7) 

 

are calculated by use of the trapezoidal rule in the numerical experiments. The space 

convergence order of the method is determined by the following formula: 

 

 order =
𝑙𝑜𝑔|

(𝐿∞)ℎ𝑟
(𝐿∞)ℎ𝑟+1

|

𝑙𝑜𝑔|
ℎ𝑟
ℎ𝑟+1

|
.  (8) 

 

The accuracy of the method is calculated by the error norm: 

 

 𝐿∞ = 𝑚𝑎𝑥
𝑟
|𝑢𝑟 − 𝑈𝑟|. (9) 

 

4.1 Test problem 1 (Motion of single solitary wave) 

 

The exact solution of EW equation is 

 

 𝑢(𝑥, 𝑡) = 3𝑐𝑠𝑒𝑐ℎ2(𝑘[𝑥 − 𝑥̅0 − 𝑣𝑡])    (10) 

 

where 𝑘 = √
1

4𝜇
. The initial condition is worked out by taking 𝑡 = 0 in Eq. (10). We have used 

the values of the boundary conditions as zero.The values of the parameters are chosen as 𝑐 =
0.1, 𝑥̅0 = 10, 𝜀 = 1 and 𝜇 = 1. The motion of the obtained single solitary wave with these 

parameters has been come about the interval −15 ≤ 𝑥 ≤ 45 in time period 0 ≤ 𝑡 ≤ 80. The 

solution profiles are depicted in Figure 1 with ℎ = 0.03 and 𝛥𝑡 = 0.05. In this figure, it can 

be said that the peak of the solitary wave remained almost the same throughout the study period. 

 
Figure 1. The numerical solutions at the various times. 
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The distribution of absolute errors at 𝑡 = 80 with ℎ = 0.03 and 𝛥𝑡 = 0.05 is given in Figure 

2. 

 

 
Figure 2. Absolute error with 𝒉 = 𝜟𝒕 = 𝟎. 𝟎𝟓 for the proposed methods 

 

To make a comparison with some early studies, the absolute error norms and the calculated 

conservation invariants 𝐶1, 𝐶2, 𝐶3 of the proposed method and the previous studies are listed at 

the time 𝑡 = 80 and the space domain [0,30] in Table 1. From this table, it can be seen that 

the decic B-spline collocation method is one of the most accurate method. The analytical values 

of the conservation constants for a solitary wave with amplitude 3𝑐 and width depending on 𝑘 

can evaluated as in [2] by 

 

𝐶1 =
6𝑐

𝑘
, 𝐶2 =

12𝑐2

𝑘
+
48𝑘𝑐2𝜇

5
, 𝐶3 =

144𝑐3

5𝑘
. 

 

The numerical values of invariants obtained by the decic B-spline method are 𝐶1 = 1.19999, 
𝐶2 = 0.28800 and 𝐶3 = 0.05760 at the time 𝑡 = 80 while their analytical values obtained 

from Eq. (11) are 𝐶1 = 1.2, 𝐶2 = 0.288 and 𝐶3 = 0.0576 for 𝑐 = 0.1. 

 

Table 1. Invariants and error norms with 𝒄 = 𝟎. 𝟏, 𝜟𝒕 = 𝟎. 𝟎𝟓, 𝒉 = 𝟎. 𝟎𝟑, 𝟎 ≤ 𝒙 ≤ 𝟑𝟎 

Method 𝑳∞𝐱𝟏𝟎
𝟒 𝑪𝟏 𝑪𝟐 𝑪𝟑 

Decic B-spline collocation method 0.0737 1.19999 0.28800 0.05760 

Exponential cubic  
B-spline collocation (p=1) [11] 

0.54 1.1999 0.2880 0.05760 

Exponential cubic B-spline  
collocation (p=0.0000340714) [11] 

0.073 1.2000 0.2880 0.05760 

Quartic B-spline Galerkin method [6] 0.0737 1.20000 0.28800 0.05760 

Differential quadrature method [6] 0.07373 1.19999 0.28800 0.05760 

Meshless method with  
radial-basis functions [6] 

0.20296 1.20003 0.28801 0.05761 

Petrov-Galerkin method [2] 26.46 1.1910 0.2855 0.05582 

Cubic spline collocation method [13] 0.53 1.20005 0.28800 0.05760 

Cubic B-spline collocation method [10] 0.53 1.19998 0.28798 0.05759 

Lumped Galerkin method [8] 0.21 1.19995 0.28798 0.05759 

Galerkin method [18] 164.25 1.23387 0.29915 0.06097 

Cubic B-spline collocation method [14] 0.336 1.19999 0.28800 0.05756 

Exact  1.2 0.288 0.0576 
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4.2 Test problem 2 (Interaction of two solitary wave) 

 

Secondly, by using the following initial condition 

 

 𝑢(𝑥, 0) = 3𝜙1𝑠𝑒𝑐ℎ
2(𝑘1(𝑥 − 𝑥1 − 𝜙1)) + 3𝜙2𝑠𝑒𝑐ℎ

2(𝑘2(𝑥 − 𝑥2 − 𝜙2))  (11) 

 

the problem in which two single solitary waves is interacted, is considered. The boundary 

conditions for this problem are chosen as 𝑢(0, 𝑡) = 𝑢(80, 𝑡) = 0 . In consistent with the 

previous studies, the other parameters are taken as 𝜇 = 1, 𝜀 = 1, 𝑘1 = 0.5, 𝑘2 = 0.5, 𝑥1 =
10,  𝑥2 = 25,  𝜙1 = 1.5  and 𝜙2 = 0.75  in the calculations. The analytical values of the 

invariants can be found from Eq. (11) as 𝐶1 = 27, 𝐶2 = 8 and 𝐶3 = 218.7. The simulation of 

the interaction of two single solitary waves can observed in Figure 3 with the time step 𝛥𝑡 =
0.1 and the space step ℎ = 0.1 over the space domain [0,80]. From the figure, it can be seen 

that the rise of the two single solitary waves, then the waves interact and finally the waves occur 

their original shapes. The Table 2 is given to see the effect of choosing the smaller step sizes 

for the calculations of the invariants. From the table it is seen clearly that the obtained 

conservation constants by choosing smaller values for the time and space steps gives nearly the 

same values with the exact ones. 
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Figure 3. The simulation of the interacted wave solutions. 

 

 

Table 2. Invariants for the various values of the space and time steps 

 

𝒉 = 𝜟𝒕 = 𝟎. 𝟏    

𝒕 𝑪𝟏 𝑪𝟐 𝑪𝟑 

1 26.993302378591750 80.991136106784495 218.660792457023400 

5 26.985543145640346 80.954025171222781 218.494098806768280 

10 26.976201331621599 80.914847637768275 218.311510240538810 

15 26.970649371206846 80.941311146473225 218.365614712728900 

20 26.965596614631067 80.866647798397310 218.101358339337030 

25 26.956455573585203 80.814638952319768 217.879664665904900 

30 26.946745247721164 80.767859034837628 217.671712922420880 

𝒉 = 𝜟𝒕 = 𝟎. 𝟎𝟓    

𝒕 𝑪𝟏 𝑪𝟐 𝑪𝟑 

1 26.990461050320302 80.999371980781348 218.697544042151320 

5 26.989499238661029 80.994707811248304 218.676538542650550 

10 26.988249282271042 80.990557601268890 218.656042086919340 

15 26.987485867694875 81.000608829039905 218.684248795519240 

20 26.986763460419446 80.984584309319814 218.629651649602890 

25 26.985527466074423 80.977048015978198 218.598548488278770 

30 26.984220259670970 80.971057218965811 218.571956196134580 

𝒉 = 𝜟𝒕 = 𝟎. 𝟎𝟏    

𝒕 𝑪𝟏 𝑪𝟐 𝑪𝟑 

1 26.953994253516079 81.002573270696047 218.702757879260470 

5 26.952646451957293 81.002552372020247 218.702591702971490 

10 26.950797888136012 81.002573139408995 218.702589848684800 

15 26.948880619314313 81.003091871507038 218.704173167737140 

20 26.946887864441052 81.002563709534769 218.702396599911480 

25 26.944811921568093 81.002468848617525 218.701957922997790 

30 26.942652695479943 81.002451995919174 218.701735540488670 
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5. Conclusion 
 

The collocation finite element method based on the decic B-spline functions as trial functions 

for space discretization and Crank-Nicolson method for time discretization have been proposed 

to get numerical solution to the EW equation. By investigating the motion of the single solitary 

wave and the interaction of the two solitary waves problems to see the effectiveness and 

accurate of the proposed method, it is seen that the proposed method has the reliable results. 
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