
Gazi University Journal of Science 

GU J Sci  

29(3):645-650 (2016)  

 

 
 

 

 

 

Corresponding author, e-mail: omeracan@yahoo.com 

 

The Existence and Uniqueness of Periodic Solutions for A 

Kind of Forced Rayleigh Equation 

 

Omer ACAN 

  

Department of Mathematics, Faculty of Arts and Science, Siirt University, Siirt, Turkey 

 

 

Received:04/08/2015               Accepted: 16/12/2015 

ABSTRACT 

In this study, the coincidence degree theory has been used to determine new results on the existence and uniqueness 

of 𝑇-periodic solutions for a type of Rayleigh equation as follows 

𝑢′′(𝑡) + 𝑓(𝑡, 𝑢′(𝑡))𝑢′(𝑡) + 𝑔(𝑡, 𝑢(𝑡)) = 𝑝(𝑡). 
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1. INTRODUCTION 

The dynamic behaviors of Rayleigh-type equations with 

and without deviating arguments have been extensively 

studied. It is still being studied because of its applications 

in many disciplines such as mechanics, physics, 

engineering and various other technical fields. In the 

recent past, the Rayleigh equation and Rayleigh type 

equations have been studied. These studies were focused 

on existence and uniqueness of periodic solutions with 

and without deviating arguments. (see [1-10]).  

Recently, in 2008, Li and Huang [4] studied the 

Rayleigh equation of the form 

𝑢′′(𝑡) + 𝑓(𝑡, 𝑢′(𝑡)) + 𝑔(𝑡, 𝑢(𝑡)) = 𝑝(𝑡).                (1.1) 

They established sufficient conditions for the existence 

and uniqueness of T -periodic solutions of this equation. 

The aim of this work is to determine sufficient 

conditions for existence and uniqueness of T-periodic 

solutions of the Rayleigh equation of the following 

form 

 

𝑢′′(𝑡) + 𝑓(𝑡, 𝑢′(𝑡))𝑢′(𝑡) + 𝑔(𝑡, 𝑢(𝑡)) = 𝑝(𝑡) 

or an equivalent system 

{

𝑑𝑢

𝑑𝑡
= 𝑣(𝑡)                                                            

𝑑𝑣

𝑑𝑡
= −𝑓(𝑡, 𝑣(𝑡))𝑣(𝑡) − 𝑔(𝑡, 𝑢(𝑡)) + 𝑝(𝑡)

         (1.2) 

where 𝑝: 𝑅 → 𝑅 and 𝑓, 𝑔: 𝑅 × 𝑅 → 𝑅 are continuous 

functions, 𝑝 is 𝑇-periodic, 𝑓 and 𝑔 are 𝑇-periodic in the 

first argument with period 𝑇 > 0. 

2. PRELIMINARY RESULTS 

First, assume an operator equation in a Banach space 𝑋 

as follows  

𝐿𝑧 = 𝜆𝑁𝑧, 𝜆 ∈ (0,1)                                              (2.1) 

where 𝐿:𝐷𝑜𝑚𝐿 ∩ 𝑋 → 𝑋 is a linear operator and 𝜆 is a 

parameter. 𝑃 and 𝑄 represent two projectors, 

𝑃:𝐷𝑜𝑚𝐿 ∩ 𝑋 → 𝑋 and 𝑄: 𝑋 → 𝑋/𝐼𝑚𝐿. 

For easy understanding, the continuation theorem [1, 

p.40] has been explained as follows. 

 

Lemma 2.1. Let 𝑋  be a Banach space. Suppose that 

𝐿:𝐷𝑜𝑚𝐿 ⊂ 𝑋 → 𝑋  is a Fredholm operator with index 
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zero and 𝑁: �̅� → 𝑋  is L-compact on  �̅�  with 𝛺  open 

bounded in 𝑋. Moreover, assume that all the following 

conditions are satisfied. 

(i) 𝐿𝑧 ≠ 𝜆𝑁𝑧, for all 𝑧 ∈ 𝜕 𝛺 ∩ 𝐷𝑜𝑚𝐿, 𝜆 ∈ (0,1); 

(ii) 𝑄𝑁𝑧 ≠ 0, for all 𝑧 ∈ 𝜕 Ω ∩ 𝐾𝑒𝑟𝐿; 

(iii) The Brower degree 

𝑑[𝑄𝑁, 𝛺 ∩ 𝐾𝑒𝑟𝐿, 0] ≠ 0. 

Then equation 𝐿𝑧 = 𝑁𝑧 has at least one solution in �̅�. 

Second, the Brousk theorem has been described as 

follows: 

Lemma 2.2. ([2]). Suppose 𝛺 ⊂ 𝑅𝑛 is an open bounded 

set which including the origin and symmetric with 

respect to the origin, if 𝐴: �̅� → 𝑅𝑛 is a continuous 

mapping, and  

𝐴𝑧 = −𝐴(−𝑧) ≠ 0, 𝑧 ∈ 𝜕 𝛺, 

then 𝑑[𝐴, 𝛺 , 0] ≠ 0. 

For ease of exposition, throughout this paper we will 

adopt the following notations: 

|𝑢|𝑘 = (∫ (|𝑢(𝑡)|𝑘𝑑𝑡
𝑇

0

)

1
𝑘

,       

|𝑢|∞ = 𝑚𝑎𝑥
𝑡∈[0,𝑇]  

|𝑢(𝑡)|. 

Let us denote 

𝑋 = {𝑧 = (𝑢(𝑡), 𝑣(𝑡))
𝑇

∈ 𝐶(𝑅, 𝑅2): 𝑧 𝑖𝑠  𝑇 − periodic}, 

which is a Banach space endowed with the norm ‖. ‖ 

defined by 

‖𝑧‖ = |𝑢|∞ + |𝑣|∞, for all 𝑧 ∈ 𝑋. 

We define a linear operator 𝐿: 𝐷𝑜𝑚𝐿 ⊂ 𝑋 → 𝑋  by 

setting 

𝐷𝑜𝑚𝐿 = {𝑧 = (𝑢(𝑡), 𝑣(𝑡))
𝑇

∈ 𝐶1(𝑅, 𝑅2): 𝑧 𝑖𝑠  𝑇 − periodic} 

and 𝑧 ∈ 𝐷𝑜𝑚𝐿 

𝐿𝑧 = 𝑧′ = (𝑢′(𝑡), 𝑣′(𝑡))𝑇 .                               (2.2) 

Also define a nonlinear operator 𝑁:𝑋 → 𝑋 by setting 

𝑁𝑧 = (𝑣(𝑡), −𝑓(𝑡, 𝑣(𝑡))𝑣(𝑡) − 𝑔(𝑡, 𝑢(𝑡)) + 𝑝(𝑡))𝑇 . 
(2.3) 

In the context of (2.2) and (2.3), the operator equation 

𝐿𝑧 = 𝜆𝑁𝑧 

is equivalent to the following system 

 

(
𝑢′(𝑡)

𝑣′(𝑡)
) =  𝜆 (

𝑣(𝑡)

−𝑓(𝑡, 𝑣(𝑡))𝑣(𝑡) − 𝑔(𝑡, 𝑢(𝑡)) + 𝑝(𝑡)
) ,    𝜆 ∈ (0,1)                       (2.4) 

Again from (2.2) and (2.3), we can get 

𝐾𝑒𝑟𝐿 = 𝑅2, 

and 

 𝐼𝑚𝐿 = {𝑧 ∈ 𝑋:∫ 𝑧(𝑠)𝑑𝑠
𝑇

0

= 0}. 

Hence, the linear operator L is Fredholm operator with index zero. 

Define the continuous projectors 𝑃: 𝑋 → 𝐾𝑒𝑟𝐿 and 𝑄: 𝑋 → 𝑋/𝐼𝑚𝐿 by setting 

𝑃𝑧(𝑡) =
1

𝑇
∫ 𝑧(𝑠)𝑑𝑠
𝑇

0

 

and 

𝑄𝑧(𝑡) =
1

𝑇
∫ 𝑧(𝑠)𝑑𝑠
𝑇

0

. 

Thus, 𝐼𝑚𝑃 = 𝐾𝑒𝑟𝐿  and  𝐾𝑒𝑟𝑄 = 𝐼𝑚𝐿. Moreover, the generalized inverse (of L) 𝐾𝑝: 𝐼𝑚𝐿 → 𝐷𝑜𝑚𝐿 ∩ 𝐾𝑒𝑟𝑃 is described 

as  

(𝐾𝑝𝑧)(𝑡) =

(

 
 
∫ 𝑢(𝑠)𝑑𝑠
𝑡

0

−
1

𝑇
∫ ∫ 𝑢(𝑠)𝑑𝑠

𝑡

0

𝑑𝑡
𝑇

0

∫ 𝑣(𝑠)𝑑𝑠
𝑡

0

−
1

𝑇
∫ ∫ 𝑣(𝑠)𝑑𝑠

𝑡

0

𝑑𝑡
𝑇

0 )

 
 
, 𝑧(𝑡) = (

𝑢(𝑡)

𝑣(𝑡)
) 𝜖𝐼𝑚𝐿.                   (2.5) 

Therefore, from (2.3) and (2.5) it is easy to see that N is L-compact on Ω̅, where Ω is any open bounded set in X. 
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Lemma 2.3. ([4]).Assume that the following condition holds. 

(H1) (𝑔(𝑡, 𝑢1) − 𝑔(𝑡, 𝑢2))(𝑢1 − 𝑢2) < 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑅, 𝑢1, 𝑢2 ∈ 𝑅 and 𝑢1 ≠ 𝑢2. 

Then system (1.2) has at most one T-periodic solution. 

3. MAIN RESULTS 

Theorem 3.1. Let (H1) hold. Furthermore, assume that the following conditions ensure. 

(H2) There exists a positive constant 𝑑∗such that 

𝑢(𝑔(𝑡, 𝑢) − 𝑝(𝑡)) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑅, |𝑢| ≥ 𝑑∗.   

(H3) There exists nonnegative constants r and K such that  

𝑟 <
1

𝑇
, |𝑓(𝑡, 𝑢)| ≤ 2𝑟 +

𝐾

|𝑢|
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑅, 𝑢 ∈ 𝑅\{0} 

Then system (1.2) has a unique T-periodic solution. 

Proof. By Lemma 2.3, along with (H1), it can be easily seen that system (1.2) has at most one T-periodic solution. Therefore, 

to prove theorem 3.1, it is enough to show that system (1.2) has at least one T-periodic solution. For it, we shall apply 

Lemma 2.1. Firstly, we shall claim that set of all possible T-periodic solutions of (2.4) are bounded. 

Let 𝑧 = (𝑢(𝑡), 𝑣(𝑡))
𝑇
∈ 𝑋 be an arbitrary T-periodic solution of (2.4). From (2.4), we get  

𝑢′′ + 𝜆𝑓 (𝑡,
1

𝜆
𝑢′(𝑡)) 𝑢′(𝑡) + 𝜆2[𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)] = 0 , 𝜆 ∈ (0,1),                 (3.1) 

Set 

𝑢(𝑡1) = max
𝑡∈𝑅

𝑢(𝑡) , 𝑢(𝑡2) = min
𝑡∈𝑅

𝑢(𝑡) , where 𝑡1, 𝑡2 ∈ 𝑅. 

Then, we get 

𝑢′(𝑡1) = 𝑢′(𝑡2) = 0, 𝑢′′(𝑡1) ≤ 0, and       𝑢′′(𝑡2) ≥ 0. 

It is follows from (3.1) that 

𝑔(𝑡1, 𝑢(𝑡1)) − 𝑝(𝑡1) ≥ 0  and 𝑔(𝑡2, 𝑢(𝑡2)) − 𝑝(𝑡2) ≤ 0. 

In the context of (H2), we obtain 

𝑢(𝑡1) < 𝑑∗ and 𝑢(𝑡2) > −𝑑
∗. 

Since 𝑢(𝑡) is continuous function on 𝑅, for the following inequality there exists a constant 𝜉 ∈ 𝑅  

|𝑢(𝜉)| ≤ 𝑑∗.                                                                           (3.2) 

Let 𝜉 = 𝑚𝑇 + 𝜉̅, where 𝜉̅ ∈ [0, 𝑇], and 𝑚 is an integer. Then, we have 

|𝑢(𝑡)| = |𝑢(𝜉̅) + ∫ 𝑢′(𝑠)𝑑𝑠
𝑡

�̅�

| ≤ 𝑑∗ +∫ |𝑢′(𝑠)|𝑑𝑠
𝑡

�̅�

, 𝑡 ∈ [0, 𝑇], 

and 

|𝑢(𝑡)| = |𝑢(𝑡 − 𝑇)| = |𝑢(𝜉̅) − ∫ |𝑢′(𝑠)|𝑑𝑠
�̅�

𝑡−𝑇

| ≤ 𝑑∗ +∫ |𝑢′(𝑠)|𝑑𝑠
�̅�

𝑡−𝑇

, 𝑡 ∈ [𝜉̅, 𝜉̅ + 𝑇]. 

Bringing together the above two inequalities we ascertain 

|𝑢|∞ = 𝑚𝑎𝑥
𝑡∈[0,𝑇]

|𝑢(𝑡)| = 𝑚𝑎𝑥
𝑡∈[�̅�,�̅�+𝑇]

|𝑢(𝑡)|                                             

≤ 𝑚𝑎𝑥
𝑡∈[�̅�,�̅�+𝑇]

{𝑑∗ +
1

2
(∫ |𝑢′(𝑠)|𝑑𝑠

𝑡

�̅�

+∫ |𝑢′(𝑠)|𝑑𝑠
�̅�

𝑡−𝑇

)} 

≤ 𝑑∗ +
1

2
∫ |𝑢′(𝑠)|𝑑𝑠
𝑇

0
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≤ 𝑑∗ +
1

2
√𝑇|𝑢′|2.                                                                                        (3.3) 

Set 

Ω1 = {𝑡: 𝑡 ∈ [0, 𝑇], |𝑢(𝑡)| > 𝑑
∗}, Ω2 = {𝑡: 𝑡 ∈ [0, 𝑇], |𝑢(𝑡)| ≤ 𝑑

∗}. 

Multiplying 𝑢(𝑡) and Eq. (3.1) and then integrating it from 0 to T, by (H2), (H3), (3.3) and schwarz inequality, we get 

|𝑢′|2
2 = −∫ 𝑢′′(𝑡)𝑢(𝑡)𝑑𝑡

𝑇

0

                                                                                                                 

            = ∫ {𝜆𝑓 (𝑡,
1

𝜆
𝑢′(𝑡)) 𝑢′(𝑡) + 𝜆2[𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)]} 𝑢(𝑡)𝑑𝑡

𝑇

0

                                       

                 = ∫ 𝜆𝑓 (𝑡,
1

𝜆
𝑢′(𝑡)) 𝑢′(𝑡)𝑢(𝑡)𝑑𝑡

𝑇

0

+ 𝜆2∫ [𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)]𝑢(𝑡)𝑑𝑡
 

Ω1

 

+𝜆2∫ [𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)]𝑢(𝑡)𝑑𝑡                                               
 

Ω2

 

               ≤ ∫ 𝜆 [2𝑟 +
𝜆𝐾

|𝑢′(𝑡)|
] |𝑢′(𝑡)||𝑢(𝑡)|𝑑𝑡                                                                             

𝑇

0

     

+𝜆2∫ |𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)||𝑢(𝑡)|𝑑𝑡                                               
 

Ω2

 

           ≤ 2𝑟|𝑢|∞∫ |𝑢′(𝑡)|𝑑𝑡
𝑇

0

+ |𝑢|∞𝑇(𝑚𝑎𝑥{|𝑔(𝑡, 𝑢) − 𝑝(𝑡)|: 𝑡 ∈ 𝑅, |𝑢| ≤ 𝑑
∗} + 𝐾) 

                  ≤ 𝑟(√𝑇|𝑢′|2 + 2𝑑
∗)√𝑇|𝑢′|2                                                                                            

+ 𝑇(𝑚𝑎𝑥{|𝑔(𝑡, 𝑢) − 𝑝(𝑡)|: 𝑡 ∈ 𝑅, |𝑢| ≤ 𝑑∗} + 𝐾) (
1

2
√𝑇|𝑢′|2 + 𝑑

∗)          (3.4) 

Since 0 ≤ 𝑟 <
1

𝑇
 , (3.4) signifies that there exists a positive constant 𝐷1 such that  

|𝑢′|2 ≤ 𝐷1   and   |𝑢|∞ ≤ 𝐷1 .     (3.5) 

Set t1 ∈ [0, 𝑇] such that |𝑢(t1)| = 𝑚𝑎𝑥
𝑡∈[0,𝑇]

|𝑢(t)|, then 𝑢′(t1) = 0. In the context of the first equation of (2.4), we have 

𝑣(t1) = 0. 

Then we can choose a positive constant 𝐷2 such that 

            |𝑣(𝑡)| = |𝑣(𝑡1) + ∫ 𝑣′(𝑠)𝑑𝑠
𝑡

𝑡1

|                                                                                           

                        ≤ |𝑣(𝑡1)| + ∫ |𝑣′(𝑠)|𝑑𝑠
𝑡

𝑡1

                                                                            

  ≤ ∫ |𝑣′(𝑠)|𝑑𝑠
𝑇

0

                                                                                                  

           ≤ ∫ |𝜆𝑓 (𝑡,
1

𝜆
𝑢′(𝑡)) 𝑢′(𝑡) + 𝜆2[𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)]| 𝑑𝑡                               

𝑇

0

 

                        ≤ ∫ 𝜆 [2𝑟 +
𝜆𝐾

|𝑢′(𝑡)|
] |𝑢′(𝑡)|𝑑𝑡

𝑇

0

+∫ |𝜆2[𝑔(𝑡, 𝑢(𝑡)) − 𝑝(𝑡)]|𝑑𝑡                               
𝑇

0

 

 ≤ 2𝑟∫ |𝑢′(𝑡)|𝑑𝑡
𝑇

0

+ 𝑇[𝐾 +𝑚𝑎𝑥{|𝑔(𝑡, 𝑢) − 𝑝(𝑡)|: 𝑡 ∈ 𝑅, |𝑢| ≤ 𝐷1 }] 

  ≤ 2𝑟√𝑇|𝑢′(𝑡)|2 + 𝑇[𝐾 +𝑚𝑎𝑥{|𝑔(𝑡, 𝑢) − 𝑝(𝑡)|: 𝑡 ∈ 𝑅, |𝑥| ≤ 𝐷1 }]    

≤ 𝐷2                                     (3.6) 

where 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇]. 
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 Set  

𝛺 = {𝑧 = (𝑢, 𝑣)𝑇 ∈ 𝑋: |𝑢|∞ + |𝑣|∞ < 𝐷1 + 𝐷2 + 𝑑
∗ + 1 = 𝐷}, 

It is known that the system (2.4) has no solution on ∂𝛺 as λ∈(0,1). Let 𝑧 = (𝑢, 𝑣)𝑇 ∈ ∂𝛺 ∩ 𝐾𝑒𝑟𝐿 = ∂𝛺 ∩ 𝑅2. z is a constant 

vector in 𝑅2 with ‖𝑧‖ = 𝐷. From (H2), if 𝑣 = 0, we get 

|𝑢|∞ = 𝐷 > 𝑑∗ + 1 

and 

−
1

𝑇
∫ (𝑓(𝑡, 𝑣)𝑣 +  𝑔(𝑡, 𝑢) − 𝑝(𝑡))𝑑𝑡
𝑇

0

= −
1

𝑇
∫ ( 𝑔(𝑡, 𝑢) − 𝑝(𝑡))𝑑𝑡
𝑇

0

≠ 0. 

Thus, in any case  

𝑄𝑁𝑧 = (𝑣, −
1

𝑇
∫ (𝑓(𝑡, 𝑣)𝑣 +  𝑔(𝑡, 𝑢) − 𝑝(𝑡))𝑑𝑡
𝑇

0

)𝑇 ≠ 0, 𝑧 ∈ ∂𝛺 ∩ 𝐾𝑒𝑟𝐿.         (3.7) 

 Define a continuous mapping 𝐴: �̅� → 𝑅2 by 

𝐴𝑧 = (𝑣, 𝑢)𝑇 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 = (𝑢, 𝑣)𝑇 ∈ �̅� . 

Clearly, 𝛺 is symmetric with regard to the origin and  

𝐴𝑧 = −𝐴(−𝑧) ≠ 0, for all 𝑧 ∈ ∂𝛺 ∩ 𝐾𝑒𝑟𝐿 

by applying Lemma 2.2, we have 

d[𝐴, Ω ∩ 𝐾𝑒𝑟𝐿, 0] ≠ 0.                                                                (3.8) 

Like the proof of (3.7), it is easy to prove that 

                𝜙(𝑧, 𝜆) = 𝜆𝐴𝑧 + (1 − 𝜆)𝑄𝑁𝑧 

      = (𝜆𝑣 + (1 − 𝜆)𝑣, 𝜆𝑢 − (1 − 𝜆)
1

𝑇
∫ (𝑓(𝑡, 𝑣)𝑣 +  𝑔(𝑡, 𝑢) − 𝑝(𝑡))𝑑𝑡
𝑇

0

)

𝑇

          

is homotopy mapping such that 𝜙(𝑧, 𝜆) ≠ 0 on (∂𝛺 ∩ 𝐾𝑒𝑟𝐿 ) × [0,1]. 

 Hence, by using the homotopy invariance theorem, we have 

𝑑[𝑄𝑁, 𝛺 ∩ 𝐾𝑒𝑟𝐿, 0] = 𝑑[𝐴, 𝛺 ∩ 𝐾𝑒𝑟𝐿, 0] ≠ 0. 

It is now known that 𝛺 satisfies all the requirement in Lemma2.1, and then 𝐿𝑧 = 𝑁𝑧 has at least one solution in the Banach 

space  𝑋, therefore, it is proved that system (1.2) has a unique 𝑇-periodic solution. Hence, the proof is completed. □ 

4. AN EXAMPLE 

In this section, an example is provided to demonstrate the above ascertained outcomes.  

Example 4.1. Let us consider the following forced Rayleigh equations: 

        𝑢′′(𝑡) +
1

2014𝜋
[sin(𝑢′(𝑡)) 𝑒𝑐𝑜𝑠(𝑢

′(𝑡)) + 𝑒sin(𝑢
′(𝑡))cos (

1

4
𝑡)] 𝑢′(𝑡) − (13 + 𝑐𝑜𝑠2 (

1

4
𝑡)) 𝑢2013(𝑡)

= 𝑠𝑖𝑛2 (
1

4
𝑡).                                                    (4.1) 

The equivalent system of (4.1) can be constructed as follows  

{
 
 

 
 
𝑑𝑢

𝑑𝑡
= 𝑣(𝑡)                                                                                                                                                 

𝑑𝑣

𝑑𝑡
= −

1

2014𝜋
[sin(𝑣(𝑡)) 𝑒𝑐𝑜𝑠(𝑣(𝑡)) + 𝑒sin(𝑣(𝑡))cos (

1

4
𝑡)] 𝑣(𝑡)                                       (4.2)  

+ (13 + 𝑐𝑜𝑠2 (
1

4
𝑡)) 𝑢2013(𝑡) + 𝑠𝑖𝑛2 (

1

4
𝑡) .

 

Since  

𝑓(𝑡, 𝑢) =
1

2014𝜋
(sin(𝑢) 𝑒𝑐𝑜𝑠(𝑢) + 𝑒sin(𝑢)cos (

1

4
𝑡)), 
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  𝑔(𝑡, 𝑢) = −(13 + 𝑐𝑜𝑠2 (
1

4
𝑡)) 𝑢2013,  

𝑝(𝑡) = 𝑠𝑖𝑛2 (
1

4
𝑡), 

One can easily check that the conditions (𝐻1) and (𝐻3) are provided. Now let show that (𝐻2) holds. Choose 𝑑∗ = 1. For 

all 𝑡 ∈ 𝑅 and |𝑢| ≥ 𝑑∗ = 1, we have 

𝑢(𝑔(𝑡, 𝑢) − 𝑝(𝑡)) = 𝑢 (−(13 + 𝑐𝑜𝑠2 (
1

4
𝑡)) 𝑢2013 − 𝑠𝑖𝑛2 (

1

4
𝑡))                                

     = −13𝑢2014 − 𝑐𝑜𝑠2 (
1

4
𝑡) 𝑢2014 − 𝑠𝑖𝑛2 (

1

4
𝑡) 𝑢 

= (−12 − 𝑐𝑜𝑠2 (
1

4
𝑡)) 𝑢2014 − (𝑢2014 + 𝑠𝑖𝑛2 (

1

4
𝑡) 𝑢) 

Since |𝑢| ≥ 1 and 𝑠𝑖𝑛2 (
1

4
𝑡) ≤  1, automatically (𝑢2014 + 𝑠𝑖𝑛2 (

1

4
𝑡) 𝑢) ≥ 0. As a result 

𝑢(𝑔(𝑡, 𝑢) − 𝑝(𝑡)) < 0. 

So (𝐻2) holds. Since (𝐻1), (𝐻2) and (𝐻3) holds, by Theorem 3.1, system (4.2) has a unique 8𝜋-periodic solution. 

Therefore, Rayleigh Eq. (4.1) has a unique 8𝜋-periodic solution. 

 

 

5. CONCLUSION  

Since 𝑓(𝑡, 𝑢) =
1

2014𝜋
(sin(𝑢) 𝑒𝑐𝑜𝑠(𝑢) +

𝑒sin(𝑢)cos (
1

4
𝑡)), it can be easily seen that all the results 

in [1-10] and the references therein cannot be applicable 

to Eq. (4.1) to obtain the existence and uniqueness of 8𝜋-

periodic solution. This implies that the results of this 

paper are essentially new. 
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