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ABSTRACT 

In this paper, we compute the norms of circulant matrices with the complex Fibonacci and Lucas numbers. 

Moreover, we give golden ratio in complex Fibonacci numbers. 
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1. INTRODUCTION 

 

In some scientific areas such as signal processing, coding 

theory and image processing, we often encounter 

circulant matrices. An n n  matrix C is called a circulant 

matrix if it is of the form     
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n

n n

n n n
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c c c
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or an n n  matrix C is circulant if there exist  

0 1 1, , , nc c c   such that the i, j  entry of C is  

 modj i n
c


, where the rows and columns are numbered 

from 0 to 1n  and kmodn means the number between 0 

to 1n   that is congruent to kmodn. Thus, we denote the 

circulant matrix C as  0 1 1, , , nC Circ c c c  . Any 

circulant matrix has many elegant properties. Some of 

them are [6,12]: 

1. Let A be an n n   matrix. Then A is a circulant if 

and only if 

A A   

where the matrix  0,1, ,0Circ  . 

2.   1

0 1 1 0 1 1, , , .n

n nCirc c c c c I c c  

      

3. All circulants of the same order commute. If C is a 

circulant so is C*. Hence C and C* commute and 

therefore all circulants are normal matrices, where 

C* is conjugate transpose of C. 

4. If C is an invertible circulant matrix so is 
1C 

. 

5. If C is a circulant matrix, then the eigenvalues of C 

are 
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where 
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nw e
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  and 1i   , and the corresponding 

eigenvectors are 
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 In the past decades, circulant matrices have been an 

important research area and many authors have dealt with 

circulant matrices. Hladnik [7] has given a formula for 

Schur norm of a block circulant matrix with circulant 

blocks. Karner et al. [12] have studied on spectral 

decompositions and singular value decompositions of 

four types of real circulant matrices. Bose and Mitra [4] 

have derived the limiting spectral distribution of a 

particular variant of a circulant random matrix. Atkin et 

al. [2] have studied the powers of a circulant. Zhang et al. 

[21] have worked on the minimal polynomials and 

inverses of a block circulant matrices over a field. Also, 

there have been several papers on the circulant matrices 

with famous numbers. Solak [16,17] has given some 

bounds for the spectral and Euclidean norms of the 

matrices with Fibonacci and Lucas numbers. Civciv and 

Türkmen [5] have defined the circulant matrix with the 

Lucas number and computed lower and upper bounds for 

the Euclidean and spectral norms of this matrix. Bahsi 

and Solak [3] have calculated eigenvalues, determinant, 

spectral norm, Euclidean norm of circulant matrix with 

arithmetic progression. Tuğlu and Kızılateş [19] have 

studied norms of some circulant matrices and some 

special matrices, which entries consist of harmonic 

Fibonacci numbers. Kocer and et al. [13] have studied 

circulant and semicirculant matrices with Horadam 

numbers.  Shen and Cen [14] have given upper and lower 

bounds for the spectral norms of r-circulant matrices in 

the forms 

   0 1 1 0 1 1, , , ,   , , ,n nA Circ F F F B Circ L L L   . 

Solak and Bozkurt [18] have established upper bounds 

for the 
pl  norms of the matrix almost circulant matrix 

1 1
,1, , ,

2 1
nC Circ a

n

 
  

 
, where a  ( denotes the 

set of real numbers) and 0a  . Ipek [11] has obtained 

the equality for the Solak's work in [16]. Shen and et al. 

[15] have given the determinant formulae for circulant 

matrices with Fibonacci and Lucas numbers. Jiang, Xin 

and Lu [10] have examined some types of circulant 

matrices whose entries are Gaussian Fibonacci numbers. 

Resently, Altınışık et al. [1] have dealt with determinant 

and inverse of circulant matrices associated with complex 

Fibonacci numbers. 

In this paper, we give some relations between golden 

ratio and complex Fibonacci numbers and we compute 

Euclidean and spectral norms of circulant matrices with 

the complex Fibonacci and Lucas numbers in section 3. 

For these, we give some preliminaries, definitions and 

lemmas related to our study in Section 2.  

 

2. PRELIMINARIES 

Fibonacci numbers defined by the recurrence relation 

1 1n n nF F F      01 ,   0n F 
 
and 1 1F 

 

have many applications to different fields such as 

mathematics, statistics and physics. The Lucas numbers 

are defined by 1 1n n nL L L      01 ,   2n L 
 
and 

1 1L  . There are some elementary identities for these 

famous numbers. Some of them are [20]: 

1
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1 1 2 1

0
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n

s n s s s

s

L L L L F


  



    , 1 1 5 .s s sL L F   (3)                  

The Binet's formula for Fibonacci and Lucas numbers are 

     

n n

nF
 

 





  and 

n n

nL     

where 

1 5 1 5
,   

2 2
 

 
   

that is,  and   are the roots of 

2 1 0.x x    

The root   is called golden ratio. Over the past five 

centuries, golden ratio has been very attractive for 

researchers because it occurrences ubiquitous such as 

nature, art, architecture, and anatomy. Well-known some 

relations for golden ratio, Fibonacci and Lucas numbers 

are [20]: 

1lim n

n
n

F

F



      and     lim sn s

n
n

F

F



                   (4) 

1lim n

n
n

L

L



      and      lim .sn s

n
n

L

L



             (5) 

Fibonacci and Lucas numbers have many generalizations. 

One of them is called complex Fibonacci number defined 

by 

                                                                 
*

1,n n nF F iF  
                                                

        (6) 

where 1i    and nF  is nth Fibonacci number [8]. 

Also, complex Fibonacci numbers have the recurrence 

relation 

* * *
1 1n n nF F F      *

01 ,   n F i 
 
and 

*

1 1 .F i 
 

Similarly, complex Lucas number defined by 
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*

1,n n nL L iL  
                                                

        (7) 

and 

* * *

1 1n n nL L L      *

01 ,   2n L i  
 
and 

*

1 1 3L i  , 

where 1i    and nL  is nth Lucas number [8]. 

Definition 1. Let ( )ijA a  be any m n  matrix. The 

spectral norm of A is  

2

1 1

.
m n

ijE
i j

A a
 

   

Definition 2. Let ( )ijA a  be any m n  matrix. The 

Euclidean norm of A is  

2 1
max ( )H

i
i n

A A A
 

 , 

where ( )H

i A A are eigenvalues of
HA A  and 

HA   is the 

conjugate transpose of A. 

3. MAIN RESULTS 

We start with golden ratio in complex Fibonacci numbers 

to our main results. 

Theorem 1. Let  , 
*

nF , 
*

nL  be golden ratio, nth 

complex Fibonacci number and nth complex Lucas 

number, respectively. Then 
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Proof.  a) From the equalities in (4) and the properties of 

limit, we have  

*

1 1 2

*

1

1 2

1 1

1

1 2 2

2

2

lim lim

            lim lim

1
             = lim lim

1
            

1 1

             = .
1 1

n n n

n n
n n n

n n

n n
n n n n

n n
n n n

n n n

F F iF

F F iF

F iF

F iF F iF

i

F F iF
i

F F F

i

i
i

i

i i

  

 


 

  

 


 

 
 

 


  






 
 



 

 

 

 
 

 

b) The proof is similar to proof of a). 

 

Now we give norms of circulant matrices with the 

complex Fibonacci and Lucas numbers. Our theorems 

have two parts. We prove part a) of theorems because 

one can see easily that the part b) of theorems is true by 

using the method of the proof of part a) and equalities in 

(3). 

Theorem 2. The Euclidean norms of the n n  circulant 

matrices  * * *

0 1 1, , , nF Circ F F F   and 

 * * *

0 1 1, , , nL Circ L L L   are 
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Proof. a) From the definition of Euclidean norm and the 

equalities in (2), we have 
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Theorem 3. The spectral norms of the n n  circulant 

matrices  * * *

0 1 1, , , nF Circ F F F   and 

 * * *

0 1 1, , , nL Circ L L L   are 
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Proof. a) Since F is a circulant matrix, from (1) its 

eigenvalues are 

21
*
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by using second equality in (2), 
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      2 3 32 2.n nF F                                              (8) 

Also,

 2 21 1 1
* * *

0

1 1 0 0 0

.

ims imsn n n

n n
m s s s

m n s s s

F e F e F

 
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Since the matrix F is a normal matrix, we have 

 02 0 1 1 1
max max , max .m m

m n m n
F   

     
 

           
(10) 
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From (8), (9) and (10), we have 

2 3 32
2 2.n nF F F     

Thus the proof is completed. 

Corollary 1. The norms of the n n  circulant matrices 

 * * *

0 1 1, , , nF Circ F F F  and 

 * * *

0 1 1, , , nL Circ L L L   hold 

2 2

) 5

) 5  .

E E
a L F

b L F




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