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ABSTRACT 

The purpose of this paper is to introduce the notion of a weakly fuzzy quasi-semiprime ideals in  -LA-

semigroups, we study direct product of fuzzy semiprime, fuzzy weakly completely semiprime, weakly fuzzy 

semiprime and weakly fuzzy quasi-semiprime ideals in  -LA-semigroups. Some characterizations of weakly 

fuzzy semiprime and weakly fuzzy quasi-semiprime ideals are obtained. Moreover, we investigate relationships 

between fuzzy weakly completely semiprime and weakly fuzzy quasi-semiprime ideals in  -LA-semigroups 

Key words:fuzzy semiprime, fuzzy quasi-semiprime, fuzzy weakly completely semiprime, weakly fuzzy semiprime, 

weakly fuzzy quasi-semiprime

 

1. INTRODUCTION 

A left almost semigroup (LA-semigroup) is a 

generalization of semigroup theory with wide range of 

usages in theory of flocks [23]. The fundamentals of this 

non-associative algebraic structure were first discovered 

by Kazim and Naseeruddin (1972). A groupoid S  is 

called an LA-semigroup if it satisfies the left invertive 

law: 

( ) ( )ab c cb a  

for all , , .a b c S  It is interesting to note that an LA-

semigroup with right identity becomes a commutative 

monoid [21]. This structure is closely related to a  

 

 

commutative semigroup. Because of containing a right 

identity, an LA-semigroup becomes a commutative 

monoid [21]. A left identity in an LA-semigroup is unique 

[21]. It lies between a groupoid and a commutative 

semigroup with wide range of applications in theory of 

flocks [23]. Ideals in LA-semigroups have been discussed 

in [22]. Now we define the concepts that we will used. Let 

S  be an LA-semigroup. By an LA-subsemigroup of [20], 

we means a non-empty subset A  of S  such that 

2 .A A  A non-empty subset A  of an LA-semigroup 

S  is called a left (right) ideal of [18] if 
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( ).SA A AS A   By two-sided ideal or simply 

ideal, we mean a non-empty subset of an LA-semigroup 

S  which is both a left and a right ideal of .S  In 1981, 

the notion of  -semigroups was introduced by M. K. 

Sen. A groupoid  is called an  -LA-semigroup if it 

satisfies the left invertive law: 

( ) ( )a b c c b a     

for all , ,a b c S  and ,    [26]. This structure is 

also known as an  -Abel-Grassmann's groupoid ( -

AG-groupoid). In this paper, we are going to investigate 

some interesting properties of recently discovered classes, 

namely  -LA-semigroup always satisfies the  -medial 

law:  

( ) ( ) ( ) ( )a b c d a c b d       

for all , , ,a b c d S  and , ,     [26], while an 

 -LA-semigroup with left identity always satisfies  -

paramedial law: 

( ) ( ) ( ) ( )a b c d d c b a       

for all , , ,a b c d S  and , ,     [26]. Recently 

T. Shah and I. Rehman have discussed  -Ideals and  -

Bi-Ideals in  -LA-semigroups. An ideal P  of an  -

LA-semigroup S  is called semiprime if 
2A P  

implies that either ,A P  for all ideal A  in .S  Q. 

Mushtaq and M. Khan defined the direct product of left 

(resp, right) ideals, prime ideals, maximal ideals and 

investigate the properties of such ideals [19]. 

The fundamental concept of fuzzy sets was first 

introduced by Zadeh [28] in 1965. Given a set ,S  a fuzzy 

subset of S  is, by definition an arbitrary mapping 

: [0,1],f S   where [0,1]  is the unit interval. 

Kuroki initiated the theory of fuzzy bi ideals in 

semigroups [15]. The thought of belongingness of a fuzzy 

point to a fuzzy subset under a natural equivalence on a 

fuzzy subset was defined by Murali [17]. Recently, M. 

Khan et al. introduced the concept of fuzzy ideals and anti 

fuzzy ideals of LA-semigroups in this papers [27]. There 

are many mathematicians who added several results to the 

theory fuzzy  -LA-semigroups, see [2, 3, 26]. In this 

paper we characterize the fuzzy subset in  -LA-

semigroup. We investigate the relationships between 

fuzzy weakly completely semiprime and weakly fuzzy 

quasi-semiprime  -ideals in  -LA-semigroups. 

 

2. PRELIMINARIES  

Let S  be an  -LA-semigroup. A nonempty subset A  

of S  is called a left  -ideal of S  if .S A A  A  is 

called a right  -ideal of S  if A S A   and A  is 

called an  -ideal of S  if A  is both a left and a right 

 -ideal of .S  A function f  from S  to the unit 

interval [0,1]  is a fuzzy subset of .S  The  -LA-

semigroup S  itself is a fuzzy subset of S  such that 

( ) 1S x   for all ,x S  denoted also by .S  Let f  

and g  be two fuzzy subsets of .S  Then the inclusion 

relation f g  is defined ( ) ( ),f x g x  for all 

.x S f g  and f g  are fuzzy subsets of S  

defined by  

 ( )( ) ( ), ( ) ,f g x min f x g x 
 

 ( )( ) ( ), ( )f g x max f x g x   for all .x S  

The product f g  is defined as follows; 

 

 

 [ ( ), ( ) ] ;if there exist , ,such that 
( )( )

0 ;otherwise.

sup min f y g z y z S x yz
f g y

  
  



 

A fuzzy subset f  of S  is called a fuzzy sub -LA-

semigroup of S  if  

 ( ) ( ), ( )f x y min f x f y   

for all , , ,x y S    and is called a fuzzy left (right) 

 -ideal of S if  

( ) ( )( ( ) ( ))f x y f y f x y f x    

for all , , ,x y S    if f  is both fuzzy left and 

right  -ideal of ,S  then f  is called a fuzzy  -ideal 

of S  [24]. It is easy that f  is a fuzzy  -ideal of S  if 

and only if  ( ) ( ), ( )f x y max f x f y   for all 

, ,x y S    and any fuzzy left (right)  -ideal of 

S  is a fuzzy sub -LA-semigroup of .S  Equivalently, 

We can prove easily that A  is a (left, right)  -ideal of 

S  if and only if the characteristic function 
Af  of A  is a 
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fuzzy (left, right)  -ideal of S  [6].  

Lemma 2.1. [6, 24] If S  is an  -LA-semigroup and 

, ,f g h  are fuzzy subsets of ,S  then 

( ) ( ) .f g h h g f      

Proof. The proof is available in [6, 24].  

Lemma 2.2. [6, 24] If S  is an  -LA-semigroup with 

left identity and , , ,f g h k  are fuzzy subsets of ,S  

then 

 1. ( ) ( );f g h g f h      

 2. ( ) ( ) ( ) ( ).f g h k k h g f        

Proof. The proof is available in [6, 24]. 

Lemma 2.3. [6, 24] Let f  be a fuzzy subset of an  -

LA-semigroup .S  Then the following properties hold. 

 1. f  is a fuzzy sub -LA-semigroup of S  if 

and only if .f f f   

 2. f  is a fuzzy left  -ideal of S  if and only 

if .S f f   

 3. f  is a fuzzy right  -ideal of S  if and only 

if .f S f   

 4. f  is a fuzzy  -ideal of S  if and only if 

S f f   and .f S f   

Proof. The proof is available in [6, 24]. 

Lemma 2.4. [6] Let f  be a fuzzy left ideal of an  -LA-

semigroup .S  Then 

 1. .S S S   

 2. .S f f   

Proof. The proof is available in [6]. 

Definition 2.5. A fuzzy subset f  of an  -LA-

semigroup S  is called fuzzy quasi-semiprime if for any 

fuzzy left  -ideal g  of S  such that g g f 

implies .g f  

Definition 2.6. A fuzzy subset f  of an  -LA-

semigroup S  is called fuzzy semiprime of S  if for any 

fuzzy  -ideal g  of S  such that g g f   implies 

.g f  

It is easy to see that every fuzzy semiprime  -ideal is 

fuzzy quasi-semiprime.  

Definition 2.7. A fuzzy subset f  of an  -LA-

semigroup of S  is called fuzzy weakly completely 

semiprime if 
2( ) ( ),f x f x  for all .x S  

Lemma 2.8. A fuzzy  -ideal f  of an  -LA-

semigroup of S  is fuzzy weakly completely semiprime if 

and only if 
2( ) ( ),f x f x  for all .x S  

Proof. It is straightforward by Definition 2.7. 

Theorem 2.9. Let S  be an  -LA-semigroup. Then f  

is fuzzy sub -LA-semigroup of S  if and only if 1 f  

is fuzzy weakly completely semiprime. 

Proof. ( )  Assume that f  is a fuzzy sub -LA-

semigroup of .S  Since 
2( ) ( ),f x f x  we have 

21 ( ) 1 ( ),f x f x    for all .x S  Then 1 f  

is fuzzy weakly completely semiprime.  

( )  Suppose that 1 f  is fuzzy weakly 

completely semiprime of .S  Since  

21 ( ) 1 ( ),f x f x    

we have 
2( ) ( ),f x f x  for all .x S  Hence f  is 

a fuzzy sub -LA-semigroup of .S  

 

Theorem 2.10. Let S  be an  -LA-semigroup. If 

,iP i I  are fuzzy weakly completely semiprime 

subsets of ,S  then i

i I

P


 is fuzzy weakly completely 

semiprime subset of .S  

Proof. Suppose that ,iP i I  are fuzzy weakly 

completely semiprime subset of .S  Then 

2( ) ( ),i iP x P x  for all ,x S  and for .i I  Since 

2( ) ( ),i i

i I

P x P x


  for all ,i I  we get 
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2( ) ( ).i i

i I i I

P x P x
 

  Hence i

i I

P


 is a fuzzy 

weakly completely semiprime subset of .S  

Theorem 2.11. [24] Let I  be a non-empty subset of an 

 -LA-semigroup S  and : [0,1]If S   be a fuzzy 

subset of S  such that  

 
1;

0; .
I

x I
f x

x I


 


 

Then I  is a left  -ideal (right  -ideal,  -ideal) of 

S  if and only if 
If  is a fuzzy left  -ideal (resp. fuzzy 

right  -ideal, fuzzy  -ideal) of .S  

Proof. The proof is available in [24]. 

Theorem 2.12. Let I  be an  -ideal (left, right  -

ideal) of an  -LA-semigroup , (0,1].S m  If 
If  is 

fuzzy set of S  such that  

 
;

0; ,
I

m x I
f x

x I


 


 

then 
If  is a fuzzy  -ideal (fuzzy left, fuzzy right  -

ideal) .S  

Proof. It is straightforward by Theorem 2.11. 

Definition 2.13. [24] Let S  be an  -LA-semigroup, 

x S  and [0,1].t  A fuzzy point 
tx  of S  is 

defined by the rule that 

 
;

0; .
t

t x y
x y

x y


 


 

It is accepted that 
tx  is a mapping from S  into  0,1 ,  

then a fuzzy point of S  is a fuzzy subset of .S  For any 

fuzzy subset f  of ,S  we also denote 
tx f  by 

tx f  in sequel. Let 
Atf  be a fuzzy subset of S  

defined as follows: 

 
 0,1 ;

0 ; .
A

t x A
tf x

x A

  
 


 

 

Lemma 2.14. Let A  be a subset of an  -LA-semigroup 

S  and f  be a fuzzy set of .S  Then the following 

statements are equivalent 

 1. , [0,1]Atg f t   

 2. , [0,1].tA f t   

Proof. It is straightforward by Definition 2.13. 

Definition 2.15. A fuzzy subset f  of S  is said to be a 

weakly fuzzy semiprime if 
A Atg tg f   implies 

,Atg f  for the  -ideal A  in S  and for all 

(0,1].t  

Definition 2.16. A fuzzy subset f  of S  is said to be a 

weakly fuzzy quasi-semiprime if 
A Atg tg f   

implies ,Atg f  for the left  -ideal A  in S  and 

for all (0,1].t  

It is easy to see that every weakly fuzzy semiprime is 

weakly fuzzy quasi-semiprime. 

 

3. FUZZY QUASI-SEMIPRIME  -IDEALS OF  -

SEMIGROUPS  

The results of the following lemmas seem to play an 

important role to study fuzzy semiprime  -ideals in  -

LA-semigroups; these facts will be used frequently and 

normally we shall make no reference to this lemma. 

 

Lemma 3.1. Let ,A B  be any non-empty subset of an 

-LA-semigroup .S  Then for any (0,1]t  the 

following statements are true. 

 1. .A B A Btf tf tf    

 2. .A B A Btf tf tf    

 3. .A B A Btf tf tf    

 4. .A t

a A

tf a


  

 5. ,A S A A A SS tf tf tf S tf      and 

( )( ) .A S A SS tf S tf      

6. If A  is a left  -ideal (right,  -ideal) of 
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,S  then 
Atf  is a fuzzy left  -ideal (fuzzy left, fuzzy 

-ideal) of .S  

Proof. 1. If ,x A B   then ( ) ,A Btf x t   and 

,x a b  for some ,a A b B   and .  Thus 

   ( ) ( ( ), ) ( , ) .A B A Btf tf x sup min tf a tf sup min t t t   

If ,x A B   then ( ) 0.A Bf x   We now prove that 

( )( ) 0.A Btf tf x   If ,x y z  then  

( )( ) 0,A Btf tf x   

and ( )( ) ( ).A B A Btf tf x tf x  If x y z  and 

y A  and ,z B  then ,y z A B    so 

,x A B   which is impossible. Thus y A  or 

.z B If ,y A  then   0.Atf y   Since 

( ) 0,Btf z   we have  ( ), ( ) 0.A Bmin tf y tf z   If 

z B  then, as in the previous case, we also have 

 ( ), ( ) 0.A Bmin tf y tf z   Therefore,  

 ( )( ) ( ), ( ) 0.A B A Btf tf x min tf y tf z    

2. We will show that  

( )( ) ( ),A B A Btf tf x tf x   

for all .x S  If ,x A B   then ( ) .A Btf x t   

Since x A  and ,x B  we have 

    ,A Btf x tf x t 
 

so that ( )( ) ( ) ( ) .A B A Btf tf x tf x tf x t     If 

,x A B   then ( ) 0.A Btf x   Suppose that 

.x A  Then ( )( ) ( ) 0.A B Atf tf x tf x    Thus we 

obtain that ( )( ) ( ),A B A Btf tf x tf x   for all 

.x S  

3. The proof is similar to the proof of 1 with 

suitable modification by using the definition. 

4. If ,x A  then  

( ) ( ) ( ).t a A t A

a A

a x sup a x t tf x



    

If ,x A  then     0.Atf x   Since ,x A  we 

have ,x a  for all ,a A  and so     0.ta x   It 

implies that  

( ) ( ) 0 ( ).t a A t A

a A

a x sup a x tf x



    

5. The proof is similar to the proof of 1 with a 

slight modification. 

6. Suppose that A  is a left  -ideal of .S  

Then ( ) ( ),A Atf x y tf y   for all , , .x y S    

If ,y A  then ( ) 0.Atf y   Since 
Atf  is a fuzzy 

subset of ,S  we have ( ) 0 ( ).A Atf x y tf y    If 

,y A  then     .Atf y t  Since A  is a left  -

ideal of S  and , , ,x S y A     we then have 

.x y A   Thus, ( ) ( ).A Atf x y t tf y    

Theorem 3.2. Let P  be a fuzzy left  -ideal of an  -

LA-semigroup with left identity .S  Then the following 

statements are equivalent: 

1. P  is a weakly fuzzy quasi-semiprime of .S  

2. For any x S  and (0,1],t  if 

( ) ,t tx S x P    then .tx P  

3. For any x S  and (0,1],t  if 

,x xtf tf P   then .tx P  

4. If A  is a left  -ideal of S  such that 

,A Atf tf P   then .Atf P  

Proof. (1 2)  Let P  be a weakly fuzzy quasi-

semiprime of .S  For any x S  and (0,1],t  if 

( ) ,t tx S x P    then 
( ) ( )S x S S x Stf tf   

 

 
( ( )) ( ( ))t tS x S S x S       

 ( ) (( ) ( ))t tS S x S x S       

 ( ) (( ) ( ))t tS S x x S S       

 ( ) (( ) ( ))t tS S S S x x       

 ( ( ))t tS S x x     

 ( ( ))t tS x S x     

 S P      

 .P      
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Since P  is a weakly fuzzy quasi-semiprime, we get 

2 ( ) .S x Sx x
tf tf P

     Hence .t xx tf P   

(2 3)  Let , (0,1]x S t   and 

.x xtf tf P   Then 

( )t tx S x   ( )x xtf S tf    

  ( )x xS tf tf    

  S P   

  .P     

Thus, by hypothesis .tx P  

(3 4)  Let A  be a left  -ideal of .S  

Then, by Lemma 3.1, we get 
Atf  is a fuzzy left  -ideal 

of .S  Suppose that 
A Atf tf P   and ,Atf P  then 

there exists x A  such that .tx P  By Lemma 3.1 

and hypothesis, we have 

x xtf tf  2x
tf  

  A Atf   

  A Atf tf   

  .P     

Since ,tx P  which implies .xtf P  But this leads 

to a contradiction. 

(4 1)  By Definition 2.16, the following 

corollary is obvious. 

Corollary 3.3. Let P  be a fuzzy  -ideal of an  -LA-

semigroup with left identity .S  Then the following 

statements are equivalent: 

1. P  is a weakly fuzzy semiprime  -ideal of 

.S  

2. For any x S  and (0,1],t  if 

( ) ,t tx S x P    then .tx P  

3. For any x S  and (0,1],t  if 

,x xtf tf P   then .tx P  

4. If A  is an  -ideal of S  such that 

,A Atf tf P   then .Atf P  

Proof. This follows from Theorem 3.2. 

Theorem 3.4. Let S  be an  -LA-semigroup with left 

identity. If ( ( )) ( ),supf a S a f a    for all 

,a S  then f  is a fuzzy quasi-semiprime of .S  

Proof. Let g  be a fuzzy left  -ideal of S  such that 

.g g f   If ,g f  then there exist a S  such 

that    .f a g a Since  

( ) ( ( )),f a supf a S a  
 

 there exists , ,s S     such that 

( ( )) ( ).f a s a f a    

Then ( ( )) ( )f a s a g a    so that 

( )g a  ( ( ))f a s a   

 ( ( ))g g a s a     

  [ ( ), ( ) ]sup min g a g s a  

  ( ), ( )min g a g s a  

    g a  

since g  is fuzzy left  -ideal of .S  But this leads to a 

contradiction. 

Theorem 3.5. Let S  be an  -LA-semigroup with left 

identity. If f  is a fuzzy quasi-semiprime of ,S  then 

( ( ( ))) ( ),inf f a S a f a    for all .a S  

Proof. Suppose that  ( ( )) ( ),inf f a S a f a    

for some .a S  Since f  is fuzzy left  -ideal of ,S  

we get ( ( )) ( ) ( ),f a s a f s a f a     for all 

, , .s S     Then  

( ) ( ( ( ))).f a inf f a S a  
 

Let ( ( ( )))inf f a S a m    and 
a Sg 

 be fuzzy 

subset of S  such that 

;
( )

0; .
a S

m x a S
g x

x a S


 
 

 
 



    GU J Sci, 29(2):491-502 (2016)/ Pairote YIARAYONG    497 

 

 

Then by above Theorem 2.13, 
a Sg 

 is a fuzzy left  -

ideal of .S  If ( ) ,a S a Sg g x m    then  

 [ ( ), ( ) ].x yz a S a Sm sup min g y g z    

This means there exist some ,u v a S   such that 

.u v x   Put , .u a t v a k    Then  

( )f x  ( )f u v  

  (( ) ( ))f a t a k    

  (( ) ( ))f a a t k    

  (( ) ( ))f k t a a    

  ( )f a a  

  ( ( ))f a e a   

  ( ( ( )))inf f a a S    

    m  

so that 
a S a Sg g f    and hence .a Sg f   Thus 

( ) ( ) .a S a Sg a g a e m    But from  

( ) ( ) ( ( ( )) ,a Sm g a f a inf f a S a m     
 

we have a contradiction. 

Corollary 3.6. Let S  be an  -LA-semigroup with left 

identity. If f  is a fuzzy semiprime of ,S  then 

( ( ( ))) ( ),inf f a S a f a    for all .a S  

Proof. This follows from Theorem 3.5. 

Theorem 3.7. Let S  be an  -LA-semigroup with left 

identity. A fuzzy  -ideal P  of an  -LA-semigroup 

S  is weakly fuzzy quasi-semiprime  -ideal if and only 

if 
2( ) ( ),P x P x  for all .x S  

Proof. ( )  Suppose that P  is a fuzzy  -ideal of .S  

Then 
2( ) ( ),P x f x  for all .x S  On the other 

hand, if 
2( ) ( ),P x P x then there exists (0,1)t  

such that 
2( ) ( ).P x t P x  Thus  

2( ) ( ) ( ) ,t t t t tx S x S x x S x S P P         

for all .x S Since P  is a weakly fuzzy quasi-

semiprime  -ideal of ,S  we get ,tx P  but 

,tx P  which is impossible. Therefore, 

2( ) ( ),P x P x  for all .x S
 

( ) Suppose that ( (0,1])tx t  are the 

fuzzy point of S  such that ( ) .t tx S x P    Since  

2( ) ( ) ( )t t t t tS x S x x x S x P         

and 
2( ) ( ),P x P x  we have 

2( ) ,P x t which 

implies that ( ) .P x t Then .tx P  

Corollary 3.8.Let S  be an  -LA-semigroup with left 

identity. If P  is a fuzzy weakly completely semiprime, 

then P  is weakly fuzzy quasi-semiprime of .S  

Proof.One can easily show by induction method.  

 

4. PRODUCT OF FUZZY  -IDEALS OF  -

SEMIGROUPS 

We start with the following theorem that gives a relation 

between product of fuzzy  -ideal and fuzzy  -ideal in 

 -LA-semigroup. Our starting points are the following 

definitions: 

Let 
1S

 
and 

2S
 
be two  -LA-semigroups. Then  

 1 2 1 2 1 2: ( , ) | ,S S x y S S x S y S       

and for any 
1 2( , ),( , ) ,a b c d S S     we define

( , ) ( , ) : ( , ),a b c d a c b d   then 
1 2S S

 
is an 

-LA-semigroup as well. Let 
1: [0,1]f S 

 
and 

2: [0,1]g S   be two fuzzy subsets of  -LA-

semigroups 
1S  and 

2S respectively. Then the product of 

fuzzy subsets is denoted by f g  and defined as 

1 2: [0,1],f g S S    where  

 ( )( , ) ( ), ( ) .f g x y min f x g y 
 

Lemma 4.1. If f  and g  are fuzzy sub -LA-

semigroups of 
1S and 

2S respectively, then f g  is a 

fuzzy sub -LA-semigroup of 
1 2.S S  

Proof.Let 
1 1 2 2 1 2( , ),( , )x y x y S S   and . 

Then 1 1 2 2( )(( , ) ( , ))f g x y x y
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1 2 1 2( )( , )f g x x y y     

 1 2 1 2( ), ( )min f x x g y y   

 1 2 1 2( ), ( ), ( ), ( )min f x f x g y g y  

    1 1 2 2( ), ( )) , ( ), ( )min min f x g y min f x g y

 1 1 2 2( )( , ), ( )( , ) .min f g x y f g x y    

Therefore f g  is a fuzzy sub -LA-semigroup of 

1 2.S S  

Lemma 4.2. If f  and g  are fuzzy left  -ideals (fuzzy 

right  -ideals, fuzzy  -ideals) of 
1S  and 

2S  

respectively, then f g  is a fuzzy left  -ideal (fuzzy 

right  -ideal, fuzzy  -ideal) of 
1 2.S S  

Proof. Let 
1 1 2 2 1 2( , ),( , )x y x y S S   and .   

Then 1 1 2 2( )(( , ) ( , ))f g x y x y
 

 1 2 1 2( )( , )f g x x y y    

  1 2 1 2( ), ( )min f x x g y y   

  2 2( ), ( )min f x g y  

 2 2( )( , ).f g x y   

Therefore f g  is a fuzzy left  -ideal of 
1 2.S S  

Corollary 4.3. Let 
1 2 3, , , , nf f f f  be a fuzzy subsets 

of  -LA-semigroups 
1 2 3, , , , nS S S S  respectively. 

 1. If 
1 2, , , nf f f  are fuzzy sub -LA-

semigroups of 
1 2, , , nS S S  respectively, then 

1

n

i

i

f


  

is fuzzy sub -LA-semigroup of 

1

.
n

i

i

S


  

 2. If 
1 2 3, , , , nf f f f  are fuzzy left  -

ideals (fuzzy right  -ideals, fuzzy  -ideals) of 

1 2 3, , , , nS S S S  respectively, then 

1

n

i

i

f


  is fuzzy 

left  -ideal (fuzzy right  -ideal, fuzzy  -ideal) of 

1

.
n

i

i

S


  

Proof. This follows from Lemma 4.1 and Lemma 4.2. 

Lemma 4.4. Let ,f g  be fuzzy subsets of  -LA-

semigroup with left identity 
1 2,S S  respectively such that 

f g  is a fuzzy sub -LA-semigroup of 
1 2.S S  

Then f  or g  is fuzzy sub -LA-semigroup of 
1S  or 

2S  respectively. 

Proof. We know that  

 1 2( ), ( )min f e g e
1 2( )( , )f g e e   

      ( )( , )f g x y   

       ( ), ( ) ,min f x g y  

for all 
1 2( , ) .x y S S   Then 

1( ) ( )f x f e  or 

2( ) ( ).g y g e  If 
1( ) ( ),f x f e  then  

2( ) ( )f x g e  or 2( ) ( ).g y g e  

Let 
2( ) ( ).f x g e Then 

2( )( , ) ( )f g x e f x   

so that 

( )f x y 2( )( , )f g x y e    

 2 2( )(( , ) ( , ))f g x e y e 

 
 2 2( )( , ), ( )( , )min f g x e f g y e  

  ( ), ( ) .min f x f y  

Therefore f  is a fuzzy sub -LA-semigroup of 
1.S  

Now suppose that 
2( ) ( )f x g e  is not true for all 

1.x S  If 
2( ) ( )f x g e  for some 

1,x S  then 

2( ) ( ),g y g e  for all 
2.y S  Therefore 

1( )( , ) ( ),f g e y g y   for all 
2.y S  Similarly 

( )g x y 1( )( , )f g e x y   

 1 1( )(( , ) ( , ))f g e x e y 

 
 1 1( )( , ), ( )( , )min f g e x f g e y    

  ( ), ( ) .min g x g y  

Hence g  is a fuzzy sub -LA-semigroup of 
2.S  
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Lemma 4.5. Let ,f g  be fuzzy subsets of  -LA-

semigroups with left identity 
1 2,S S  respectively such 

that f g  be a fuzzy left  -ideal (fuzzy right  -

ideal, fuzzy  -ideal) of 
1 2.S S  Then f  or g  is 

fuzzy left  -ideal (fuzzy right  -ideal, fuzzy  -ideal) 

of 
1S  or 

2S  respectively. 

Proof. We know that  

 1 2( ), ( )min f e g e
1 2( )( , )f g e e   

( )( , )f g x y   

 ( ), ( ) ,min f x g y  

for all 
1 2( , ) .x y S S   Then 

1( ) ( )f x f e  or 

2( ) ( ).g y g e  If 
1( ) ( ),f x f e  then  

2( ) ( )f x g e  or 2( ) ( ).g y g e
 

Let 
2( ) ( ).f x g e Then 

2( )( , ) ( )f g x e f x   

so that 

     
( )f x y  2( )( , )f g x y e   

  2 2( )(( , ) ( , ))f g x e y e 

  2( )( , )f g y e   

   .f y  

Therefore f  is a fuzzy left  -ideal of 
1.S  Now 

suppose that 
2( ) ( )f x g e  is not true for all 

1.x S  

If 
2( ) ( )f x g e  for some 

1,x S  then 

2( ) ( ),g y g e  for all 
2.y S  Therefore 

1( )( , ) ( ),f g e y g y   for all 
2.y S  Similarly 

      
( )g x y

 1( )( , )f g e x y   

  1 1( )(( , )( , ))f g e x e y   

  1( )( , )f g e y   

   .g y  

Hence g  is fuzzy left  -ideal of 
2.S  

Corollary 4.6. Let 
1 2 3, , , , nf f f f  be a fuzzy subsets 

of  -LA-semigroups 
1 2 3, , , , nS S S S  respectively. 

 1. If 

1

n

i

i

f


  is a fuzzy sub -LA-semigroup of 

1

,
n

i

i

S


  then 
1f  or 

2f  or 
3f  or  or 

nf  is a fuzzy 

sub -LA-semigroup of 
1 2 3, , , , nS S S S  

respectively. 

 2. If 

1

n

i

i

f


  is a fuzzy left  -ideal (fuzzy 

right  -ideal, fuzzy  -ideal) of 

1

,
n

i

i

S


  then 
1f  or 

2f  or 
3f  or  or 

nf  is a fuzzy left  -ideal (fuzzy 

right  -ideal, fuzzy  -ideal) of 
1 2 3, , , , nS S S S  

respectively. 

Proof. This follows from Lemma 4.5. 

Lemma 4.7. Let ,f g  be fuzzy subsets of  -LA-

semigroups 
1 2,S S  respectively and [0,1].t  Then 

( ) .t t tf g f f    

Proof. Let ,f g  be fuzzy subsets of  -LA-semigroup 

1 2,S S  respectively and [0,1].t  Then 

( , ) t tx y f g   tx f   and ty g  

  ( )f x t   and ( )g y t  

   ( ), ( )min f x g y t   

  ( )( , )f g x y t    

  ( , ) ( )tx y f g    

for all 
1 2, .x S y S   Hence ( ) .t t tf g f f    

Corollary 4.8. Let 
1 2 3, , , , nf f f f  be a fuzzy subsets 

of  -LA-semigroups 
1 2 3, , , , nS S S S  respectively 

and [0,1].t Then 

1 1

( ) ( ) .
n n

i t i t

i i

f f
 

   

Proof. This follows from Lemma 4.7. 

Theorem 4.9. Let f  and g  be two fuzzy weakly 
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completely semiprime (fuzzy semiprime, quasi-

semiprime)  -ideals of an  -LA-semigroups 
1 2,S S  

respectively. Then ( )f g  is a fuzzy weakly 

completely semiprime (fuzzy semiprime, quasi-

semiprime)  -ideal of 
1 2.S S  

Proof. Let 
1 2( , ) .a b S S   Since f  and g  are 

fuzzy weakly completely semiprime  -ideals of ,S  we 

get  

2( )( , )f g a b  
2 2( )( , )f g a b   

  2 2( ), ( )min f a g b

  ( ), ( )min f a g b  

 ( )( , ).f g a b   

Hence ( )f g  is a fuzzy weakly completely semiprime 

 -ideal of 
1 2.S S  

Theorem 4.10. Let ,f g  be fuzzy subsets of  -LA-

semigroup with left identity 
1 2,S S  respectively such that 

f g  is a fuzzy weakly completely semiprime (fuzzy 

semiprime  -ideal, quasi-semiprime  -ideal) of 

1 2.S S  Then f  or g  is fuzzy weakly completely 

semiprime (fuzzy semiprime  -ideal, quasi-semiprime 

 -ideal) of 
1S  or 

2S  respectively. 

Proof. We know that 

    
 1 2( ), ( )min f e g e

 1 2( )( , )f g e e   

  ( )( , )f g x y   

   ( ), ( ) ,min f x g y  

for all 
1 2( , ) .x y S S   Then 

1( ) ( )f x f e  or 

2( ) ( ).g y g e  If 
1( ) ( ),f x f e  then  

2( ) ( )f x g e  or 2( ) ( ).g y g e
 

Let 
2( ) ( ).f x g e Then 

2( )( , ) ( )f g x e f x   

so that 

 
2( )f x

 

2

2( )( , )f g x e   

  
2

2( )( , )f g x e   

  
2( )( , )f g x e   

   .f x  

Therefore f  is a fuzzy weakly completely semiprime of 

1.S  Now suppose that 
2( ) ( )f x g e  is not true for all 

1.x S  If 
2( ) ( )f x g e  for some 

1,x S  then 

2( ) ( ),g y g e  for all 
2.y S  Therefore 

1( )( , ) ( ),f g e y g y   for all 
2.y S  Similarly 

 
2( )g y  

2

1( )( , )f g e y    

  
2

1( )( , )f g e y   

  1( )( , )f g e y   

   .g y  

Hence g  is fuzzy weakly completely semiprime of 
2.S  

Theorem 4.11. Let 
1 2,f f  be a fuzzy subsets of  -LA-

semigroups 
1 2,S S  respectively. Then f g  is a fuzzy 

weakly completely semiprime  -ideal of 
1 2S S  if and 

only if the level subset ( ) , ( )tf g t Im f g    of 

f g  is a weakly completely semiprime  -ideal of 

1 2 ,S S  for every [0,1].t  

Proof. ( ) Suppose that f g  is a fuzzy weakly 

completely semiprime  -ideal of 
1 2.S S  Let 

1 2( , )x y S S   such that 
2( , ) ( ) .tx y f g   

Then 
2( )( , )f g x y t   so that  

2 2( )( , ) .f g x y t   

Since f g  is a fuzzy weakly completely semiprime 

 -ideal of 
1 2 ,S S  we have  

2( )( , ) ( )( , ).f g x y f g x y    

Then ( )( , ),t f g x y   so ( , ) ( ) .tx y f g   

( )  Suppose that ( )tf g  is a weakly completely 

semiprime  -ideal of 
1 2 ,S S  for every [0,1].t

Let 
1 2( , ) .x y S S   By Definition fuzzy subset, we 
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get 
2( )( , ) 0.f g x y   Since  

2

2

( )( , )
( , ) ( )

f g x y
x y f g


   

by hypothesis, we have 2( )( , )
( , ) ( ) .

f g x y
x y f g


 

Thus 
2( )( , ) ( )( , ) .f g x y f g x y    

Corollary 4.12. Let 
1 2 3, , , , nf f f f  be a fuzzy 

subsets of  -LA-semigroups 
1 2 3, , , , nS S S S  

respectively and and [0,1].t  Then 

1

n

i

i

f


  is a fuzzy 

weakly completely semiprime  -ideal of 

1

n

i

i

S


  ifand 

only if the level subset 

1 1

( ) , ( )
n n

i t i

i i

f t Im S
 

   is a 

weakly completely semiprime  -ideal of 

1

.
n

i

i

S


  

Proof. This follows from Theorem 4.11. 
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