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ABSTRACT 

In this study, we build a Markov chain model for the earthquakes in Southwestern China by following the maximum entropy 

principle while the states of Markov chain are the co-occurrence of earthquakes with different magnitudes.  In this case, an 

approximation is to focus on just the occurrences of the most serious magnitude earthquakes and neglect the others.  Our 

approximation to this situation is to take all magnitude earthquakes into account if they occur at least once in any given period.  

In order to reveal the feature of this Markov chain in respect of the first passage time distributions, we run a long-term 

simulation with the occurrences of all the 3 categories of earthquakes.  Finally, we give both the fitted distributions and 

multinomial approximations for the distribution of the first passage time for some states. 

Key words:  Discrete-time Markov chain, Entropy, First passage time, Multinomial distribution approximation, Earthquakes 

in southwestern China 

 

1.  INTRODUCTION 

Consisting of Tibet Autonomous Region, Sichuan 

Province, Chongqing Municipality, Yunnan Province 

and Guizhou Province, southwestern China is the area 

that most suffered from earthquakes in China through 

1970 to 2015.  While the Sichuan-Yunnan region in 

southwest China lays on the boundary between Tibetan 

Plateau and South China platform, this region becomes 

an earthquake prone area in Southwestern China [1].  

Moreover, Tibet Autonomous Region takes a part of the 

Alpine-Himalayan seismic belt which makes 

Southwestern China more vulnerable to earthquakes.   

Nowadays it is widely accepted that it is impossible to 

predict the exact time, place and magnitude of a coming  

 

 

earthquake.  However, we can still use statistical tools in 

cooperation with the researchers in the field of 

seismology and geology to estimate seismic activity in a 

certain period.  In recent years there are lots of studies 

focusing on to estimate the probability of earthquakes’ 

occurrence in certain periods.  Using Markov chain 

model for earthquake analysis becomes popular in 

earthquake forecasting studies recently.  In 20th century 

many researchers treated earthquake sequencing as a 

Markov process to explore the aftershocks [2] [3] [4].  In 

the beginning of 21st century Markov chain modelling 

started to be used as a tool in several studies in regional 

earthquake forecasting [5] [6] [7].  Also there are some 

attempts to view the global seismic activities, Vasudevan 

and Cavers constructed a directed graph to show a 

Markov chain of global earthquake sequence [8] [9]. 
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On the other hand, in order to build a suitable Markov 

chain model, a reasonable time interval, which we see it 

as a single period, is needed to be found.  By applying 

the maximum entropy principle Ünal and Çelebioğlu 

obtained a suitable time interval calculated for 

constructing a Markov chain with a finite state space [10].  

In this study we are going to follow the maximum 

entropy principle as well. 

Another interesting and meaningful topic that we focus 

on is the first passage time between two different states, 

or for the same state that is time of recurrence.  Harris 

has investigated the first passage time and recurrence 

distributions in several special cases like random walks 

and large n-state finite Markov chains [11].  Harrison and 

Knottenbelt also explored the characteristics of passage 

time distributions in large n-state Markov chains, and 

applied their implementation in substantial Markov 

chains with over 1 million states and semi-Markov 

chains [12].  Gül and Çelebioğlu have obtained 

distribution of the first passage time relating to lumped 

states for an irreducible Markov chain with finite states 

[13].  And in this study we find the approximate 

distributions of first passage times and recurrence times 

of an irreducible Markov chain with finite states. 

In the introduction section our research problem has been 

put up.  Our data source and methodology are given in 

Section 2.  In Section 3 our modelling procedure of 

Markov chain application on earthquakes occurring in 

southwestern China is shown and meanwhile the 

obtained results also take a part in Section 3.  

Conclusions and further discussions are given in Section 

4. 

2. DATA AND METHODOLOGY 

2.1. Data Source 

In this study our data source is obtained from China 

Earthquakes Networks Center (CENC).  According to 

the data source during Jan 1, 1970 and Dec 31, 2015, 

there were a total of 11007 earthquake occurrences in 

southwestern China.  Considering about the magnitude 

of those earthquakes occurred in SE China, we can figure 

out that there are 8674 out of 11007 times that the 

magnitudes are no more than 4, and 2024 times that the 

magnitudes of earthquakes 4 5M   , while 

5M    earthquakes which could make a great damage 

to human beings occurred 309 times during that period.  

Inspired by the idea of Ünal and Çelebioğlu, we 

classified those earthquakes into 3 different types by 

their magnitudes as we mentioned before [10].  The 

application of this classification is given in Section 3, and 

it is an important step of building our model. 

2.2. Methodology 

2.2.1. Markov Chain 

In probability theory, a stochastic process is a collection 

of random variables considering of the time.  The time 

will either be a subset of natural numbers or a subset of 

[0, ∞), which will be nonnegative real numbers [14].  

Named after the Russian mathematician Andrey A. 

Markov, Markov process is a stochastic process that 

satisfies the Markov property, which can be presented as 

follows:  Let ( , , )P be a probability space with a 

filtration ( , t )t T , for some (totally ordered) index 

set T ; and let ( , )S  be a measure space.  Then an S-

valued stochastic process ( , )tX X t T    adapted 

to the filtration is said to possess the Markov property 

with respect to the { }t , if for each A  and each 

,s t T  with s t ,

( | ) ( | )t s t sP X A P X A X   .  And for 

discrete-time case, S  is a discrete set with the discrete 

sigma algebra, T  is the set of natural numbers and then 

we have: 

 

 

1 2 2 0 0 1( | , ,..., ) ( | )n n n n n nP X j X i X x X x P X j X i          .   

From this we can easily see that the probability of being at the state j at n th step only depends on the state at ( 1)n st 

step, so here we can describe Markov chain with the word "memoryless" [15].   

Definition 2.2.1.1 
( )

,0 0Pr( | )n

ij np X j X i   , , ,i j S n N    is n-step transition probability from state i to state 

j, and the process begins at t=0.  When n=1, it becomes single-step probability from state i to state j.  And when the transition 

probabilities are independent of the time parameter n, which means ,i j S  ,

1 0 2 1 1Pr( | ) Pr( | ) ... Pr( | ),n nX j X i X j X i X j X i n          .   

Any Markov chain which satisfies this property is called time-homogeneous, or stationary Markov chain. 

The transition matrix P  is the N N  matrix whose elements are 
ijp  which is the one-step transition probability from 

state i to state j, and it is a stochastic matrix, i.e., , ,0 1,iji j S p     and , 1ij

j s

i S p


   .   
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Theorem 2.2.1.1  For a Markov chain X, m   , we have 

0 1 1 2 11 1 1 1 0 0P{ ,..., , | } ...
m mm m m m x x x x x xX x X x X x X x p p p
       . 

From Theorem 2.2.1.1 we can obtain the following corollary. 

Corollary 2.2.1.1 For a Markov chain, we denote 
0( )i  as the probability of the initial state i, i S  . Hence we have 

0 1 1 2 10 0 1 1 1 1 0 0P{ , ,..., , } ( ) ...
m mm m m m x x x x x xX x X x X x X x x p p p
      . 

 

Definition 2.2.1.2 For any two states i and j, we denote 
( ) ,n

ijf n   to be the first passage time probability 

that the chain spends n steps for passing to state j from 

state i for the first time. 

From this definition we can easily get that 

( )
( 1)

{ }

1

2,3,4,...

ij
n

n
ij

ib bj

b S j

p n

f p f n

 




  

   

Definition 2.2.1.3 
( )

1

n

ij ij

n

f f




  is called the ever 

reaching probability, which is the probability of reaching 

state j from state i in finite steps. 

Definition 2.2.1.4 A state j is said to be accessible from 

a state i (written i → j), if 
( ), 0n

ijn p    [16].  

Definition 2.2.1.5 A state i is said to communicate with 

state j (written i ↔ j), if both i → j and j → i [16]. 

Definition 2.2.1.6 A set of states C is a communicating 

class, if , ,i j C i j    [16]. 

Definition 2.2.1.7 A Markov chain is said to be 

irreducible, if its state space is a single communicating 

class [16]. 

It is obvious that if it is possible to reach to any state from 

any state, that Markov chain is an irreducible Markov 

chain. 

Definition 2.2.1.8 A state i is said to be transient, if

1,iif i S   . 

Definition 2.2.1.9 A state i is said to be recurrent, if it is 

not a transient state.  Recurrent states which have an 

infinite mean recurrence time are null recurrent.  

Recurrent states which have a finite mean recurrence 

time are positive recurrent. 

Definition 2.2.1.10 A state i has period k if any return to 

state i must occur in multiples of k time steps, i.e., 

0gcd{ 0:Pr( | ) 0}nk n X i X i      . If 

1k  , then the state is said to be aperiodic, which 

means the returns to state i can occur at irregular times.  

When 2,k k    , the state i is said to be periodic  

 

with period k.  A Markov chain is said to be aperiodic if 

every state is aperiodic, i.e., 1k   . 

 

Theorem 2.2.1.2 If a Markov chain is irreducible 

aperiodic with finite states, and P is the transition matrix 

of the Markov chain, then the system of equations  

 

' '

1i

i S

P 





 

   has a unique positive solution.  This 

solution is called the limit distribution of Markov chain.  

Then we have 
( )lim n

ij j
n

p 


  and 

( )

( )

0

1 1
lim

i

n

ii inn
iin

p
nf








  


 , where 

i  is 

the mean return time of state i. 

2.2.2. Entropy 

Entropy is a concept first used in Physics to describe the 

system complexity.  In information theory, entropy is the 

average information contained in each message.  In 1948 

Shannon brought a study with the idea that entropy plays 

an important role in measuring the information choice 

and uncertainty, and the source with the maximum 

entropy subject to the statistical conditions is preferred to 

be retained [17].  In 1956, Jaynes’s study showed that the 

maximum-entropy estimate is the least biased estimate 

possible on the given information [18]. 

For the discrete random variables entropy is defined as 

follows: 

Definition 2.2.2.1 Let X be a random variable having the 

values
1 2{ , ,... }nx x x  and , 1,2,...ip i n  

represents the probability of 
iX x  respectively.  The 

entropy of X  is defined as 

1

( ) log
n

i i

i

H X c p p


    , where c is an arbitrary 

positive constant, and is taken as 1c    when the 

logarithm base is 2.  In addition, log0 is regarded as 0 

when we calculate. 

Moreover entropy has an application in Markov chains 

[19]. 
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Definition 2.2.2.2 Suppose Markov chain X  is 

irreducible and aperiodic and recurrent, and has a 

stationary distribution.  Let S  be the state space of the 

Markov chain X  with the transition matrix 

[ ]ij N NP p  , and  , its stationary distribution.  

Then the entropy of Markov chain is given by:

2

,

( ) logi ij ij

i j S

H X p p


  . 

3. APPLICATION TO EARTHQUAKE DATA 

3.1. Aim and Content of the Application 

In this study, it is aimed to estimate the seismic risk in 

southwestern China.  In order to accomplish this task we 

make use of the application of Markov chain model and 

entropy theory. 

3.2. Application Procedure 

As mentioned before, there were a total of 11007 

earthquake occurrences in southwestern China in the 

years 1970-2015.  We classified those earthquakes by 

their magnitudes M into 3 classes: class I, 4M  ; 

class II, 4 5M  ; and class III, 5M  . 

For the purpose of building a Markov chain, it should be 

decided the state space of the Markov chain.  Here we 

use the number 1 to show that there is at least once the 

certain class earthquake occurrence in the given period, 

otherwise we record the earthquake situation as 0 in that 

period.  For example, if the class III earthquake didn’t 

occur in a certain period, then we record the class III 

earthquake occurrence with the number 0.  Since we 

categorized earthquakes into 3 classes, we have a series 

of binary numbers, which is from 000 to 111, to express 

all the states in the given period.  For example, state 101 

means the class III and class I earthquake occurred at 

least once, and class II did not occurred even once in that 

period.  Therefore state space of the Markov Chain is 

{0,1,2,...7}S  , as in Table 1. 

 

Table 1. List of all states. 

State Class III Class II Class I 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

And now our work becomes to find a suitable time interval t  for obtaining realization steps of Markov chain.  Finding 

a suitable t  follows these 3 principles: 1) t  should not be so small that there are too many transitions from state 0 to 

state 0; 2) t  should not be too large that there are over transitions from state 7 to state 7; 3) t  should be with a big 

entropy of the Markov chain.  At the same time we also need to keep in mind that as t  increases, the number of 
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sampled transition gets diminishing, which makes the result less robust [6].

 

Figure 1. Plot of entropy versus t . 

By those 3 principles, we finally found a 3t   days that fits to our Markov chain model, and according to this time 

interval there are a total of 5600 periods through 1970-2015.  With this t  we obtained the matrix of transition 

frequencies N , and the estimated transition matrix P  of Markov chain, respectively, as follows: 

1039 466 172 157 45 14 21 20

492 1168 106 378 5 20 11 25

181 104 52 46 11 2 6 3

148 409 43 179 1 7 3 22

38 8 8 3 5 0 6 0

11 18 5 11 0 0 0 1

18 7 14 6 0 1 4 1

7 25 5 32 1 2 0 6

N

 
 
 
 
 
 
 
 
 
 
 
  

; 

  

0.5372 0.2410 0.0889 0.0812 0.0233 0.0072 0.0109 0.0103

0.2231 0.5297 0.0481 0.1714 0.0023 0.0091 0.0050 0.0113

0.4469 0.2568 0.1284 0.1136 0.0272 0.0049 0.0148 0.0074

0.1823 0.5037 0.0530 0.2204 0.0012 0.0086 0.0037 0.0271

0.5588
P 

0.1176 0.1176 0.0441 0.0735 0 0.0882 0

0.2391 0.3913 0.1087 0.2391 0 0 0 0.0217

0.3529 0.1373 0.2745 0.1176 0 0.0196 0.0784 0.0196

0.0897 0.3205 0.0641 0.4103 0.0128 0.0256 0 0.0769

 
 
 
 
 
 
 
 
 
 
 
  

. 

3.3. Markov Chain Analysis 

For the elements of transition probability matrix we can give some comments which reveal the co-occurrence of 

earthquakes. For example, for the state 5 we have 055 p , which means that an occurrence of state 5 is almost not 

followed by itself in the next period, but the transition probability 
51 0.3913p    points out that state 1 is the most 

probable among others after state 5. In respect of cases, the foregoing comment is identical to say: cases III and I together 

is not followed by itself, but case I is the most probable case, which is consistent with the fact that the seismicity is 

reduced after high magnitude earthquakes. 

After obtaining the transition matrix, it is necessary to verify whether this process is a Markov chain.  Besides this, we still 

need to move on the first passage time distribution problem. 
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3.3.1. Chi-Square Test 

For the purpose of testing whether our observed data can be accepted to be a Markov chain, here we use a chi-square test 

with the hypothesis: H0: Our observed data can be accepted as a Markov chain with transition matrix P; H1: Our observed 

data cannot be accepted as a Markov chain with transition matrix P. 

Here we have the expected transition frequency matrix:

1022 486 172 146 39 13 15 10

490 1166 114 407 6 14 13 22

177 104 55 56 11 0 7 6

147 413 39 179 2 8 6 29

30 8 11 2 2 0 9 0

8 19 5 2 0 0 0 1

22 4 17 6 0 0 4 1

6 33 3 25 2 0 0 5

 
 
 
 
 
 
 
 
 
 
 
  

  

The transition frequency matrix of our observed data has been shown in Section 3.2.  And now we have got a chi-square 

test result 
2 2

43,0.0558.508 59.304cal     , and that means H0 is accepted. 

3.3.2. Distribution of First Passage Time and 

Recurrence Time 

We obtained the limiting distribution of our Markov chain as follows:  

 0.3454 0.3938 0.0723 0.1450 0.0122 0.0082 0.0091 0.0139  . 

For states 4, 5, 6 and 7, their probabilities in limiting 

distribution are less than 0.015 which can be regarded 

as rare states.  And the numbers of recurrences for states 

4, 5, 6 and 7 during 5,600 periods are 66, 45, 49 and 76, 

respectively.  So in order to figure out the features of 

this Markov chain, we run a 1,000,000-period 

simulation.  By the result of simulation, the number of 

recurrences for states 4, 5, 6 and 7 during 1,000,000 

periods are 11968, 8246, 9091 and 14017 times, 

respectively. 

Now we focus on state 4, which there only has 

occurrences of class III earthquakes.  We have 2 ways 

to find a fit distribution of recurrence time for state 4:1) 

Using software like EasyFit to fit a distribution to our 

data; 2) Figuring out a distribution with its original 

definition and test it through hypotheses.  For fitting 

distribution by using software, the result is shown as 

follows: The recurrence time distribution of state 4 for 

simulated data is said to be a Dagum distribution with 

parameters

0.22627, 2.8959, 162.4p     .  This 

result is accepted by Kolmogorov-Smirnov statistic 

value which is 0.0356 while the p-value is 0.2205.  The 

expectation of this Dagum distribution is 86.4, which 

means for approximately every 259.2 days a recurrence 

for state 4 is expected in southwestern China. 
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Figure 2. The fitting curve of recurrence time for state 4. 

From Table 2 in which expected frequencies of 

recurrence time of state 4 for simulated data is 

presented, we should notice that the expected frequency 

is no less than 5 until recurrence time is over 286 

periods.  Furthermore, expected frequency is a 

decreasing series as recurrence time increases.  Thus it 

is reasonable for us to combine those recurrence times 

whose expected frequencies are less than 5 into a single 

situation.  By doing this we are supposing to give an 

approximation to the distribution of recurrence time for 

state 4.  We come up with a multinomial distribution 

with parameters as 
1

( )
(1) (2) ( 1)

1, ,... ,1

n
k

n ij
ij ij ij k

ij ij ij ij

f
f f f

f f f f








, and n=286 

for state 4 case.  Here we use a chi-square test to verify 

the validity of this approximation to the distribution of 

recurrence time for state 4, and the hypotheses are:  H0: 

Approximation to the distribution of recurrence time of 

state 4 can be accepted as a multinomial distribution 
285

(k)

(1) (2) (285) 44

144 44 44

44 44 44 44

M( , ,... ,1 )k

f
f f f

f f f f




; H1: 

Approximation to the distribution of recurrence time of 

state 4 cannot be accepted as a multinomial distribution 
285

(k)

(1) (2) (285) 44

144 44 44

44 44 44 44

M( , ,... ,1 )k

f
f f f

f f f f




.  Since 

the chi-square statistic values are 
2 2

284,0.05310.2958 324.3051cal     , H0 is 

accepted. 

Table 2. Expected frequency of recurrence time for state 4. 

Recurrence Time Expected Frequency Recurrence Time Expected Frequency 

1 880 280 5.30 

2 197.70 281 5.24 

3 158.23 282 5.18 

4 134.41 283 5.12 

5 124.41 284 5.07 

6 119.82 285 5.01 

7 117.27 286 4.95 

8 115.50 287 4.90 

9 114.03 288 4.84 
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10 112.68 289 4.79 

… … … … 

 

Although the sample space of recurrence time for state 

4 in the long term is the set of positive integers, we still 

give a fitted approximation for state 4.  From this 

approximation we can see that the probability of single 

step recurrence for state 4 is 
(1)

44 7.35%f  , while 

the probability of recurrence time being more than one 

period is 92.65%.  Moreover according to the limiting 

distribution, the expectation of the recurrence time for 

state 4 is 82.3 periods, which means for approximately 

every 246.9 days a recurrence for state 4 is expected in 

southwestern China, meanwhile for the fitted 

multinomial distribution the expectation is 79.1 periods, 

which is about 237.3 days. 

Then we continue to focus on the first passage time 

from state 4 to state 7, which is the occurrence of class 

III earthquake only and the co-occurrence of all three 

category earthquakes.  From 1,000,000-period 

simulation, we can see that there are a total of 5908 first 

passage times from state 4 to state 7.  In Table 3 it 

shows expected frequency of first passage time from 

state 4 to state 7 in 5908-time first passage case. 

 

Table 3. Expected frequency of first passage time from state 4 to state 7. 

First Passage Time Expected Frequency First Passage Time Expected Frequency 

1 0 207 5.30 

2 64.45 208 5.23 

3 70.70 209 5.16 

4 72.70 210 5.10 

5 73.01 211 5.03 

6 72.58 212 4.97 

7 71.84 213 4.90 

8 70.99 214 4.84 

9 70.10 215 4.78 

10 69.21 216 4.71 

… … … … 

 

 

Figure 3. The fitting curve of first passage time from state 4 to state 7 

As shown in Figure 3, we found a 3-parameter Weibull 

distribution fitted for the distribution of first passage 

time from state 4 to state 7.  This Weibull distribution 

with parameters 

0.46037, 1.0827, 1      is accepted by 
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Kolmogorov-Smirnov statistic which is 0.01294 while 

the p-value is 0.99841.  The expectation of this 3-

parameter Weibull distribution is 78.0 periods, in other 

words, for nearly every 234 days a first passage from 

state 4 to state 7 is expected. 

Meanwhile we also give a multinomial approximation 

to the distribution of first passage time from state 4 to 

state 7.  This time we should notice that probability of 

single-step transition from state 4 to state 7 is 0, thus 

our multinomial approximation is a distribution with 

parameters 

211
( )

(2) (3) (211) 47

47 47 47 2

47 47 47 47

, ,... ,1

k

k

f
f f f

f f f f




, 

for x=2,3,…212.  This time we also use a chi-square 

test to verify the validity of this approximation to the 

distribution of first passage time from state 4 to state 7, 

and the hypotheses are:  H0: The approximation to the 

distribution of first passage time from state 4 to state 7 

can be accepted as a multinomial distribution 
211

( )

(2) (3) (211) 47

47 47 47 2

47 47 47 47

M( , ,... ,1 )

k

k

f
f f f

f f f f




; H1: The 

approximation to the distribution of first passage time 

from state 4 to state 7 cannot be accepted as a 

multinomial distribution 
211
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(2) (3) (211) 47
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k
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.  The 

chi-square statistic values are 
2 2

209,0.05209.4914 243.7272cal     , 

which means H0 is accepted. 

From this multinomial distribution, it can be seen that 

the 5th period has the most possible probability of first 

passage time from state 4 to state 7, and in this case the 

probability increases before the 5th period and decreases 

after the 5th period.  Furthermore, 74.8 periods is the 

expectation of the multinomial approximation for this 

case, which means for about every 224.4 days a first 

passage from state 4 to state 7 is expected. 

4. CONCLUSION AND DISCUSSIONS 

In this study we have built a Markov chain model based 

on the earthquake data of southwestern China.  It is 

verified that the observed data follows a Markov chain.  

Moreover in order to figure out features of this Markov 

chain we have run a 1,000,000-period simulation.  And 

simulated data are used to find a reasonable distribution 

of recurrence time and first passage time.  By using 

EasyFit software we find a fitted distribution of 

recurrence time for state 4, which is a Dagum 

distribution with parameters

0.22627, 2.8959, 162.4p      and we 

give a multinomial approximation 

285
(k)

(1) (2) (285) 44

144 44 44

44 44 44 44

M( , ,... ,1 )k

f
f f f

f f f f




 to the 

distribution of recurrence time for state 4.  Furthermore, 

we also explored the distribution of first passage time 

from state 4 to state 7.  A 3-parameter Weibull 

distribution with parameters

0.46037, 1.0827, 1      is fitted by 

EasyFit software, and a multinomial distribution 
211

( )

(2) (3) (211) 47

47 47 47 2

47 47 47 47

M( , ,... ,1 )

k

k

f
f f f

f f f f




 is given 

as a multinomial approximation to the distribution of 

first passage time from state 4 to state 7.  The difference 

found between the results fitted by software and given 

by approximation is needed to be discussed in a future 

study.  Moreover some interesting facts are needed to 

be discussed such as the single-step transition 

probability from state 4 to state 7 is 0 and the 5th period 

holds the largest probability of first passage time from 

state 4 to state 7, from the seismicity perspective. 

In this study we have investigated the distributions of 

the recurrence time of a rare state 4, the first passage 

time from a rare state 4 to a rare state 7.  The recurrence 

time of non-rare states, first passage time from a non-

rare state to a rare state and the first passage time from a 

rare state to a non-rare state in this southwestern China 

case will be discussed in our further study. 
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