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ABSTRACT 

In this paper, the complex q-Balázs-Szabados-Kantorovich operators are defined, and a convergence result and an 
upper quantitative estimate of these operators are given. 
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1. INTRODUCTION 

The applications of q-calculus in the approximation theory have become one of the main area of research. Firstly, we 

recall some basic definitions used in q-calculus. Details can be found in [1, 10, 2]. For any non-negative integer r, the q-

integer of the number r is defined by 

[𝑟]𝑞 = {

1 − 𝑞𝑟

1 − 𝑞
𝑖𝑓 𝑞 ≠ 1

𝑟 𝑖𝑓 𝑞 = 1,

 

where q is a fixed positive real number. The q-factorial is defined by 

[𝑟]𝑞! = {
[1]𝑞[2]𝑞 … [𝑟]𝑞 𝑖𝑓 𝑟 = 1,2, …

1 𝑖𝑓 𝑟 = 0,
 

For integers n, r with 0 ≤ 𝑟 ≤ 𝑛, the q-binomial coeficients are defined by 

[
𝑛
𝑟

]
𝑞

=
[𝑛]𝑞!

[𝑟]𝑞! [𝑛 − 𝑟]𝑞!
. 
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The q-derivative operator is defined by 

𝐷𝑞[𝑓(𝑧)] = {

𝑓(𝑧) − 𝑓(𝑞𝑧)

(1 − 𝑞)𝑧
𝑖𝑓 𝑧 ≠ 0

𝑓′(0) 𝑖𝑓 𝑧 = 0.

 

It is not very difficult to see that 𝑙𝑖𝑚𝑞→1𝐷𝑞[𝑓(𝑧)] = 𝑓′(𝑧) if the function f is differentiable at z. Suppose that 0 <  𝑎 <

 𝑏. Further we have 

𝐷𝑞[𝑓(𝑧)𝑔(𝑧)] = 𝑓(𝑞𝑧)𝐷𝑞[𝑔(𝑧)] + 𝑔(𝑧)𝐷𝑞[𝑓(𝑧)], 

𝐷𝑞[𝑓(𝑧)𝑔(𝑧)] =  𝑓(𝑧)𝐷𝑞[𝑔(𝑧)] + 𝑔(𝑞𝑧)𝐷𝑞[𝑓(𝑧)], 

which is often referred to as the q-product rule. The definite q-integral is defined by 

∫ 𝑓(𝑡)𝑑𝑞𝑡 = (1 − 𝑞)
𝑏

0

𝑏 ∑ 𝑓(𝑞𝑗𝑏)𝑞𝑗

∞

𝑗=0

 

and 

∫ 𝑓(𝑡)𝑑𝑞𝑡 =
𝑏

𝑎 ∫ 𝑓(𝑡)𝑑𝑞𝑡
𝑏

0
− ∫ 𝑓(𝑡)𝑑𝑞𝑡

𝑎

0
, 

for 0 < 𝑞 < 1. 

Bernstein type rational functions are defined by K. Balázs [3]. K. Balázs and J. Szabados modified and studied the 

approximation properties of these operators [4]. The q-analogue of Balázs -Szabados operators is defined by O. Dogru [6]. 

The rational complex Balázs-Szabados operators were defined by Gal in [8]. He studied the approximation properties of 

these operators on compact disks. In [9], the complex q- Balázs -Szabados operators were defined as follows 

𝑅𝑛(𝑓; 𝑞, 𝑧) =
1

∏ (1+𝑞𝑠𝑎𝑛𝑧)𝑛−1
𝑠=0

∑ 𝑞𝑗(𝑗−1)/2𝑓 (
[𝑗]𝑞

𝑏𝑛
)𝑛

𝑗=0 [
𝑛
𝑗 ]

𝑞
(𝑎𝑛𝑧)𝑗

     (1.1) 

and the approximation properties of these operators were studied on compact disks. In [13] and in [14], complex bivariate 

Balázs-Szabados operators and q- Balázs-Szabados operators of tensor product kind were studied on compact polydisks, 

respectively. 

2. CONSTRUCT OF THE OPERATORS AND AUXILIARY RESULTS 

In this part, we define the reel and complex q- Balázs-Szabados-Kantorovich operators, and we give some results for these 

operators. 

Definition 1. We define the reel q- Balázs-Szabados-Kantorovich operators as follows 

𝑅̃𝑛(𝑓; 𝑞, 𝑥) =
𝑏𝑛

∏ (1 + 𝑞𝑠𝑎𝑛𝑥)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞
𝑗(𝑗−1)

2 [
𝑛
𝑗 ]

𝑞
( 𝑎𝑛𝑥)𝑗 ∫ 𝑓(𝑡)𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

,

𝑛

𝑗=0

 

where 𝑓: [0, ∞) → ℝ  is a continuous function, 𝑥 ∈ [0, ∞),  𝑎𝑛 = [𝑛]𝑞
𝛽−1

,  𝑏𝑛 = [𝑛]𝑞
𝛽

 for 𝑞 ∈  (0, 1], 0 < 𝛽 ≤
2

3
  and 

 𝑛 ∈ ℕ. 

The operators 𝑅̃𝑛  are lineer and positive. 

Lemma 1. The following equalities hold for the operators 𝑅̃𝑛 

𝑅̃𝑛(1; 𝑞, 𝑥) = 1,          (2.1) 

𝑅̃𝑛(𝑡; 𝑞, 𝑥) =
𝑥

1+𝑎𝑛𝑥
+

1

[2]𝑞𝑏𝑛
,         (2.2) 

𝑅̃𝑛(𝑡2; 𝑞, 𝑥) =
(1−

𝑎𝑛
𝑏𝑛

)𝑞𝑥2

(1+𝑎𝑛𝑥)(1+𝑎𝑛𝑞𝑥)
+

(𝑞+[2]𝑞+[3]𝑞)𝑥

[3]𝑞𝑏𝑛(1+𝑎𝑛𝑥)
.                     (2.3) 

Proof. Using the results of following integrals 
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∫ 𝑑𝑞𝑡 =
𝑞𝑗

𝑏𝑛

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

, 

 

∫ 𝑡𝑑𝑞𝑡 =
𝑞𝑗

[2]𝑞𝑏𝑛
2

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

(1 + [2]𝑞[𝑗]𝑞), 

 

∫ 𝑡2𝑑𝑞𝑡 =
𝑞𝑗

[3]𝑞𝑏𝑛
3

[𝑗+1]𝑞

𝑏𝑛
[𝑗]𝑞

𝑏𝑛

{1 + (𝑞 + [2]𝑞)[𝑗]𝑞 + [3]𝑞[𝑗]𝑞
2}, 

 

after simple calculation, the desired equalities obtained. 

Let 𝑞 = (𝑞𝑛) be a sequence satisfying the following conditions: 

lim𝑛→∞ 𝑞𝑛 = 1 and lim𝑛→∞ 𝑞𝑛
𝑛 = 𝑐 for 0 ≤ 𝑐 < 1.                    (2.4) 

Lemma 2. Let 𝑞𝑛 be a sequence satisfying the conditions 2.4 with 𝑞𝑛 ∈ (0, 1]  for all  𝑛 ∈ ℕ . If 𝑓: [0, ∞) → ℝ  is a 

continuous function, then the sequence of the operators (𝑅̃𝑛(𝑓; 𝑞𝑛, 𝑥))
𝑛≥𝑛0

 converges f on [0, r] uniformly for 𝑛0 ≥ 2  

and 
1

2
< 𝑟 <

[𝑛0]1−𝛽

2
. 

Proof. Using 2.1, 2.2 and 2.3, the lemma can be simply proved from Korovkin theorem (see [12]). 

Definition 2. We define the complex q-Balázs-Szabados-Kantorovich operators as follows 

𝑅̃𝑛(𝑓; 𝑞, 𝑧) =
𝑏𝑛

∏ (1 + 𝑞𝑠𝑎𝑛𝑧)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞𝑗(𝑗−1)/2 [
𝑛
𝑗 ]

𝑞
( 𝑎𝑛𝑧)𝑗 ∫ 𝑓(𝑡)𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

,

𝑛

𝑗=0

 

where 𝑓: 𝐷𝑅 ∪ [𝑅, ∞) → ℂ  is uniformly continuous and bounded on [0, ∞), 𝐷𝑅 = {𝑧 ∈ ℂ: |𝑧| < 𝑅} with R >0, 𝑧 ∈ ℂ with 

𝑧 ≠ −
1

𝑞𝑠𝑎𝑛
 for 𝑠 = 0,1, … , 𝑛 − 1, 𝑎𝑛 = [𝑛]𝑞

𝛽−1
, 𝑏𝑛 = [𝑛]𝑞

𝛽
 for 𝑞 ∈  (0, 1], 0 < 𝛽 ≤

2

3
 and 𝑛 ∈ ℕ. 

The complex q-Balázs-Szabados-Kantorovich operators 𝑅̃𝑛(𝑓; 𝑞, 𝑧)  are well defined, linear, and these operators are 

analytic for all 𝑛 ≥ 𝑛0 and |𝑧| ≤ 𝑟 < [𝑛0]𝑞
1−𝛽

. 

Let us denote with ‖𝑓‖𝑟 = max{|𝑓(𝑧)| ∈ ℝ: 𝑧 ∈ 𝐷̅𝑟} the norm of f in the space of continuous functions on 𝐷̅𝑟 and with 
‖𝑓‖𝐵[0,∞) = 𝑠𝑢𝑝{|𝑓(𝑥)| ∈ ℝ: 𝑥 ∈ [0, ∞) } the norm of f in the space of bounded functions on [0, ∞) . 

Also, the many results in this study are obtained under the condition that 𝑓: 𝐷𝑅 ∪ [𝑅, ∞) → ℂ  is analytic in 𝐷𝑅 for r < R, 

which assures the representation 𝑓(𝑧) = ∑ 𝑐𝑘𝑧𝑘∞
𝑘=0  for all 𝑧 ∈ ℂ. 

Lemma 3. Let be 𝑛0 ≥ 2, 0 < 𝛽 ≤
2

3
. If f  is uniformly continous on 𝐷𝑅 ∪ [𝑅, ∞), bounded on [0, ∞) and analytic in 𝐷𝑅, 

then 𝑅̃𝑛(𝑓; 𝑞, 𝑧) = ∑ 𝑐𝑘𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)∞
𝑘=0  for all 𝑧 ∈ 𝐷̅𝑟 , where 𝑒𝑘(𝑧) = 𝑧𝑘 . 

Proof. For any  𝑚 ∈ ℕ, we define 

𝑓𝑚(𝑧) = ∑ 𝑐𝑘𝑒𝑘(𝑧)∞
𝑘=0  if |𝑧| ≤ 𝑟 and 𝑓𝑚(𝑧) = 𝑓(𝑧) if 𝑧 ∈ (𝑟, ∞). 

From hypothesis on f, it is clear that each 𝑓𝑚 is bounded on [0, ∞), that is, there exist 𝑀𝑓𝑚
 >0 with  |𝑓𝑚(𝑧) | ≤ 𝑀𝑓𝑚

, which 

implies that 

 

|𝑅̃𝑛(𝑓𝑚; 𝑞, 𝑧)| ≤
𝑏𝑛

∏ (1 − 𝑞𝑠𝑎𝑛|𝑧|)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞
(𝑗−1)𝑗

2

𝑛

𝑗=0

[
𝑛
𝑗 ]

𝑞
(𝑎𝑛|𝑧|)𝑗 |∫ 𝑓𝑚(𝑡)𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

| 
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                      ≤
𝑏𝑛

∏ (1−𝑞𝑠𝑎𝑛𝑟)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞
(𝑗−1)𝑗

2𝑛
𝑗=0 [

𝑛
𝑗 ]

𝑞
(𝑎𝑛𝑟)𝑗 

                           × (1 − 𝑞) 𝑙𝑖𝑚𝑚→∞ ∑ 𝑞𝑘 |
[𝑗+1]𝑞

𝑏𝑛
𝑓𝑚 (

[𝑗+1]𝑞

𝑏𝑛
) −

[𝑗]𝑞

𝑏𝑛
𝑓𝑚 (

[𝑗]𝑞

𝑏𝑛
)|𝑚

𝑘=0  

                      ≤
𝑀𝑓𝑚  

∏ (1−𝑞𝑠𝑎𝑛𝑟)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞
(𝑗−1)𝑗

2𝑛
𝑗=0 [

𝑛
𝑗 ]

𝑞
(𝑎𝑛𝑟)𝑗([𝑗]𝑞 + [𝑗 + 1]𝑞) 

                      = 𝑀𝑓𝑚
 𝑀̃𝑟,𝑛,𝑞 < ∞, 

for all |𝑧| ≤ 𝑟. That is all 𝑅̃𝑛(𝑓𝑚; 𝑞, 𝑧) with 𝑛 ≥ 𝑛0, 𝑟 <
[𝑛0]𝑞

1−𝛽

2
, m∈ ℕ are well defined for all 𝑧 ∈ 𝐷̅𝑟. Defining 

𝑓𝑚,𝑘(𝑧) = ∑ 𝑐𝑘
∞
𝑘=0 𝑒𝑘(𝑧) if |𝑧| ≤ 𝑟 and 𝑓𝑚,𝑘(𝑧) =

𝑓(𝑧)

𝑚+1
 if 𝑧 ∈ (𝑟, ∞), 

it is clear that each 𝑓𝑚,𝑘  is bounded on [0, ∞)  and that 𝑓𝑚(𝑧) = ∑ 𝑓𝑚,𝑘(𝑧)𝑚
𝑘=0 . From the linearity of 𝑅̃𝑛, we have 

𝑅̃𝑛(𝑓𝑚; 𝑞, 𝑧) = ∑ 𝑐𝑘𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)𝑚
𝑘=0  for all |𝑧| ≤ 𝑟. 

It is suffices to prove that lim𝑚→∞ 𝑅̃𝑛(𝑓𝑚; 𝑞, 𝑧) = 𝑅̃𝑛(𝑓; 𝑞, 𝑧). For any fixed 𝑛 ∈ ℕ, 𝑛 ≥ 𝑛0  and |𝑧| ≤ 𝑟. We have the 

following inequality for all |𝑧| ≤ 𝑟 

|𝑅̃𝑛(𝑓𝑚; 𝑞, 𝑧) − 𝑅̃𝑛(𝑓; 𝑞, 𝑧)| ≤ ‖𝑓𝑚 − 𝑓‖𝑟𝑀̃𝑟,𝑛,𝑞 ,      (2.5) 

where 𝑀̃𝑟,𝑛,𝑞=
1 

∏ (1−𝑞𝑠𝑎𝑛𝑟)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞
(𝑗−1)𝑗

2
𝑛
𝑗=0 [

𝑛
𝑗 ]

𝑞
(𝑎𝑛𝑟)𝑗([𝑗]𝑞 + [𝑗 + 1]𝑞) < ∞. 

Using 2.5, lim𝑚→∞‖𝑓𝑚 − 𝑓‖𝑟 = 0 and the ‖𝑓𝑚 − 𝑓‖𝐵[0,∞) ≤ ‖𝑓𝑚 − 𝑓‖𝑟 , the proof of the lemma is completed. 

 

Lemma 4. We have the following recurrence formula for the complex q-Balázs-Szabados-Kantorovich operators 

𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧) =
[𝑘 + 1]𝑞

[𝑘 + 2]𝑞

(1 + 𝑞𝑛𝑎𝑛𝑧)𝑞𝑧

𝑏𝑛(1 + 𝑎𝑛𝑧)
𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)] 

   +
[𝑘+1]𝑞

[𝑘+2]𝑞
{

𝑞𝑧

1+𝑎𝑛𝑧
+

𝑞

𝑏𝑛
} 𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) +

1

[𝑘+2]𝑞
𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) 

where 𝑅𝑛 is q-Balázs-Szabados operators given in 1.1,  𝑛 ∈ ℕ, 𝑧 ∈ ℂ and 𝑘 = 0,1,2, …. 

Proof. Firstly, we calculate 𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)] 

𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)] = 𝐷𝑞 [
1

∏ (1 + 𝑞𝑠𝑎𝑛𝑧)𝑛−1
𝑠=0

] 𝑏𝑛 ∑ 𝑞−𝑗𝑞𝑗(𝑗−1)/2 [
𝑛
𝑗 ]

𝑞
( 𝑎𝑛𝑧)𝑗 ∫ 𝑡𝑘𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

𝑛

𝑗=0

 

                                   +
𝑏𝑛

∏ (1+𝑞𝑠+1𝑎𝑛𝑧)𝑛−1
𝑠=0

∑ 𝑞−𝑗𝑞𝑗(𝑗−1)/2 [
𝑛
𝑗 ]

𝑞
( 𝑎𝑛)𝑗𝑧𝑗−1[𝑗]𝑞 ∫ 𝑡𝑘𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛
[𝑗]𝑞

𝑏𝑛

𝑛
𝑗=0  

            (2.6) 

From the fundamental theorem of calculus, we calculate 

[𝑗]𝑞 ∫ 𝑡𝑘𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛

[𝑗]𝑞

𝑏𝑛

=
[𝑗]𝑞([𝑗 + 1]𝑞

𝑘+1 − [𝑗]𝑞
𝑘+1)

𝑏𝑛
𝑘+1[𝑘 + 1]𝑞

 

                               =
[𝑗]𝑞[𝑗+1]𝑞

𝑘+1−[𝑗]𝑞
𝑘+2

𝑏𝑛
𝑘+1[𝑘+1]𝑞

 

                               =

[𝑗+1]𝑞−1

𝑞
[𝑗+1]𝑞

𝑘+1−[𝑗]𝑞
𝑘+2

𝑏𝑛
𝑘+1[𝑘+1]𝑞
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                               =

[𝑗+1]𝑞
𝑘+2

𝑞
−

[𝑗+1]𝑞
𝑘+1

𝑞
−[𝑗]𝑞

𝑘+2

𝑏𝑛
𝑘+1[𝑘+1]𝑞

 

                               =

[𝑗+1]𝑞
𝑘+2

𝑞
−

[𝑗]𝑞
𝑘+2

𝑞
−

[𝑗+1]𝑞
𝑘+1

𝑞
+

[𝑗]𝑞
𝑘+1

𝑞
+

[𝑗]𝑞
𝑘+2

𝑞
−[𝑗]𝑞

𝑘+2−
[𝑗]𝑞

𝑘+1

𝑞

𝑏𝑛
𝑘+1[𝑘+1]𝑞

 

                                =
[𝑘+2]𝑞

[𝑘+1]𝑞

𝑏𝑛

𝑞

[𝑗+1]𝑞
𝑘+2−[𝑗]𝑞

𝑘+2

𝑏𝑛
𝑘+2[𝑘+2]𝑞

−
1

𝑞

[𝑗+1]𝑞
𝑘+1−[𝑗]𝑞

𝑘+1

𝑏𝑛
𝑘+1[𝑘+1]𝑞

−
(

1

𝑞
−1)[𝑗]𝑞

𝑘+2−
1

𝑞
[𝑗]𝑞

𝑘+1

𝑏𝑛
𝑘+1[𝑘+1]𝑞

 

                                =
[𝑘+2]𝑞

[𝑘+1]𝑞

𝑏𝑛

𝑞

[𝑗+1]𝑞
𝑘+2−[𝑗]𝑞

𝑘+2

𝑏𝑛
𝑘+2[𝑘+2]𝑞

−
1

𝑞

[𝑗+1]𝑞
𝑘+1−[𝑗]𝑞

𝑘+1

𝑏𝑛
𝑘+1[𝑘+1]𝑞

−
𝑞𝑗[𝑗]𝑞

𝑘+1

𝑞𝑏𝑛
𝑘+1[𝑘+1]𝑞

 

                                =
[𝑘+2]𝑞

[𝑘+1]𝑞

𝑏𝑛

𝑞
∫ 𝑡𝑘+1𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛
[𝑗]𝑞

𝑏𝑛

−
1

𝑞
∫ 𝑡𝑘𝑑𝑞𝑡

[𝑗+1]𝑞

𝑏𝑛
[𝑗]𝑞

𝑏𝑛

−
𝑞𝑗[𝑗]𝑞

𝑘+1

𝑞𝑏𝑛
𝑘+1[𝑘+1]𝑞

                (2.7) 

 

Applying 2.7 in 2.6, we obtain 

 

𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)] = −
𝑏𝑛

1 + 𝑞𝑛𝑎𝑛𝑧
𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) +

[𝑘 + 2]𝑞

[𝑘 + 1]𝑞

𝑏𝑛(1 + 𝑎𝑛𝑧)

𝑞𝑧(1 + 𝑞𝑛𝑎𝑛𝑧)
𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧) 

−
1 + 𝑎𝑛𝑧

𝑞𝑧(1 + 𝑞𝑛𝑎𝑛𝑧)
𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) −

1

[𝑘 + 1]𝑞

𝑏𝑛(1 + 𝑎𝑛𝑧)

𝑞𝑧(1 + 𝑞𝑛𝑎𝑛𝑧)
𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) 

               

            (2.8) 

Arranging 2.8, the desired recurrence formula is obtained. 

Lemma 5 ([9]). Let 𝑛0 ≥ 2, 0 < 𝛽 ≤
2

3
 and 

1

2
< 𝑟 < 𝑅 ≤ [𝑛0]𝑞

1−𝛽
. For all 𝑛 ≥ 𝑛0, |𝑧| ≤ 𝑟 and 𝑘 = 0,1,2, …, we have  

|𝑅𝑛(𝑒𝑘; 𝑞, 𝑧)| ≤ 𝑘! (20𝑟)𝑘. 

Considering Corallary 1.10.4 in [5] (or Corallary 1 in [9]) and by the mean value theorem [7] in complex analysis, we 

have the following corollary. 

Corollary 1. Let 𝑓(𝑧) =
𝑝𝑘(𝑧)

∏ (𝑧−𝑎𝑗)𝑘
𝑗=1

 where 𝑝𝑘(𝑧) is a polynomial of degree ≤ 𝑘, and we suppose that |𝑎𝑗| ≥ 𝑅 > 1 for all 

𝑗 = 1,2, … , 𝑘. If 1 ≤ 𝑟 < 𝑅, then for all |𝑧| ≤ 𝑟 we have 

|𝐷𝑞[𝑓(𝑧)]| ≤
𝑅 + 𝑟

𝑅 − 𝑟

𝑘

𝑟
‖𝑓‖𝑟 . 

Lemma 6. Let 𝑛0 ≥ 2 , 0 < 𝛽 ≤
2

3
 and 

1

2
< 𝑟 < 𝑅 ≤ [𝑛0]𝑞

1−𝛽
. For all 𝑛 ≥ 𝑛0 , |𝑧| ≤ 𝑟  and 𝑘 = 0,1,2, …,  we have 

|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)| ≤ 𝑘𝑘! (20𝑟)𝑘. 

Proof. Taking the absolute value of the recurrence formula in Lemma 4 and using the triangle inequality, we get 

|𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧)| ≤
[𝑘 + 1]𝑞

[𝑘 + 2]𝑞

(1 + 𝑞𝑛𝑎𝑛𝑟)𝑞𝑟

𝑏𝑛(1 − 𝑎𝑛𝑟)
|𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)]| 

    +
[𝑘+1]𝑞

[𝑘+2]𝑞
(

𝑞𝑟

1−𝑎𝑛𝑟
+

𝑞

𝑏𝑛
) |𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)|+

1

[𝑘+2]𝑞

|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧)| 

 

From the hypothesis of the lemma, we have 1 < 2𝑟, 
1

1−𝑎𝑛𝑟
< 2, 1 + 𝑞𝑛𝑎𝑛𝑟 <

3

2
 and 

1

𝑏𝑛
< 1, which implies 

 

|𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧)| ≤3r|𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)]| + 4𝑟|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)|+|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧)|                (2.9) 
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Considering Corollary 1, under the condition 𝑟 < [𝑛0]𝑞
1−𝛽

, it holds 
[𝑛0]𝑞

1−𝛽
 +r

[𝑛0]𝑞
1−𝛽

,−r
<3, which implies 

|𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)]| ≤
3𝑘

𝑟
‖𝑅̃𝑛(𝑒𝑘; 𝑞, . )‖

𝑟
.                                  (2.10) 

Applying 2.10 and Lemma 5 in 2.9, we get 

|𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧)| ≤ 20𝑟(𝑘 + 1)‖𝑅̃𝑛(𝑒𝑘; 𝑞, . )‖
𝑟
+(𝑘 + 1)! (20𝑟)𝑘+1. 

Taking step by step 𝑘 = 0,1,2 …, we obtain 

|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)| ≤ 𝑘𝑘! (20𝑟)𝑘, 

which complete the proof. 

3. CONVERGENCE RESULTS AND UPPER ESTIMATE 

Now, we give the following convergence theorem and upper estimate for the complex q-Balázs-Szabados-Kantorovich 

operators. 

Theorem 1. Let (𝑞𝑛) be a sequence satisfying the conditions 2.4 with 𝑞𝑛 ∈ (0, 1]  for all, 𝑛 ∈ ℕ, and let 𝑛0 ≥ 2, 0 < 𝛽 ≤
2

3
 and 

1

2
< 𝑟 < 𝑅 ≤ [𝑛0]𝑞𝑛

1−𝛽
. If 𝑓: 𝐷𝑅 ∪ [𝑅, ∞) → ℂ   is uniformly continuous, bounded on [0, ∞) and analytic in 𝐷𝑅 and 

there exist M > 0, 0 < 𝐴 <
1

20𝑟
 with |𝑐𝑘| ≤ 𝑀

𝐴𝑘

𝑘!
 (which implies |𝑓(𝑧)| ≤ 𝑀𝑒𝐴|𝑧|  for all 𝑧 ∈ 𝐷𝑅 ), then the sequence 

(𝑅̃𝑛(𝑒𝑘; 𝑞𝑛 , . ))
𝑛≥𝑛0

 is uniformly convergent to f in 𝐷𝑅. 

Proof. Using Lemma 3 and Lemma 6, we have for all 𝑛 ≥ 𝑛0 and |𝑧| ≤ 𝑟 

|𝑅̃𝑛(𝑓; 𝑞𝑛, 𝑧)| ≤ ∑|𝑐𝑘|

∞

𝑘=0

|𝑅̃𝑛(𝑒𝑘; 𝑞𝑛, 𝑧)| ≤ 𝑀 ∑ 𝑘(20𝑟𝐴)𝑘

∞

𝑘=0

, 

where the series ∑ 𝑘(20𝑟𝐴)𝑘∞
𝑘=0  is convergent for 0 < 𝐴 <

1

20𝑟
. From Lemma 2, since lim𝑛→∞ 𝑅̃𝑛(𝑓; 𝑞𝑛, 𝑥) = 𝑓(𝑥) for 

all 𝑥 ∈ [0, 𝑟], by Vitali theorem (see [11], Theorem 3.2.10, p. 112), it follows that (𝑅̃𝑛(𝑓; 𝑞𝑛, . ))converges uniformly to f 

in 𝐷̅𝑟 for 𝑛 ≥ 𝑛0. 

Theorem 2. Let (𝑞𝑛) be a sequence satisfying the conditions 2.4 with 𝑞𝑛 ∈ (0, 1]  for all 𝑛 ∈ ℕ, and let 𝑛0 ≥ 2, 0 < 𝛽 ≤
2

3
 and 

1

2
< 𝑟 < 𝑅 ≤ [𝑛0]𝑞𝑛

1−𝛽
. If 𝑓: 𝐷𝑅 ∪ [𝑅, ∞) → ℂ   is uniformly continuous, bounded on [0, ∞) and analytic in 𝐷𝑅  and 

there exist M > 0, 0 < 𝐴 <
1

20𝑟
 with |𝑐𝑘| ≤ 𝑀

𝐴𝑘

𝑘!
 (which implies |𝑓(𝑧)| ≤ 𝑀𝑒𝐴|𝑧| for all 𝑧 ∈ 𝐷𝑅), then we have 

|𝑅̃𝑛(𝑓; 𝑞𝑛, 𝑧) − 𝑓(𝑧)| ≤ 𝐶𝑟(𝑓) (𝑎𝑛 +
1

𝑏𝑛
). 

where 𝐶𝑟(𝑓) = 𝐶
𝑀

𝐴
∑ (𝑘 − 1)𝑘(20𝑟𝐴)𝑘+1∞

𝑘=1  and ∑ (𝑘 − 1)𝑘(20𝑟𝐴)𝑘+1∞
𝑘=1 < ∞. 

Proof. Using the recurrence formula in Lemma 4, we have 

 

𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1 =
[𝑘 + 1]𝑞

[𝑘 + 2]𝑞

(1 + 𝑞𝑛𝑎𝑛𝑧)𝑞𝑧

𝑏𝑛(1 + 𝑎𝑛𝑧)
𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)] 

    +
[𝑘+1]𝑞

[𝑘+2]𝑞

𝑞𝑧

1+𝑎𝑛𝑧
[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) − 𝑧𝑘] +

𝑞[𝑘+1]𝑞

𝑏𝑛[𝑘+2]𝑞
𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) 

    +
1

[𝑘+2]𝑞
[𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1] + 𝑆𝑘,𝑛,𝑞(𝑧), 

 

where 𝑆𝑘,𝑛,𝑞(𝑧) ≔ (
1

[𝑘+2]𝑞
− 1)

𝑎𝑛

1+𝑎𝑛𝑧
𝑧𝑘+2. Taking absolute value for |𝑧| ≤ 𝑟, we obtain 
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|𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1| ≤
(1 + 𝑞𝑛𝑎𝑛𝑟)𝑞𝑟

𝑏𝑛(1 − 𝑎𝑛𝑟)
|𝐷𝑞[𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)]| +

𝑞𝑟

1 − 𝑎𝑛𝑟
|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) −    𝑧𝑘| 

    +
𝑞

𝑏𝑛
|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧)|+|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1|+

2𝑎𝑛

1 −𝑎𝑛𝑟
𝑟𝑘+2. 

From the hypothesis of the theorem, we have 𝑎𝑛𝑟 <
1

2
, 

1

1−𝑎𝑛𝑟
< 2 and 1 + 𝑞𝑛𝑎𝑛𝑟 <

3

2
, using 2.10, we can write 

 

|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1| ≤
9(𝑘 + 1)

𝑏𝑛
‖𝑅̃𝑛(𝑒𝑘; 𝑞, . )‖

𝑟
+ 2𝑟|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) −    𝑧𝑘| 

    +|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1| + 4𝑎𝑛𝑟𝑘+2 

Applying the following inequality given in [9] with (11) 

|𝑅𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1| ≤
9

𝑏𝑛
𝑘(𝑘 + 1)! (20𝑟)𝑘 + 2𝑎𝑛𝑟2(𝑘 + 1)(2𝑟)𝑘, 

and Lemma 6 in 3.1, we get 

|𝑅̃𝑛(𝑒𝑘+1; 𝑞, 𝑧) − 𝑧𝑘+1| ≤ 𝐶 (𝑎𝑛 +
1

𝑏𝑛
)  𝑘(𝑘 + 1)! (20𝑟)𝑘+2 + 2𝑟|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) −    𝑧𝑘|. 

Taking step by step 𝑘 = 0,1,2, …, we arrive 

|𝑅̃𝑛(𝑒𝑘; 𝑞, 𝑧) −    𝑧𝑘| ≤ 𝐶 (𝑎𝑛 +
1

𝑏𝑛
) (𝑘 − 1)𝑘! (20𝑟)𝑘+1. 

Choosing 𝑞 = (𝑞𝑛)  and 𝐶𝑟(𝑓) = 𝐶
𝑀

𝐴
∑ (𝑘 − 1)𝑘(20𝑟𝐴)𝑘+1∞

𝑘=1 , we obtain  

|𝑅̃𝑛(𝑓; 𝑞𝑛, 𝑧) − 𝑓(𝑧)| ≤ ∑|𝑐𝑘|

∞

𝑘=0

|𝑅̃𝑛(𝑒𝑘; 𝑞𝑛, 𝑧) −    𝑧𝑘| 

   ≤ (𝑎𝑛 +
1

𝑏𝑛
) 𝐶

𝑀

𝐴
∑ (𝑘 − 1)𝑘(20𝑟𝐴)𝑘+1∞

𝑘=1 , 

which is the desired result. 
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