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ABSTRACT 

This paper presents the application and performance comparison of PSO and ABC optimization techniques, for 

multi-objective design of power system stabilizers (PSSs) in the multi-machine power system. The design objective 
is to improve the power system stability. The PSSs parameters tuning problem is converted to an optimization 

problem with the time domain-based objective function and both PSO and ABC optimization techniques are used to 
search for optimal stabilizers parameters. The optimized stabilizers are tested on multi-machine electric power 

system subjected to different disturbances. The performance of both optimization techniques in terms of 

computational time, convergence rate and solution quality is compared. The eigenvalue analysis, nonlinear time-
domain simulation results, critical clearing times and some performance indices studies are introduced and compared 

in order to demonstrate the effectiveness of both optimization techniques in designing stabilizers, to enhance the 

dynamic stability of the system. What is more, the potential and superiority of the ABC algorithm over the PSO 
algorithm are verified.  

Keywords: Artificial Bee Colony (ABC) algorithm; Particle Swarm Optimization (PSO); PSS design; dynamic 

stability; multi-machine power system. 

 

1. INTRODUCTION 

Two of the most significant design standards for multi-

machine power systems are transient stability and 

damping of electromechanical modes of sustained 

oscillation [1]. Stability of power systems is known to 

be one of the most significant aspects in electric system 

operation. This stems from the fact that the power 

system must keep frequency and voltage levels in the 

desired level, under any disturbance, such as a swift rise 

in the load, loss of one generator or switching out of a 

transmission line, in the course of a fault. There have 

been spontaneous system oscillations at very low 

frequencies in order of 0.2-3.0 Hz, since the 

enhancement of interconnected large electric power 

systems. Once they commenced, they would carry on 

for some time.  Under some circumstances, they would 

keep on growing, triggering system separation in case 

of deficient damping. In addition, low frequency 

oscillations set forth limitations on the power-transfer 

capability [2]. To boost system damping, the generators 

are outfitted with power system stabilizers (PSSs) 

which provide supplementary feedback stabilizing 

signals in the excitation systems [3].  

In the last two decades, several heuristic optimization 

techniques have been proposed in order to solve 

difficult optimization problems. Most of these methods 
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are inspired by nature and can be classed in two 

important categories that are evolutionary algorithms 

and swarm intelligence. Swarm intelligence [4], a 

branch of natural inspired algorithms, focuses on the 

behavior of insect in order to develop some heuristics 

algorithms. Particle Swarm Optimization (PSO) and 

Artificial Bee Colony (ABC) techniques are new 

members of swarm intelligence. These techniques are 

plain, sturdy and able to solve difficult combinatorial 

optimization problems.  

PSO is one of the recent swarm intelligence methods, 

which is based on natural flocking and swarming 

behavior of birds. It was first proposed by Kennedy and 

Eberhart in 1995 [4]. This algorithm gives high quality 

solutions within shorter calculation time and stable 

convergence characteristics. ABC algorithm is a 

relatively new computation method introduced by 

Karaboga [5]. It is formed on the basis of the foraging 

behavior of honey bee swarms. Since its invention in 

2005, the ABC, considering its plainness and simplicity 

of implementation, has held the attention and has been 

employed to settle several practical optimization 

problems. Both PSO and ABC optimization techniques 

are alike in a way that these two techniques are 

population-based search methods and they search for 

the optimal solution by updating iterations. As the two 

approaches are expected to find a solution to a 

designated objective function but use diverse strategies 

and computational effort, it is apposite to contrast their 

performance.  

Broadly, the aim of this paper is to compare the 

computational effectiveness and efficacy of both PSO 

and ABC optimization techniques for designing PSSs 

for power system dynamic stability improvement in 

multi-machine power system. The design problem is 

formulated as a multi-objective optimization problem 

and PSS parameters are adjusted using PSO and ABC 

algorithms. The performance of the PSO-based PSS 

(PSOPSS) and ABC-based PSS (ABCPSS) are tested 

on the 10-machine 39-bus New England system. The 

performance of both optimization techniques with 

respect to computational time, convergence rate and 

solution quality are compared. Eigenvalue analysis, 

nonlinear time-domain simulation, critical clearing 

times and some performance indices studies have been 

carried out to assess the effectiveness of the ABCPSS 

and PSOPSS under severe disturbances. In addition, the 

performance of the ABCPSS is compared to PSOPSS 

through the results of these studies. 

2. PROBLEM STATEMENT 

2.1. Power System Model 

In this study, the flux-decay model with static exciter is 

employed to discuss the synchronous machines. The 

dynamics of each synchronous machine is formulated as 

[6]: 
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2.2. Power System Stabilizers (PSS) 

A widely used conventional power system stabilizer 

(CPSS) is considered throughout the study, as shown in 

Fig. 1. CPSS comprises three units: phase compensation 

unit, washout filter, and gain unit. The PSS output 

signal 
SV  is a voltage added to the generator exciter 

input. The rotor speed deviation   is normally 

employed as the PSS input signal [7]. The high pass 

washout filter is employed to reset the steady state 

offset in the PSS output. The value of time constant (

WT ) is usually fixed and is considered as 10 s in this 

study. Also 
1 4T T  and 

PK  show the time constants 

and the gain of two stages lead-lag compensator 

respectively [7]. The optimized parameters are 
PK , 

1T , 

2T , 
3T , and 

4T  which are referred to as decision 

variables in the optimization problem. 

2.3. Linearized System Model 

In the design of PSSs, the linearized incremental models 

around an equilibrium point are typically used [6]. By 

the linearized of the power system equations, explained 

in [6], and by the adding of PSS equations, the 

linearized power system model yield the following state 

equation. 

x x u    A B                                                          (6) 

where, A  is the state variables matrix and B  is the 

input matrix. The state vector x  is the vector of the 

state variables and u  is the vector of input variables. 

In this study, 
T

q fdx E E           and u  

is the PSS output signals. Here, the goal of PSS design 

is to place the eigenvalues of matrix A  in the left half 

of the complex plane. Eigenvalues of the system can be 

evaluated from matrix A : 

i i ij                                                                   (7) 

where 1,2, ,i n  and n denotes the total number of 

eigenvalues. The eigenvalues may be real or complex. 

i  and i  are the real and imaginary parts of the ith 

eigenvalue. Then, the damping ratio (
i ) of the ith 

eigenvalue is defined with the following equation: 
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2.4. Objective Function and PSS tuning 

An objective function that diminishes the overshoots 

and settling time of the system response is used in this 

paper. It can be formulized as: 

2

1
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where, NS , m , 
simt  and 

1i 
 are the total number of 

scenarios, number of generators, the time range of the 

simulation and the relative rotor speed of the ith 

generator relative to the first generator. The design 

problem can be formulated as the following constrained 

optimization problem, where the constraints are the PSS 

parameter bounds:  

Minimize J  subject to 

min max

P P PK K K   

min max

1 1 1T T T   

min max

2 2 2T T T                                                           (10) 

min max

3 3 3T T T   

min max

4 4 4T T T   

Typical ranges of the optimized parameters are 

 0.01 100  for 
PK  and  0.01 1.0  for 

1 4T T  [6]. 

Considering the objective function given in (9), the 

proposed approach employs PSO and ABC techniques 

to solve this optimization problem and search for an 

optimal set of PSS parameters. 
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Fig. 1. Block diagram of CPSS parameter optimization using PSO and ABC algorithms. 

 

3. OVERVIEW OF PSO AND ABC 

OPTIMIZATION TECHNIQUES 

3.1. Particle Swarm Optimization (PSO) 

The PSO was developed by Kennedy and Eberhart [4] 

as a swarm-based stochastic optimization method, 

which is based on social behavior of bird flocking or 

fish schooling. This method is akin to evolutionary 

computing in several aspects, but the PSO does not 

have any evolution operators. The standard PSO 

algorithm employs a population of particles. The 

particles fly through the D-dimensional domain space of 

the function to be optimized. The position vector and 

the velocity vector of the ith particle in the D-

dimensional search space can be defined as 

1 2( , , , )i i i iDX x x x  and 1 2( , , , )i i i iDV v v v , 

respectively. Each particle updates its position and 

velocity based on its own best position (pbest) and the 

best position of the whole swarm (gbest). At each time 

step, after finding the two best values, the particle 

updates its velocity and position according to its flying 

trajectory by the following [8]:  
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where 1,2, ,i NP  and NP is the size of the swarm, 

w  represents inertia weight decreased linearly for each 

iteration, 
1c  and 

2c  are learning factors which 

determine the relative influence of cognitive and social 

components, respectively. 
1r  and 

2r  are random 

numbers in the range [0,1] . t

idx , 
t

idv  and t

idpbest  are the 

position, velocity and the personal best of ith particle in 

dth dimension for the tth iteration, respectively. The 
t

dgbest  is the dth dimension of best particle among all 

particle in the swarm for the tth iteration.  

3.2. Artificial Bee Colony (ABC)  

In ABC algorithm, the colony of artificial bees contains 

three groups of bees: employed bees, onlookers and 

scouts [9]. First half of the colony contains the 

employed artificial bees and the second half comprises 

the onlookers. In other words, the number of employed 

bees is equivalent to the number of food sources [9]. 

Onlooker bees wait on the dance area and share the 

information on the food sources found by employed 

bees for making a decision to choose better ones and 

explore around them. If some food sources are not 

improved for several cycles, the scout bees carry out 

random searches for discovering new sources. The 

position of a food source represents a possible solution 

to the optimization problem and the nectar amount of a 
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food source indicates the fitness of the associated 

solution, calculated as follows [10, 11]:  

1

1
i

i

fit
f




                     (13) 

An onlooker bee evaluates the fitness values from all 

the solutions of the employed bees and chooses a 

solution with a probability value associated with that 

solution,
ip , which is calculated by the following 

expression (14) [10, 11]:  

1

i
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
                             (14) 

where SN  is the number of food sources equivalent to 

the number of employed bees, and 
ifit  is the fitness of 

the solution given in (13). To produce a candidate food 

position from the old one in memory, the ABC utilizes 

the following equation [10, 11]: 

( )ij ij ij ij kjv x x x                              (15) 

where {1,2, , }k SN  and {1,2, , }j D  are 

randomly chosen indices, kjx  is a randomly chosen 

solution different from ijx , ijv  is the new solution, ij  

is a random number in the range [ 1,1]  and D  is the 

number of optimization parameters.  

In the ABC algorithm, a position cannot be enhanced 

further by a predetermined number of iteration, then 

that food source is expected to be abandoned. The 

predetermined number of iteration is a significant 

control parameter of the ABC algorithm. The scout bees 

replace new food sources, which are produced 

irregularly in their dynamic ranges, with the ones that 

worker bees abandon. The scout bees are going to steer 

for the new food location by Eq. (16) [10, 11] 

min, max, min,(0,1)( )ij j j jx x rand x x                           (16) 

where min, jx  and max, jx  are the lower and upper limits 

of the jth optimization variable respectively and 

(0,1)rand  denotes a uniformly distributed random 

number within [0,1] .  
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Fig. 2. (a) Flowchart of the PSO algorithm. (b) Flowchart of the ABC algorithm. 
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Table 1. Parameter settings of PSO and ABC algorithms. 

Parameters PSO ABC 

Number of particles/bees 20 20 

1c  and 
2c  2.0 and 2.0 Not required 

w  
Linearly decreasing from 0.9 

to 0.4 
Not required 

Limit number Not required 100 

 

3.3. Application of PSO and ABC optimization 

techniques 

In time domain simulation of multi-machine power 

systems, Runge-Kutta 4 technique is used for numerical 

integration of the differential equations and step of 

integration is chosen as 0.01t   s. PSO and ABC 

algorithms are simulated in an Intel Core processor with 

2.10 GHz frequency and 2.00 GB RAM using 

MATLAB 7.11.0.  

The computational flow charts of PSO and ABC 

algorithms are shown in Fig. 2 (a) and (b), respectively. 

While applying PSO and ABC, it is required to specify 

the number of parameters. A suitable choice of the 

parameters impacts the speed of convergence of the 

algorithm. Table 1 demonstrations the parameters 

employed for PSO and ABC optimization techniques. 

Optimization is terminated by the pre-specified number 

of iterations for both PSO and ABC. It should be noted 

that PSO and ABC algorithms are run several times and 

then the optimal set of PSS parameters is selected. 

4. RESULTS AND DISCUSSIONS 

4.1. Test System and PSS design 

The 10-machine 39-bus New England power system 

shown in Fig. 3 is considered in this study. This is also 

the system appearing in [12, 13] and widely used in the 

literature. Although the number and location of PSSs 

required can be investigated [14], for illustration and 

comparison purposes, it is assumed that all generators 

are equipped with PSSs. In this example, the optimized 

parameters are 
PiK , 

1iT , 
2iT , 

3iT , and 
4iT , 

1,2 ,10i   and the number of optimized parameters is 

50. It is significant to underline that the ABC and PSO 

algorithms are run a number of times and then optimal 

set of PSS parameters is selected. The PSO and ABC 

algorithms are applied to search for the settings of these 

parameters so as to optimize the multi-objective 

function considered. The optimization was performed 

with the total number of iterations set to 200. The final 

values of the optimized parameters of the PSO and 

ABC algorithms are given in Table 2.  
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Fig. 3. New England 10-machine 39-bus power system. 
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Table 2. PSS parameters by using PSO and ABC algorithms. 

Method Gen. PK  
1T  

2T  
3T  

4T  

PSO 

G1 100.00 1.0000 0.3865 1.0000 0.0729 

G2 77.505 1.0000 0.1006 0.6323 0.7681 

G3 31.518 0.8080 0.0987 0.9167 0.5595 

G4 79.386 1.0000 0.0164 1.0000 0.8549 

G5 91.917 0.8012 0.0100 0.4007 0.3878 

G6 24.653 0.6063 0.0433 0.5844 0.3418 

G7 9.9557 1.0000 0.1066 1.0000 0.2686 

G8 14.569 0.2474 0.2542 0.9103 0.1161 

G9 14.225 0.8627 0.0297 0.9479 0.0970 

G10 65.739 0.2626 0.6021 0.2150 0.8810 

ABC 

G1 100.00 1.0000 0.2870 0.5930 0.0186 

G2 43.233 1.0000 0.1733 0.6999 0.2715 

G3 24.755 1.0000 0.4483 0.9283 0.0100 

G4 71.977 0.3358 0.0100 0.3585 0.0474 

G5 76.217 0.5729 0.2584 0.9718 0.1517 

G6 68.883 1.0000 0.2451 0.8981 0.4970 

G7 65.874 0.5619 0.0541 0.8959 0.5687 

G8 100.00 0.3321 0.0232 0.9525 0.0100 

G9 35.221 0.8939 0.3800 1.0000 0.0100 

G10 25.311 0.0644 1.0000 0.1804 0.9503 

 

4.1.1. Convergence test and computation time  

Fig. 4 shows the convergence of ABC and PSO 

methods for New England power system. It can be 

inferred from Fig. 4 that PSOPSS takes around 181 

iterations to converge, whereas ABCPSS takes only 

about 159 iterations. It is observed that, ABC appears to 

attain its final parameter values in less iterations than 

the PSO.  

Table 3 shows a comparison between ABC and PSO 

algorithms with regard to the computation time. As it 

can be seen from the table, the computation time of 

ABC is less than PSO method. This clearly shows that 

the ABC has got a faster convergence. Thus, systems 

employing ABC method can save considerable amount 

of time and therefore are feasible for online 

optimization with high speed processors. 

 

Fig. 4. Objective function variation for PSO and ABC optimization techniques.
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Table 3. Computation time comparison of algorithms. 

Algorithm 
Computation Time  

(seconds per iteration)  

PSO 269.07 

ABC 239.82 

 

4.2. Eigenvalue Analysis  

The electromechanical mode eigenvalues and the 

corresponding damping ratios without PSSs and with 

PSSs (PSOPSS and ABCPSS) are shown in Table 4. 

Eigenvalue analysis shows that the system has nine 

electromechanical modes of oscillations and some of 

them are classified as inter-area modes. It can be seen 

that without PSS, both local and inter-area modes are 

poorly damped. It is quite clear that the system 

eigenvalues associated with the electromechanical 

modes have been successfully shifted to the left of 

0.5s    line with the proposed ABCPSS. This 

demonstrates that the proposed ABCPSS outperform 

the PSOPSS and the system damping of 

electromechanical modes is significantly enhanced. 

This confirms the superiority of ABC approach to 

search for the optimal PSS parameters.    

 

Table 4. Eigenvalues and damping ratios of the electromechanical modes. 

Without PSS PSOPSS ABCPSS 

0.0477 7.0372j  , 0.0068 0.8797 7.4746j  , 0.1169 1.1192 7.3737j  , 0.1501 

0.1508 6.1434j  , 0.0245 0.7894 7.8508j  , 0.1001 1.0475 7.7738j  , 0.1335 

0.1514 7.0925j  , 0.0213 1.3360 6.4736j  , 0.2021 1.5153 6.5719j  , 0.2247 

0.2220 8.3659j  , 0.0265 0.7321 7.0540j  , 0.1032 0.9351 7.9121j  , 0.1178 

0.1898 5.8445j  , 0.0324 0.9067 9.0267j  , 0.0999 1.4568 9.6813j  , 0.1488 

0.1556 6.7077j  , 0.0232 0.4198 8.7515j  , 0.0479 2.0648 5.0450j  , 0.3788 

0.2351 8.5438j  , 0.0275 1.4993 5.2185j  , 0.2761 2.3388 5.4836j  , 0.3923 

0.1813 8.5091j  , 0.0213 0.7529 3.1250j  , 0.2342 0.8463 2.8343j  , 0.2861 

0.1041 3.5444j  , 0.0294 0.5538 0.9009j  , 0.5237 0.6633 0.6885j  , 0.6938 

 

 

Fig. 5. The relative rotor angle of 8G  under scenario 1. 

4.3. Nonlinear Time-Domain Simulation  

To evaluate and compare the effectiveness of the PSO 

and ABC based tuned PSSs using the proposed multi-

objective function, two different severe fault scenarios 

are considered. They can be described as follows:  

 Scenario 1: In this scenario, a 6-cycle three-

phase fault at 1t   s, on bus 2 at the end of 

line 2-3 is considered for the nonlinear time 

simulations. The fault cleared without line 

tripping and the original system is restored 

upon the clearance of the fault.  
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The simulation results on different generators (e.g. 
8G  

and 
10G ) are presented in Figs. 5-8. Each figure 

contains three plots for without PSS (dotted line), 

PSOPSS (dashed line) and ABCPSS (solid line). It is 

clear from the figures that, the system is oscillatory 

without PSS under this severe disturbance. Results also 

demonstrate the effectiveness of the PSS in a large 

power system. According to Figs. 5-8 tuning PSS 

parameters by ABC algorithm provides suitable results 

in more favorable damping for network compared to the 

use of PSOPSS. 

 

 

Fig. 6. The relative rotor angle of 
10G  under scenario 1. 

 

Fig. 7. The rotor speed deviation of 8G  under scenario 1. 

 

Fig. 8. The rotor speed deviation of 10G  under scenario 1. 
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 Scenario 2: In this scenario, additional severe 

disturbance is taken into consideration; that is, 

a 3-cycle three-phase fault is applied on bus 

22 at the end of line 21-22 at 1t   s. The 

fault is cleared by permanent tripping of the 

faulted line.   

The relative rotor angles and the rotor speed deviations 

of the different generators (e.g. 
6G  and 

7G ), under the 

proposed severe scenario are shown in Figs. 9-12. It 

clearly can be seen that the system performance with 

the proposed ABCPSS is much superior to that of 

proposed PSOPSS, as well as the oscillations are 

damped out at much higher speed. What is more, the 

proposed ABCPSS are rather effective in damping out 

the local modes and the inter-area modes of oscillations. 

This shows the potential and superiority of the proposed 

ABCPSS to achieve an optimal set of PSS parameters.  

 

 

Fig. 9. The relative rotor angle of 
6G  under scenario 2. 

 

Fig. 10. The relative rotor angle of 
7G  under scenario 2. 

4.3.1. Comparison of critical clearing time  

For a synchronous generator, the critical clearing time is 

defined as the maximum allowed time duration to clear 

the fault such that the system maintains transiently 

stable [15]. For Scenario 1 and Scenario 2, the critical 

clearing times in s (which is determined by solving the 

swing equation beyond which the system losses 

synchronism) are provided in Table 5. From the table it 

is evident that the proposed ABCPSS have better 

performance with regard to critical clearing time 

compared to the proposed PSOPSS.  

 

Table 5. Comparison of critical clearing times. 

Fault Type Faulty Bus Line 
Critical clearing times (s) 

Without PSS PSOPSS ABCPSS 

Without line tripping 2 2-3 0.191 0.203 0.206 

Tripping of the faulted line 22 21-22 0.071 0.101 0.106 
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Fig. 11. The rotor speed deviation of 
6G  under scenario 2. 

 

Fig. 12. The rotor speed deviation of 7G  under scenario 2. 

 

4.3.2. Comparison of performance indices of time 

response  

To demonstrate the performance of PSO and ABC 

optimization techniques, four performance indices that 

indicate the settling time and overshoots are presented 

and assessed. These indices are defined as [16] 

ISE: Integral of Squared Error:                                 
2
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0

2

10000 10000 ( )  
sim

m t

i

i

PI ISE dt 


                                  (17) 

IAE: Integral of Absolute Error:                               2 2 1
0

2

100 100 | | 
sim

m t

i

PI IAE dt 


                                          (18) 

ITAE: Integral of Time-Weighted Absolute Error:   3 1
0

2

100 100 | | 
sim

m t

i

i

PI ITAE t dt 


                       (19) 

ITSE: Integral of Time-Weighted Squared Error:      
2

4 1
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PI ITSE t dt 


                           (20)

where m  is the number of machines and simt  is the 

simulation time. It is noteworthy to mention that the 

lower the value of these indices is, the better the system 

response with reference to time-domain characteristics. 

Numerical results of the system performance for 

different fault conditions are given in Table 6. As can 

be seen from this table the ABC-based stabilizer 

(ABCPSS) has a better performance than the PSOPSS 

for all scenarios. 
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Table 6. Values of the performance indices. 

Fault case Method 1PI  
2PI  

3PI  
4PI  

Scenario 1 
PSO 2.0422 7.5948 15.0875 2.4653 

ABC 1.8602 6.6857 10.8873 1.9913 

Scenario 2 
PSO 1.8684 8.0826 19.9838 3.0337 

ABC 1.6709 7.0850 14.9327 2.4337 

 

5. CONCLUSION 

In this research, we have compared the performance of 

PSO and ABC optimization techniques for optimal 

design of multi-machine power system stabilizers 

(PSSs). To achieve optimal tuning of PSS parameters, 

the design problem of stabilizers is formulated as an 

optimization problem with the time domain-based 

objective function and is solved by both PSO and ABC 

optimization techniques. The proposed stabilizers 

(PSOPSS and ABCPSS) are applied to a multi-machine 

power system with different disturbances. Following 

conclusions can be drawn about the performance 

comparison of both the algorithms (ABC and PSO).  

1. Compared with the PSO technique, the ABC 

algorithm demonstrates its superiority in computational 

complexity, convergence rate, solution quality and 

computational time.  

2. The eigenvalue analysis reveals that the ABCPSS 

improves the damping characteristics of 

electromechanical modes. 

3. The nonlinear simulation results show performance 

of the ABC-based PSS in improving the critical clearing 

time of the system and reducing low-frequency 

oscillations under different disturbances. 

4. The system performance characteristics in terms of 

ISE, IAE, ITAE and ITSE indices reveal that compared 

with the PSO-based PSS, the settling time and speed 

deviations of the machine are greatly reduced by 

applying the ABC-based PSS.  

From the results obtained in this work, it can be 

concluded that performance of ABC algorithm is better 

than PSO algorithm although it uses less control 

parameters and it can be efficiently used for solving 

optimization problems in power systems. 
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