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ABSTRACT 

In this study, wavelet based GARCH-Extreme Value Theory (EVT) is proposed to model financial return series to 

forecast daily value-at-risk. Wavelets based GARCH-EVT is hybrid model combining the wavelet analysis and EVT. 

Proposed model contains three stages. In first stage, return series is decomposed into wavelet series and approximation 

series by applying the maximal overlap discrete wavelet transform. Second stage, detrended return series and 

approximation series are obtained by using wavelet series and scaling series. GARCH model is fitted to each obtained 

series to forecast daily volatility. Final stage, EVT is used to estimate quantile estimation of standardized residuals of 

GARCH model obtained for detrended return series and daily VaR value is forecasted by using volatility forecasts and 

quantile estimation. Daily VaR forecasting accuracy of proposed hybrid model is compared with the GARCH models 

specified under heavy-tailed distributions and GARCH-EVT model. Empirical findings show that wavelet based 

GARCH-EVT model is outperformed at high quantiles according to backtesting results.  

Keywords: GARCH models, volatility forecasting, combining forecasts, decomposition, financial markets 

 

1. INTRODUCTION  

Most of the Value at Risk (VaR) models assume that 

financial return series are normally distributed. Modeling 

VaR with normality assumption, without considering the 

big and unpredictable losses, gives underestimate VaR 

forecasts. For this reason Extreme Value Theory (EVT) is 

good candidate to model tail of distribution that contains 

the extreme losses. McNeil and Frey (2000), Gencay et al. 

(2003), Gilli and Kellezi (2006), Onour (2010), Singh et al. 

(2013), Soltane et al. (2012), Chan and Gray (2006), 

Karmakar (2013) and Altun and Tatlidil (2015) have 

evaluated the performance of EVT in measuring the  

 

financial risk and also investigated tail behavior of 

financial returns series. Venkataraman (1997), Zangari 

(1996), Lee et al. (2008), Angelidis et al. (2004) have 

evaluated the performance of GARCH models under 

heavy-tailed distributions, such as student-t, mixture 

normal, generalized error distribution, skewed generalized 

error distribution, to forecast daily VaR. As a result of these 

studies, due to financial return series exhibit skewness and 

excess kurtosis, leptokurtic distributions are able to 

produce better daily VaR forecasts.   

Wavelet analysis is a new tool in the field of applied 

mathematics. Fundamentals of the wavelet theory are 

provided by Daubechies (1992), Chui (1992) and Graps 
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(2005). Wavelet analysis provides the opportunity to make 

semi-parametric estimations of highly complex structures 

without knowing the underlying functional form. In recent 

years, wavelet analysis is used to model financial returns 

series. Wavelet analysis decomposes financial return series 

into different scales that represent the low and high 

frequency sequences. Chi and Kai-jian (2006), Lai et al. 

(2006), Samia et al. (2009), Tan et al. (2010) and Cifter 

(2011) have evaluated performance of wavelet theory 

combining with ARMA-GARCH model in financial 

forecasting. Chi and Kai-jian (2006) proposed wavelet 

based value at risk model. Financial return series is 

decomposed into different scales and wavelet coefficients 

are de-noised according to the threshold selection rules. 

GARCH model is fitted de-noised return series to forecast 

daily VaR values. Lai et al. (2006) and Samia et al. (2009) 

decomposed the financial return series using wavelet 

analysis. GARCH model is fitted to decomposed time 

series and conditional volatility is modeled as a mixture of 

GARCH processes at each scale to forecast daily VaR 

values. Tan et al. (2010) proposed the price forecasting 

method based on wavelet transform combined with 

ARIMA-GARCH models. Wavelet analysis is used to 

decompose electricity price series into one approximation 

series and some detail series. GARCH model is fitted each 

detail series and ARIMA-GARCH model is fitted one 

approximation series. Price prediction is obtained by 

composing the forecasted values. Cifter (2011) proposed 

the wavelet based extreme value theory for univariate value 

at risk estimation. First stage, wavelet coefficients are used 

as threshold in Generalized Pareto distribution, in second 

stage EVT is applied with wavelet based thresholds.  

In this paper, wavelet based GARCH-EVT model is 

proposed for  forecasting  daily VaR based on wavelet 

transform combined with GARCH-EVT model. By 

applying wavelet transform, return series are decomposed 

into sub return series at different scales. Detrended return 

series is obtained by wavelet series and scaling series is 

used to add trend effects to proposed model. GARCH 

models are fitted to detrended return series and scaling 

series to forecast daily VaR with weighted volatility 

forecasts. The performance of proposed hybrid model is 

compared with the GARCH-normal, GARCH-student-t, 

GARCH-generalized error distribution, GARCH-skewed 

generalized error distribution and GARCH-EVT models 

for BIST-100 stock exchange index. The aim of this study 

is to evaluate the performance of wavelet based VaR model 

for daily-VaR forecast and also to show how distribution 

assumption made for residuals in GARCH model affects 

the daily-VaR forecasts.  Backtesting methodology is 

used to compare model performance. 

The rest of the paper organized as follows: Section II 

presents the VaR and EVT comprehensively. Section III 

presents GARCH models based on different distribution 

assumptions. Section IV presents the wavelet theory and 

wavelet based GARCH-EVT model. Section V presents 

empirical findings, model comparisons and final section 

presents the conclusion of the study.  

2.  VALUE-AT-RISK AND EXTREME VALUE 

THEORY 

Value-at-Risk (VaR) is defined as the largest possible loss 

of financial assets in a particular of time under a confidence 

level. VaR can be simply defined as follows:  

1(1 )VaR F    

where F  is the distribution function of financial losses, 
1F 

 denotes the inverse of F  and   is the quantile 

at which VaR is calculated. EVT is used to model tail 

behavior of loss distribution and extreme events in 

financial time series. Modeling the extreme events with 

EVT, Peaks Over Threshold (POT) methodology is used. 

POT method focuses on the distribution of exceedances 

over a threshold. 
uF , which is the conditional excess 

distribution can be defined as follows: 

 

 

( ) ( / ),    0u FF y P x u y x u y x u                                          (1) 

where X is a random variable, denotes the financial losses, u  is a threshold, y x u  are the excesses, called as 

extreme losses, Fx   is the right endpoint of F which is the distribution function of X . uF  can be written in 

terms of F as follows, 

Pr{ , } ( ) ( )
( ) = 

Pr( ) 1 ( )

( ) ( )
           =

1 ( )

u

x u y x u F y u F u
F y

x u F u

F x F u

F u

    


 





                                     (2)                                              

A theorem by Balkema and de Haan (1974) and Pickands (1975) indicates that, for sufficiently high threshold, the excess 

distribution function uF , can be approximated by Generalized Pareto Distribution (GPD): 
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 is shape parameter,   is the location parameter and   is the scale parameter for GPD.  

( )F x  can be isolated from Equation (2) and written as follows, 

( ) (1 ( )) ( ) ( )uF x F u F y F u                                    (4)                                                                                       

( )uF y  and ( )F u  are replaced respectively by GPD and ( )un N n , n  is the total number of observations and 

uN  is the number of observations above the threshold.  F̂ x can be obtained as follows: 

ˆ1/

ˆ1/

ˆ
ˆ ( ) (1 (1 ( )) (1 )

ˆ

ˆ
        1 (1 ( ))
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u u
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N N
F x x u
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                                                  (5)                                                        

pVaR  can be obtained by inverting Equation (6) for a given probability, 

ˆˆ
[( ) 1]
ˆp

u

n
VaR u p

N





                                                                     (6)                                                                           

3.  GARCH MODELS IN VAR ESTIMATION  

Garch-normal model 

Let  1ln 100t t tR S S    denotes the daily returns of the assets on time t  and 
tS represents the closed prices of 

the assets. Engle (1982) introduced the ARCH(q) model and expressed the conditional variance as a linear function of the 

past q  squared residuals. Bollerslev (1986) proposed a generalization of the ARCH model, GARCH(1,1) model with 

normal error distribution can be written as follows: 

2 2 2

1 1

,    . . . (0,1)

t t

t t t t

t t t

R e

e i i d N

e



  

    

 



  

                                                                  (7)                                                             

where respectively,    and 
2

t  are the conditional mean and variance. To ensure the stationarity condition and positive 

variance below equations must be hold. 

 1, 0, 0 and >0         

Log-likelihood function of GARCH-normal model under normality assumption can be written as: 

2 2

1 1

( ) 0.5 ln 2 ln
T T

t t

t t

L T   
 

 
    

 
                                                      (8)                                                   

According to GARCH-N model, one-day-ahead VaR forecast can be calculated as: 

1
ˆ( ).t t tVaR F                                                                             (9)                                                                    

where ( )tF  is the left quantile of standard normal distribution at  level.  

Garch-student-t model 
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Bollerslev (1986, 1987) proposed the standardized student-t distribution with 2   degrees of freedom. Student’s-t is 

symmetric distribution and for 4  , conditional kurtosis greater than 3, which exceeds the normal value. Under this 

specification, log-likelihood function, for a sample of T observations, can be written as follows: 

   
2

2

1

1 1 1
( ) ln ln ln ( 2) ln 1 ln 1

2 2 2 2 2

T
t

t

t

L T
 

    


       
                       

               (10) 

where ( )  is the gamma function and   is the thickness parameter of the distribution tails. The one-day-ahead VaR 

forecast based on student-t distribution can be calculated as follows: 

1
ˆ( ).t t tVaR F      

where ( )tF  is the left quantile of the student-t distribution at   level. 

Garch-GED model 

In order to modeling the excess kurtosis observed asset prices, assumption on 
t can be relaxed. Nelson (1991) proposed 

the generalized error distribution GED instead of assuming 
t is normally distributed. Under this specification, log-

likelihood function for GED distributed
t : 

 1 2

1

1 1 1
( ) ln (1 ) ln(2) ln ln

2 2 2 2

T
t

t

t
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
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     
                          (11)                             

where   is the tail-thickness parameter and  

1

2

2

1

3
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                                                                            (12) 

where (.)  is the gamma function. The Gaussian distribution is a special case of GED distribution when 2  . If 

2  , GED has fatter tails than Gaussian distribution. According to Nelson (1991) specification, log-likelihood function 

can be written as follows: 

 1 2

1

1 1 1
( ) ln 1 ln(2) ln ln( )

2 2

T
t

t

t

L



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  





    
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                          (13)                               

According to GARCH(1,1) model,  
2 2 2

1 1t t te        in the above equation. Parameters of the GARCH(1,1) 

model can be obtained by the numerical maximization procedure. The one-day-ahead VaR forecast based on GED 

distribution can be calculated as follows: 

 1
ˆ( , ).t t tVaR F       

where ( , )tF    is the left quantile of GED distribution at  level. 

Garch-Skewed GED model 

Lee et al. (2008) used the skewed GED distribution which provides a flexible distribution for modeling the empirical 

distribution of financial data. Probability density function of standardized skewed GED distribution can be written as follows: 

 
( ) exp

1 ( )

t

t

t

f C
sign



 

 


   

 
  
   

                          (14) 
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  (15)                                                      

where  is the shape parameter with constraint 0  , 

  is skewness parameter with 1 1   . Skewed 

GED distribution turns out to be the standard normal 

distribution when 2   and 0  . Log-likelihood 

function of GARCH-skewed GED model can be written as 

follows: 

 

/
( )

1 /

t t

t t

R
L

sign R



 
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 (16)

     

where is the parameter vector. The one-day-ahead VaR 

forecast based on skewed GED distribution can be 

calculated as follows: 

1
ˆ( , , ).t t tVaR F        

where ( , , )tF     is the left quantile of skewed GED 

distribution at   level. 

 

Garch-EVT model 

McNeil and Frey (2000) proposed a two-stage model 

known as GARCH-EVT. Proposed model can be 

summarized as follow:  

1. First step: GARCH (1,1) model is fitted to the 

return series by pseudo maximum likelihood 

estimation (PML) and gives the residuals for 

step-2 and also 1 day ahead predictions of

1 1 and t t   . 

2. Second step: EVT-POT method is applied to the 

residuals of GARCH model. The most important 

point of this method is selection of threshold u . 

Using the parameter estimation of EVT-POT 

method and also predictions of 1 1 and t t  

, 1tVaR  can be calculated easily. 

The one-day-ahead VaR forecast based on GARCH-EVT 

model can be calculated as follows: 

1
ˆ( ; , ).t t tVaR F        

where ( ; , )tF     is obtained by the POT estimation 

procedure.  

 

4. WAVELET ANALYSIS AND WAVELET BASED 

GARCH-EVT MODEL 

Wavelet analysis, in contrast to Fourier analysis, gives 

insight in local behavior, whereas Fourier analysis gives 

insight in global behavior. The Fourier transform processes 

time-series by transforming the signal from the time 

domain into the frequency domain. However local effects 

are only visible in the time domain and not in the frequency 

domain. Wavelet analysis makes use of a fully scalable 

window, which is shifted along the signal in order to 

capture local behavior in the time domain (Hamburger 

2003).  

The use of wavelet analysis enables the analysis of non-

stationary data, localization in time and time-scale 

decomposition, which proved to be useful in the analysis 

of economic and financial data (Ramsey 1999). A wavelet 

( )t  is function of time t  that satisfy admissibility 

condition, 

0

( )
d



  
f

C f
f




                    (17) 

where ( )f  is the Fourier transform of wavelet 

(t)  in the frequency domain. Different wavelet 

families are available to capable of adapting to and 

accentuating certain data characteristics such as Haar 

wavelet, Daubechies wavelet, Symlets wavelet and 

Coiflets wavelet. Wavelet analysis is able to perform a 

process of separation, which is referred to as wavelet 

transform. There are two available wavelet transform: 

Discrete Wavelet Transform (DWT) and Continuous 

Wavelet Transform (CWT). Since most of the time series 

have finite number of values, DWT is used in finance and 

economics applications. Discrete wavelets are defined as:  

 

 

j 2 j

j,k

j 2 j

j,k

2 2 t k

2 2 t k

   

   
                    (18)                                                                

where 
j,k  and 

j,k  respectively represent the scaling 

signals and wavelets. Due to DWT is based on the power 

of two, length of the signal is need to be an integer power 

of two. To overcome this shortage, Maximal Overlap 

Discrete Wavelet Transform (MODWT) is used instead of 

DWT. MODWT can handle any sample size and wavelet 

variance estimator of MODWT is asymptotically more 

efficient than the estimator based on DWT. MODWT, 

similar to DWT, is a linear filtering operation that 

transforms a series into coefficients related to variations 

over a set of scales. The MODWT is suitable for Multi-

Resolution Analysis (MRA) and in contrast to DWT, 
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MODWT is well-defined for all sample sizes N  

(Cornish and Percival 2006). In MODWT wavelet 

coefficients, 
,

ˆ
j kw , and scaling coefficients, 

,
ˆ

j kv , are 

obtained as follows: 

1

, ,  mod 

0

1

, ,  mod 

0

ˆˆ

ˆ ˆ





















j

j

L

j t j l t l N

l

L

j t j l t l N

l

w h X

v g X

                    (19)                                                              

where  
,

ˆ
j lh  and 

,
ˆ

j lg  are respectively wavelet and 

scaling filters. The largest decomposition level 

1,2,..,j J  is commonly determined such that 

2logJ N .  

In this study, we proposed wavelet based GARCH-EVT 

model that can be summarized as follows: 

Step 1. Financial returns series are decomposed into sub-

return series at different scale j  by the means of 

MODWT. 
jW  is the decomposed series by applying 

wavelet function and 
jV  is the decomposed series by 

applying the scaling function at scale 1,2,...,j J . 

( )wf t  represents detrended return series and ( )
jVf t

 
represents the level-j approximation of the original return 

series. ( )wf t  and  ( )
jVf t  are respectively defined as 

follows: 

1

( ) ( )

j

J

w j

j

V j

f t W t

f V








                         (20) 

where  ( )wf t  contains wavelet information of original 

returns series and  
JVf  captures the trend of original 

return series for first decomposition level. ( )wf t   and 

jVf  respectively referred  as detrended return series and 

approximation series.   

Step 2. Second step, benchmark GARCH(1,1) model is 

fitted to ( )wf t  and 
jVf  returns series by pseudo 

maximum likelihood estimation and gives the one-day-

ahead forecasts of 
, 1w t , 

, 1v t , 
, 1w t  and 

, 1v t

.  

Step 3. Third step, EVT-POT method is applied to the 

standardized residuals of GARCH(1,1) model obtained 

from  ( )wf t  wavelet based returns series. Threshold 

value of GPD can be determined according to the 90th 

quantile value of standardized residuals. Using forecasts of 

, 1w t , 
, 1v t , 

, 1w t  and 
, 1v t , 

1tVaR 
 can be 

calculated as follows: 

     1 , 1 , 1 , 1 1 1 2, , ,t
t w t v t w t vtVaR F w w       
       

where   
 , , ,t

F
   

is the corresponding quantile (

95th, 97.5th or 99th ) obtained by the POT 

estimation procedure. 
1w   and 

2w  are weights for 

forecasted volatilities. Optimal values of 
1w  and 2w  

can be obtained according to the following optimization 

problem:  

 , 1 1 , 1 2

1 2

1

2

 

1

0.10

0.10

w t v tMax w w

w w

w

w

  

 





                (21)                                           

Objective function maximizes the forecasted volatility 

under the given constraints. Last two constraints avoid to 

occur zero weights for both returns series and also take into 

account both trend and wavelet information into model at 

least 10 percent. 

 

5. DATA AND EMPIRICAL FINDINGS 

5.1 Data 

Due to the unpredictable events and also extreme 

movements were occurred in Turkey stock exchange in 

recent years, ISE-100 index is selected to analyze the 

performance of wavelet based GARCH-EVT model on real 

data. S&P-500 and Nikkei-225 are also selected to 

compare the results of ISE-100 index with other financial 

markets.  ISE-100, S&P-500 and Nikkei-225 respectively 

cover 1404, 1402 and 1367 daily observations from 

October 10, 2010 to July 31, 2015. Table 1 reports the 

descriptive statistics, unit root test results and ARCH-LM 

test results for all indexes.  

 

Table 1.  Descriptive statistics, ADF and ARCH-LM test results for ISE-100 index 

ISE-100 S&P-500 Nikkei-225 

N. of Obs. 1404 N. of Obs. 1402 N. of Obs. 1367 
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Minimum -0.1100 Minimum -0.0689 Minimum -0.1058 

Maximum 0.0700 Maximum 0.0463 Maximum 0.0494 

Mean 0.0003 Mean 0.0004 Mean 0.0005 

Median 0.0010 Median 0.0007 Median 0.0007 

Std. Deviation 0.0149 Std. Deviation 0.0099 Std. Deviation 0.0134 

Skewness -0.5850 Skewness -0.4598 Skewness -0.7155 

Kurtosis 7.011 Kurtosis 7.606 Kurtosis 7.489 

Jarque-Bera (JB) 1021.508 (0) Jarque-Bera (JB) 1289.041 (0) Jarque-Bera (JB) 1264.658 (0) 

ADF test ADF test ADF test 

D-F = -10.784 p-value = 0.01 D-F = -11.1706 p-value = 0.01 D-F = -11.4653 p-value = 0.01 

ARCH-LM test ARCH-LM test ARCH-LM test 

LM(2) 36.801 (0) LM(2) 272.8072 (0) LM(2) 95.1465 (0) 

LM(5) 72.396 (0) LM(5) 295.8739 (0) LM(5) 108.9578 (0) 

LM(10) 89.465 (0) LM(10) 327.310 (0) LM(10) 121.4966 (0) 

*p values are shown in brackets 

 

According to Table 1, means are closed to 0 for all market 

returns. ISE-100 and Nikkei-225 indexes have bigger 

losses and exhibit higher volatility than S&P-500 index.  

Skewness and kurtosis are significantly different from the 

0 and 3 for normal distribution and also JB test statistics 

are greater than the critical value at %5 level and p-value 

is 0. Therefore, log-returns of all indexes have the non-

normal characteristics, excess kurtosis and fat tails. 

According to ADF test, log-returns of all indexes have not 

contain unit root and ARCH-LM test indicates that ARCH 

effects exist for all indexes. 

 

 

 

5.2 Empirical Findings 

Table 2, represents the parameter estimation of 

GARCH(1,1)-normal, GARCH(1,1)-student’s-t, 

GARCH(1,1)-GED, GARCH(1,1)-skewed GED, 

GARCH(1,1)-EVT, W-GARCH(1,1)-EVT models for 

three indexes. Threshold value of GPD is determined with 

respect to 90th quantile of the standardized residuals. To 

implement W-GARCH-EVT model Haar wavelet is 

selected as wavelet family because of its simplicity. 

Conditional variance parameters are highly significant and 

0, , 0 and 1          conditions are 

hold to ensure the positive variance and stationarity 

condition.

Table 2.  Parameter estimates of GARCH(1,1) model for three indexes 

Parameter ISE-100 S&P-500 Nikkei-225 

Normal Distribution 

  
0.000014 0.000004 0.000007 

(0.000004) (0.000001) (0.000002) 

  
0.115529 0.132985 0.108763 

(0.020228) (0.020696) (0.018799) 

  
0.825528 0.827618 0.854564 

(0.029143) (0.02302) (0.02422) 

LL 3986.3 4679.2 4038.64 

Student's t Distribution 

  
0.000009 0.000004 0.000006 

(0.000004) (0.000001) (0.000002) 
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  
0.076194 0.143488 0.088476 

(0.020749) (0.027886) (0.020138) 

  
0.881708 0.824626 0.877095 

(0.034727) (0.028338) (0.026974) 

  
6.506 5.57 9.927 

(1.068) (0.918575) (2.368) 

LL 4023.6 4706.06 4053.66 

Generalized Error Distribution 

  
0.000012 0.000004 0.000007 

(0.000004) (0.000001) (0.000002) 

  
0.094931 0.13897 0.098565 

(0.022041) (0.026437) (0.020936) 

  
0.852554 0.822653 0.866207 

(0.034544) (0.028625) (0.027381) 

  
1.364 1.294 1.493 

(0.067691) (0.068933) (0.082621) 

LL 4018.1 4712.22 4053.08 

Skewed Generalized Error Distribution 

  
0.000011 0.000003 0.000006 

(0.000004) (0.000001) (0.000002) 

  
0.086264 0.135761 0.095597 

(0.020819) (0.025208) (0.019794) 

  
0.863473 0.826555 0.869869 

(0.034415) (0.02787) (0.025828) 

  
0.868651 0.901101 0.905353 

(0.031729) (0.029434) (0.034725) 

  
1.384 1.345 1.571 

(0.069421) (0.072513) (0.092393) 

LL 4026.42 4716.77 4056.62 

Generalized Pareto Distribution 

  
0.0000139 0.00000368 0.000007 

(0.000004) (0.000001) (0.0000011) 

  
0.115576 0.132963 0.108763 

(0.020228) (0.020696) (0.018799) 

  
0.82518 0.82737 0.854199 

(0.029143) (0.02302) (0.02422) 

  0.09963839 -0.3058944 0.04754548 

  0.61521458 0.8580823 0.57497616 

LL 3986.29 4679.2 4038.64 
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Standard errors are presented in parentheses. 

 

5.3. Backtesting Results 

To compare the forecasting ability of these models in terms 

of VaR forecasts, backtesting methodology is used. Kupiec 

(1995) proposed a Likelihood Ratio (LR) test for 

evaluating the model accuracy. The LR test statistic can be 

written as follows: 

01

01
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ˆ (1 )

nn

uc nn

p p
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 
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         (22)               

where 1 0 1
ˆ ( )n n n    is the maximum likelihood 

estimation of p , 1n  represents the total violations and 

0n
 
represents the total non-violations forecasts. Under 

the null hypothesis 0
ˆ( : )H p  , LR statistics follows 

a chi-square distribution with one degrees of freedom. Root 

mean square error (RMSE) also can be used to evaluate the 

overestimate or underestimate positions of the models for 

VaR forecasts. RMSE can be calculated as  
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2
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            (23)                                                           

where  
tVaR  and 

tr  respectively represent the VaR 

forecast and return values for time t . In this study RMSE 

is calculated only for negative log-returns. Left tail of the 

distribution which contains the financial losses is 

considered.  

Rolling window estimation procedure is used to evaluate 

the out of sample performance of models. Window length 

is differently determined for all indexes to evaluate out of 

sample performance of models with equal forecast period 

which contains 398 daily observations. Window lengths of 

equity indexes are determined as follows: 1006 for ISE-100, 

1004 for S&P-500 and 969 for Nikkei-225 indexes.  

Table 3 represents the backtesting results for ISE-100 

index. According to backstesting results, GARCH-skewed 

GED, GARCH-EVT and W-GARCH-EVT models have 

the same violations at %95 and % 99 confidence levels. 

According to the LR-uc statistic value, there is no 

difference between these three models for both confidence 

levels. RMSE can be used in this case to decide which 

model is better than others.  

 

Table 3.  Out of sample performance of models according to bactesting results for ISE-100 index  

%95 confidence level 

W-GARCH-EVT 

1  
0.0000161 0.0000142 0.0000131 

(0.000003) 0.000004 0.000012 

1  
0.050337 0.050075 0.051526 

(0.009735) 0.002681 0.005474 

1  
0.900047 0.900017 0.900268 

(0.023219) 0.004412 0.011681 

2  
0.00002 0.0000121 0.000018 

(0.000005) 0.000002 0.000002 

2  
0.373369 0.273073 0.396863 

(0.059769) 0.039011 0.05238 

2  
0.483288 0.688103 0.425862 

(0.0734) 0.057467 0.044284 

  0.1192443 -0.1228539 0.1073522 

  0.5569976 0.7820656 0.5476745 

LL1 4532.53 4382.46 3781.6 

LL2 3998.68 5240.83 4575.84 
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ISE-100 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 20 22 0.226 (0.635)  

GARCH-student's t 398 20 23 0.485 (0.486) 

GARCH-GED 398 20 20 0.001 ( 0.982) 

GARCH-skewed GED 398 20 16 0.86 (0.354) 

GARCH-EVT 398 20 16 0.86 (0.354) 

W-GARCH-EVT 398 20 16 0.86 (0.354) 

%99 confidence level 

ISE-100 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 4 9 4.711 (0.03) 

GARCH-student's t 398 4 5 0.244 (0.621) 

GARCH-GED 398 4 7 1.888 (0.169) 

GARCH-skewed GED 398 4 4 0 (0.992) 

GARCH-EVT 398 4 4 0 (0.992) 

W-GARCH-EVT 398 4 4 0 (0.992) 

 

RMSE values of the three models are given in Table 4 W-GARCH-EVT has minimum RMSE value for % 99 confidence 

levels and GARCH-skewed GED has minimum RMSE value for  %95 confidence level. W-GARCH-EVT is outperformed 

at higher confidence level according to both RMSE and LR-uc statistic values for ISE-100 index.  

 

Table 4.  RMSE values of the models for ISE-100 index 

Models (ISE-100) RMSE 

GARCH-skewed GED(0.01) 0.238029567 

GARCH-skewed GED(0.05) 0.126702128* 

GARCH-EVT(0.01) 0.263801298 

GARCH-EVT(0.05) 0.139166049 

W-GARCH-EVT (0.01) 0.236073666** 

W-GARCH-EVT (0.05) 0.129426265 
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Figure 1. Daily VaR forecasts for ISE-100 index at %95 confidence level 

 

 

Figure 2.  Daily VaR forecasts for ISE-100 index at %99 confidence level 

 

Figure 1 and Figure 2 represent the daily VaR forecasts for 

ISE-100 index at % 95 and %99 confidence levels. As it 

seems in Figure 1 and Figure 2, Due to GARCH-EVT 

model gives big response to the changing volatility, 

GARCH-EVT model is overestimation position in most 

instances according to W-GARCH-EVT. 

Table 5. represents  the backtesting results for S&P-500 

index. According to backstesting results, despite the fact 

that GARCH-EVT has the minimum violation value for 

both confidence levels, due to the smallest LR-uc statistic 

value indicates the best performed model, W-GARCH-

EVT model has the best predictive performance for both 

confidence levels. GARCH-EVT model produces the 

overestimation VaR forecasts.  

 

 

Table 5.  Out of sample performance of models according to bactesting results for S&P-500 index 
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GARCH-sged(0.01) GARCH-norm(0.01) GARCH-EVT(0.01)

W-GARCH-EVT (0.01)
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%95 confidence level 

S&P-500 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 20 26 1.803 (0.179) 

GARCH-student's t 398 20 27 2.41 (0.121) 

GARCH-GED 398 20 26 1.803 (0.179) 

GARCH-skewed GED 398 20 23 0.485 (0.486) 

GARCH-EVT 398 20 16 0.859 (0.353) 

W-GARCH-EVT 398 20 21 0.0629 (0.8019) 

%99 confidence level 

S&P-500 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 4 9 4.711 ( 0.03) 

GARCH-student's t 398 4 6 0.896 (0.344) 

GARCH-GED 398 4 6 0.896 (0.344) 

GARCH-skewed GED 398 4 4 0 (0.992) 

GARCH-EVT 398 4 2 1.217 (0.2698) 

W-GARCH-EVT 398 4 4 0 (0.992) 

 

RMSE is calculated only for best performed models. W-GARCH-EVT has minimum RMSE value for % 99 confidence 

levels and GARCH-skewed GED has minimum RMSE value for  % 95 confidence level. W-GARCH-EVT is 

outperformed at high confidence level according to both RMSE and LR-uc statistic values for S&P-500 index.  

 

Table 6.  RMSE values of models for S&P-500 index 

Models RMSE 

GARCH-skewed GED(0.01) 0.13208733 

GARCH-skewed GED(0.05) 0.07224983* 

GARCH-EVT(0.01) 0.15851284 

GARCH-EVT(0.05) 0.08849093 

W-GARCH-EVT(0.01) 0.13001309** 

W-GARCH-EVT(0.05) 0.07364195 
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Figure 3.  Daily VaR forecasts for S&P-500 index at %95 confidence level 

 

 

Figure 4. Daily VaR forecasts for S&P-500 index at %99 confidence level 

 

Figure 3 and Figure 4 represent the daily VaR forecasts for 

S&P-500 index at % 95 and %99 confidence levels. The 

results of S&P-500 index are very similar to results of ISE-

100 index. GARCH-EVT model gives bigger response 

than W-GARCH-EVT to changing volatility that causes to 

occur overestimation VaR forecasts. 

Table 7 represents the backtesting results for Nikkei-225 

index. Backtesting results show that GARCH-EVT and W-

GARCH-EVT models are outperformed according to LR-

uc statistic values for both confidence levels. Due to the 

smallest LR-uc value indicates the best performed model, 

W-GARCH-EVT model is better predictive performance 

than GARCH-EVT at %99 confidence level.  

  

Table 7.  Out of sample performance of models according to backtesting results for  Nikkei-225 index  

%95 confidence level 

Nikkei-225 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 20 23  0.485 (0.486) 

GARCH-student's t 398 20 23  0.485 (0.486) 

GARCH-GED 398 20 23  0.485 (0.486) 
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GARCH-skewed GED 398 20 21 0.063 (0.802) 

GARCH-EVT 398 20 19 0.0434 (0.834) 

W-GARCH-EVT 398 20 21 0.063 (0.802) 

%99 confidence level 

Nikkei-225 Number of Forecasts Expected Violation Observed Violation LR-uc 

GARCH-normal 398 4 12 10.611 (0.001) 

GARCH-student's t 398 4 10 6.479 (0.011) 

GARCH-GED 398 4 9  4.711 ( 0.03) 

GARCH-skewed GED 398 4 7 1.888 (0.169) 

GARCH-EVT 398 4 3 0.266 (0.605) 

W-GARCH-EVT 398 4 4 0 (0.992) 

 

Table 8 indicates the RMSE values of best performed models. Although GARCH-EVT model has smaller LR-uc value than 

W-GARCH-EVT model at %95 confidence level, RMSE value indicates that W-GARCH-EVT model is performed better 

than GARCH-EVT for both confidence levels. 

 

Table 8.  RMSE values of models for S&P-500 index 

Models RMSE 

GARCH-EVT(0.01) 0.203544522 

GARCH-EVT(0.05) 0.117238362 

W-GARCH-EVT (0.01) 0.200064962** 

W-GARCH-EVT (0.05) 0.111200969* 

 

 

Figure 5. Daily VaR forecasts for Nikkei-225 index at %95 confidence level 
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Figure 6.  Daily VaR forecasts for Nikkei-225 index at %99 confidence level 

 

Figure 5 and Figure 6 represent the daily VaR forecasts for 

Nikkei-225 index at %95 and %99 confidence levels. The 

results of Nikkei-225 index are very similar to results of 

ISE-100 and also S&P-500 indexes. GARCH-EVT model 

produce overestimation VaR forecasts at high quantile. 

 

6. CONCLUSION 

This paper applies wavelet analysis to value-at-risk 

forecasts in ISE-100, S&P-500 and Nikkei-225 indexes 

and improves forecasting accuracy at higher confidence 

levels. The models based on past volatility rather than the 

extreme observations cannot be able to capture 

unpredictable and extreme losses. Proposed hybrid model 

combines the EVT and wavelet analysis to capture the 

extreme movements in financial markets. The contribution 

of this paper can be summarized as follows. First of all W-

GARCH-EVT has demonstrated its capability to improve 

the reliability of VaR forecasts at high confidence levels 

for three financial markets. Then considering the 

overestimation problem of GARCH-EVT model, W-

GARCH-EVT model produces reliable VaR forecasts and 

finds a solution to overestimation problems of VaR models. 

For these reasons, wavelet based GARCH-EVT model can 

be used to forecast market value-at-risk by financial 

institutions. 
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