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ABSTRACT

In this paper, we have presented some common fixed point results for the contractive mappings on complex valued b-
metric spaces and obtained a generalization of the theorem of Azam et al., [2], Klin-eam and Suanoom [7], Mukheimer
[8], Rouzkard and Imdad [12], Sitthikul and Saejung [13] and Sintunavarat and Kumam[14]. Further, our result is
supported by examples.
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1. INTRODUCTION

It is common that the contractive-type conditions are very important in the study a fixed point theory. The first important result
of fixed points for contractive-type mapping was the well-known Banach-Caccioppoli theorem published for the first time in
1922 in [4].

The concept of a b-metric space was introduced by S. Czerwik [5, 6]. Recently, some authors have proved some fixed point
theorems in these spaces; see for example [3, 9, 10]. In 2013, Rao et al., [11] introduce the concept of complex valued b-metric
spaces which was more general than the well-known complex valued metric spaces that was introduced by Azam et al., [2] in
2011. Several authors studied many common fixed point results on complex valued metric spaces, see, for example, [1, 13, 14].
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In this work, we establish a common fixed point result for mappings having contraction property on complex valued b-metric
spaces. Moreover, the obtained result is generalizations of recent results proved by Azam et al., [2], Klin-eam and Suanoom [7],
Mukheimer [8] and Rouzkard and Imdad [12], Sitthikul and Saejung [13] and Sintunavarat and Kumam [14].

2. PRELIMINARIES

In this section, at first we recall some definitions and properties in complex valued b -metric spaces that used in this paper.

Let C be the set of complex numbers and Z,; Z, € C . Define a partial order < onC as follows:
Z,<z, ifand only if Re(z,) <Re(z,),Im(z,) <Im(z,).
It follows that Z, <Z, if and only if one of the following conditions is satisfied:
(. Re(z,)=Re(z,).Im(z,) <Im(z,),
).  Re(z,)<Re(z,),Im(z,) =1Im(z,),
@ii).  Re(z,)<Re(z,),Im(z,) <Im(z,),
(v)  Re(z,)=Re(z,),Im(z,)=1Im(z,).

In particular, we will write Z, <Z, if Z, # Z,and one of (i), (i), and (iii) is satisfied and we will write Z; < Z, if only (iii)
#

is satisfied. Note that it is obvious that the following statements hold:
(). 110=1z Zz,then| 2, <] Z, |,
(ii). If Z,<Z, and Z, -jZ3then Z, <1,
Definition 2.1. [2] Let X be a nonempty set. Suppose that the mapping d : X x X — C satisfies:
@. 0=<d(X,y) forall X,y € X and d(X,y)=0ifandonlyif X =y ;
(). d(x,y)=d(y,X) forall X,y € X ;
©. d(x,z)=d(x,y)+d(y,z) forall X,y,ze X.
Then d is called a complex valued metric on X , and (X ) d) is called a complex valued metric space.

Definition 2.2. [11] Let X be a nonempty set and S >1 a given real number. A function d: X xX — Ciscalled a b-
metric provided that, for all X, Y, Z € X,

cvbm-1).  0=<d(X,Y) forall X,y € X and d(X,y) =0ifandonlyif X = Y ;
evbm-2).  d(x,y)=d(y,X) forall X,y € X ;
(vbm-3).  d(x, z)=s[d(x, y) +d(y,2)].

The pair (X, d) is called a complex valued b -metric space.

Example 2.3. [11] Let X =[0,1]. Define the mapping d : X x X — C forall X,y € X , by

d(x,y) s x—y|* +H[x-y[*.
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The pair (X, d) is called a complex valued b-metric space with S = 2.
Definition 2.4. [11] Let (X, d) be a complex valued b-metric space.
(). A point Xe& X is called interior point of a set A< X whenever there exists 0 <t € C such that
B(x,r)={ye X :d(x,y)<r}c A.
(ii).  Apoint X € X is called a limit point of A whenever forevery 0 < € C, B(X,r) N"(A—X) #J.
(iii). Asubset A < X is called open whenever each element of A is an interior point of A,
(iv).  Asubset Ac X is called close whenever each limit point of A is an interior of A .

(v).  The family F = {B(X, r),xe X,0< I‘}; is a sub-basis for a Hausdorff topology 7 on X We denote this
complex topology by 7. . Indeed, the topology 7 is Hausdorff.

Definition 2.5. [11] Let (X , d) be a complex valued b-metric space. Let {Xn}be asequencein X andX e X .

(). IfforeveryC € C,with 0 <C thereis N, € N suchthatd (X, X) <C,foralln >N, then {X,} is said to
be convergent, {X,, } convergesto X, X is the limit point of {X , }. We denote thisby Lim X, =X or X, — X
asn —o0.

(i).  IfforeveryC € C, with O < C thereis N, € N such that foralln > Ny, d (X, ) <C,where me N,

1 Xn+m

then {X, } is said to be Cauchy sequence.

(iii).  If every Cauchy sequence is convergent in (X,d), then (X,d) is called a complete complex valued b-metric
space.

Lemma2.6. [11] Let (X, d) beacomplex valued b-metric space and let {X, } be asequencein X .Then {X_} converges
to X ifand onlyif | d(X,,X) | >0 asn —co.

Lemma 2.7. [11] Let (X, d) be a complex valued b-metric space and let {X, } be a sequence in X . Then {X} converges

to X ifandonlyif | d(X,,X,.,) > 0an-—>o0,.meN

n+m

Recently, many authors established some common fixed point results in complex valued metric and b-metric spaces.
Theorem 2.8. [2] Let (X ) d) be a complete complex valued metric space and let /11 ) /12 be nonnegative real numbers such
that 4, + 4, <1.Suppose S, T : X — X are mappings satisfying
A,d(x, Sx)d(y, Ty)
1+d(x,y)

d(Sx, Ty)=4,d(x, y) +

forall X,y € X Then Sand T have a unique common fixed point in X .

Theorem 2.9. [8] Let (X,d) be a complete complex valued D -metric space with the coefficient S >1 and
S, T : X — X are mappings satisfying
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A,d(x, SX)d(y, Ty)
1+d(X,y)

d(Sx, Ty) =4,d(x, y) +

forall X,y € X , where A;, A, are nonnegative real with SA4, + 4, <1.Then S and T have a unique common fixed
pointin X .

Theorem 2.10. [12] If S and T are self-mappings defined on a complete complex valued metric space (X ) d) satisfying the
condition

A,d(x, SX)d(y, Ty) + A,d(y, Sx)d(x, Ty)

d(Sx, Ty)=4,d(x, y) + 1+d(x, y)

for all X,y € X , where A, A,,A; are nonnegative real with 4, + 4, +4; <1. Then S and T have a unique

common fixed point in X .

Theorem 2.11. [7] If S and T are self-mappings defined on a complete complex valued metric space (X , d) satisfying the
condition

Ad(x, Sx)d(y, Ty)

d(Sx, Ty)=4d(x,y) +

1+ d(xy)
N Ad(y, SX)d(x,Ty) N A,d(x, SX)d(x,Ty)
1+ d(x,y) 1+ d(x,y)
| Ady, SX)d(y, Ty)
1+dxy

for all X,y € X, where A, for i =1,2,3,4,5 are nonnegative real with 4, + A, + A, +24, +24; <1. Then S
and T have a unique common fixed point in X .

3. MAIN RESULTS

We start this section by a proposition.

Proposition 3.1. Let (X, d) be a complete complex valued b-metric space with the coefficient S >1. 1f {X, } and {Yy,}

are convergentto X and Y respectively, then

1 o .
oz [dx )= Liminffd(x,,y,) [< Limsup|d(x, .y, )< s*1d(x, y)|.

n—oo

Soif Lim | d(X, Y) | exists and equals to| d(X, Y) |.

Proof. Suppose {X,, } and {Y, } are convergentto X and Y respectively. Then, by (cvbm -3) we have,

d(x,, y,)=s(d(x,, x)+d(x, y,))
<s[d(x,, ) +s(d(x, y)+d(y, y,)) ]
=sd(x,, X)+sd(x, y) +s*d(y, y,),

consequently,
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Limsup|d(x,,y,)|<s® |d(x,¥)]|. 3.1)

n—aoo

Also
d(x, y)=s(d(x, x,) +d(x,, y))
<s[d(x, x,)+s(d(x,, y,) +d(y,. V)]
=sd(x,, ) +s°d(x,, y,) +sd(y,, ¥),

consequently,
1 L
= 1d(x, y) [< Liminf | d(x,.y,)]. (32)
S n—oo
Consequently, from (3.1) and (3.2) we have

1 . .
S 1dex ) [ Limin dx,. y, ) < Limsup| d(x,. ,) [< 5% |40 Y) .

n—o
The following theorem is the first main result of this paper.
Theorem 3.2. Let (X, d) be a complete complex valued b-metric space with the coefficient S >1andS,T : X — X .
Suppose there exist mappings A, : X x X — [0,1) where i =1,2,3,4,5 such that

(@) 4(TSx,y) <A (x,y) and A(x,STy) <A (X, Y),

(b) SA(X,Y) + A (X, Y) + A5 (X, ¥) +(8* +8) (A, (X, V) + A5 (%, ¥)) <1,
d(x,Sx)d(y.Ty)

(©) d(Sx,Ty) A4 (x, y)d(X, y) + 4, (X, Y) 1rd(xy) (33)

d(y,Sx)d(x,Ty) £ 2,05, Y) d(x,Sx)d(x,Ty)
1+d(x,y) 1+d(x,Y)

d(y,Sx)d(y,Ty)
1+d(x,y)

+25(X,Y)

+2:(X,Y)

forall X,y € X . Then there exists a unique common fixed point U € X such thatu = Su = Tu.

Proof. Let X, be an arbitrary point in X . Define the sequence {Xn}by
Xony = Koni Xppup = 1Xpny  forall n=012,.... (3.4)
From condition (a), for X,y € X , N =012,... and i =1,2,3,4,5, we have

A (Xons ¥) = A (TS%50 5, Y) S A (Xpn 20 Y) S 4 (TSXpn 4, Y) <+ < A (X, Y)- 39

Similarly, we obtain

/74 (X’ X2n+1) = }“. (X, STXZn—l) < ﬂf. (X1 X2n—1) < }“. (X’ STXans) <--s ﬂf. (X1 Xl)' (3.6)
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From inequality (3.3), we have

d(X2k+1’ sz) = d(Sszk—l’ TXZk—l)jﬂl(TXZk—l’X2k—1)d(TX2k—l’X2k—1)

Tt STt ST D)
21X k-1

) A(X 1, STX e )A(TX ey TX 1)
1+d (TXpeXok1)

A(TX 510 STX 541 )A(TX 41, TX 1)

1 +d (TXp1:X01)

d(X 1, STX 511 )d(X e, TX 511

1+d (TXpeXok1)

+ 45 (TX g1 X1 (3.7)

+ 14 (TXZK—l ’X2k-1)

A (TXo11X 11

and hence

d(X 00 Xa) = ASTX 40 T ) <A (Kgpe X et JA(X 350X 1)
(X1 X ope 1) A (X0 X 54)
1 +d (XpXaa)
(X phe1: X 11 )X 55 X ) +
1 +d (TXpe1Xp01)
(X oy X151 ) (X e X 510 )
1 +d (XpXaa)

A(X g1 X g1 )A(X g1, X5 ) .
1 +d Xy Xp0)

A (Xai: X 1)

+ 25 (X ok X 11 3.8)

+ A’4 (X2k ’X2k—1)

A5 (Xox X 1)

since | A(X 5, X1 ) [€ L4 d(X 5 X 51 ) |» from (3.8) with using (3.5) and (3.6) we get
01, X)) =[S T g1, T S (X1 X1 )| (X %)
+ 2, (%, XZk—l)‘d (Xa Xar )| + s (X, X2k—l)‘d (X1 Xope)
Sﬂl(XO’Xi)‘d(XZk’X2k—1)‘+ﬂ'2(X0’Xl)‘d(XZK’XZkﬂ)
+2’5(X0’X1)|:S‘d(xzk’X2k—1)‘+s‘d(xzk’xzk+l):|’

which implies that

A (%, %) + 575 (%, X,)
1_12()(0')(1)_5/15()(0’)(1)

Since S>1,, we have

A (X y)+ A, (%, y)+(s+8)s(x, y) <
sA (X, y)+ A4, (%, y)+ A, (x, y)+ (32+X (x,y)+ A (x, y)) <1

[ d (X 00 %o ) [ | d(Xay_1s X4 ) |- (3.9)
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A (X5 %) + 545 (%), %)
1_12(X01X1)_S/15(X01X1)

Therefore, set 14 = , where £ <1.

Similarly, we get

d (X2k+2’ X2k+1) = d (szk ’TSXZk) j ﬂl(XO’ Xl)d (sz’ X2k+1) + 22 (XO’ Xl)d (X2k+1’ X2k+2)
+ /14()(0’ Xi)[Sd (XZk ' X2k+l) + Sd (X2k+1’ X2k+2)]7
which implies that
A (Xgs %) + 84, (X, %)
1-2, (%, %) =4, (%, %)
A, (%o, %) +54, (%, %)

1_ﬁz(xo' Xi) _5/14()(0’ X1)
by (3.9) and (3.10), we conclude that | d (X,,,, X, ) [< 4| d(X,, X, ;)| forall N € N. Sowe get by induction,

[ d(Xas20 Xori) IS [ d Xy s Xop 1) |- (3.10)

Therefore, set 14, = where 22, <1. Set A =max{zs, 14,}, where A <1. Therefore

[d(Xouqs X)) IS A" [A (X, %), 3.110)
forall Nne N. So

lim|d(x,,,,x,)|=0. (3.12)

Now, we prove {Xn } is Cauchy sequence. Without loss of generality, we take M >N ,and M, N € N, thenby (Cvbm-3)
and using (3.11), we obtain
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[d 0% %) |
SSld(X Xn+1)|+s|d(xn+l’ m)|

< S | d(X Xn+1) | +S | d(Xn+l’ n+2) | +32 | d(xn+2’ m) |
< S | d(xn’xnﬂ) | +S | d (Xn+l’ n+2) | +S | d (Xn+2’ n+3) | +S | d (Xn+37 m) I
S S | d(xn’xnﬂ) | +S | d (Xn+l’ Xn+2) | +..+ sm "2 | d(xm—S’ Xm—2) |
+ Sminil | d (Xm—Z’ Xm—l) | +Sm7n71 | d (Xm -1 m) |
S S | d(Xn’Xnﬂ) | +SZ | d (Xn+l’ Xn+2) | +"'+Sm "2 | d(Xm—S’ Xm—2) I
+ Sm7n71 | d (Xm—2 ' Xm—l) | +Sm7n | d (Xm—l7 Xm) |
<SA™ | d (X, %) [ +SZA™ A (X, %) [+ 8™ 2AT 2 A (X, %) |
+8"AMd (X, %) [+S™ A d (X, %) |
<s"AM [ d(X,, %) | +S"A A (X, %) [+ +STPATE A (X, %) |
S22 [d (%, ) [ +8™ AT d (g, )|
<s"AM | d(X,, %) | +S"A A (X, %) [+ +STPATE A (X, %) |
822 d (X, X)) [ +8™ AT d (X, %) | +S"A™ [ A (X, X ) [ +o0 oo

-5 a0,

From conditionin inequality above we get N, M —> oo Therefore, with Tending sA<l.we have (b)

suchthat Z € X is complete, there exists X Since X.is a Cauchy sequence in {Xn } Thus, |d(X,,X,)|—0,
lim|d(x,,z)|=0. (3.13)
N—oo

Now, we show that Z is a fixed pointS . From (3.3), we have
d(z,Sz) <sd(z,Tx,,,,)+5d(TX,,,4,S2) =sd(z, X,,,.,,) +5d(Sz,TX,,.;)
j Sd (Z’ X2n+2) + 821(21 X2n+1)d (Z’ X2n+1)

d (Z! SZ)d (X2n+l’TX2n+l)

1+d(z, %,.1)
d(X,,,4,52)d(Z,TX,,.,)

1+d(z,X,,,1)
d(z,Sz)d(z,TX,,,,)

l+ d (Z’ X2n+1)

d(X n+ ISZ)d(X n+ ’TX n+ )
+Sﬂ,5(Z,X2n+l) : ;.+d(Z X2 1) —
1 2n+1

+524,(Z, Xo0.1)

+545(Z, Xo0.0)

+ Sﬂ“4 (Z’ X2n+1)

which (3.6) imply that
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1d(2,52) [<8]d(Z, Xo0,2) [ +54(2, %) | d (2, X5.4) |

| d (Z’ SZ)d (X2n+1’ X2n+2) |
+54,(z, %)
G N TR

| d(X,,,1,S2)d(Z, X, ,,,) |
+s4,(z,x,)
GG TERTeIY

1d(z,52)d (2, %50.,) |
)
1 d (25, |

(3.14)

+5s,(z,

| d (X201, S2)d (X010 Xon.12) |
+S/15(Z,X1) n+ n+ n+2/ 1
11+d(z %0.,0) |

The condition (CVbm-3) yields | d (X,,,1,2) [<S( d(X,;,,1, %5,) | +] A (X5, Z) [), so from (3.12) and (3.13)

n+1? n+1?

lim|d(X,,,,,2)|=0. (3.15)
N—oo
On the other hand, from Proposition 3.1 we get

limsup | d (X1, Xon.0) €87 d(2,2) |2 0. (3.16)

n—o0o

Taking the upper limit in (3.14) and combining (3.15) and (3.16), we get|d(z, Sz)|=0 . Thus d(z,Sz)=0 and hence Z=Sz

. It follows similarly that Z = TZ . Therefore, Z is a common fixed pointof S and T .

Now, we show Common fixed point of Sand T is unique. Suppose that there is another common fixed point Z* € X such
that z* =Sz* = Tz*. From (3.3), we have

d(z,Sz)d(z*,Tz*)
1+d(z,z%)
d(z,Sz)d(z,Tz*)

d(z,z*) =d(Sz,Tz*) X A (z,z%)d(z, z*) + A,(z, 7*¥)

d(z*,Sz)d(z,z*) N

+4(2.27) 1+d(z, z*) A4(2,2%) 1+d(z, z*)
« d(z*%,Sz)d (z*,Tz*)
+45(2.7%) 1+d(z,z%)

Since|1 + d(z,z*)| > |d(z,2*)|, we get
|d(z, %) [<[A4(z, 7%) + 4,(z, 79)]d (2, 7).

This is contradiction because condition (D) imply 4, (Z, 2*) + A4, (Z, 2*) <1. Therefore, we obtain| d (z, *) |= 0. Thus
Z = Z*. This completes the proof.

The following examples illustrate of our main result.

Example 3.3. Let X=[0,1] . Define the mapping d : X x X — C forall X,y € X by

d(x,y) = x—y [ +i[x-y[.
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Then (X,d) by Example 2.3 is a complete complex valued b -metric space with the coefficient
X
S=2. Now, define two mappings T,S : X — X by S(X) =T (x) = c forallXe X .

Let A 1 X x X —[0,2) where i=1,2,3,4,5 forall X,y & X be defined as follows:

A=l aay= amy=2Y
2% ) = ZZ Jg(%,Y) = 4y4
Clearly 24,(X,Y) + 25 (%, Y)+ A (X,Y) +6(z4(x, y) + A5 Y)) <1 and s,
AT = AT C)Y) = A ) =t < 22 ﬂ—ﬂl( )
ASTY) = A0S = A% ) = 2Lt < g (),

250 24 10 24

AT = (=Y Y
LTS Y) =AM () =4 V) =0 < 24 =4 (% Y)

2y (X,STy) = A, (X, S(y» A%, y)—@ z—u Y).

Similarly for 1=3,4,5 we will have

AMSX y) <A (X, Y) and 4 (% STY) < A4 (X, ).

We next verify inequality (3.3) of Theorem 3.2. Forall X,V € X

0=<d(x, y),d(X’SX)d(y’TY) d(y,$9)d(x,Ty) d(x,Sx)d(x,Ty) d(y,Sx)d(y,Ty)

1+d(x,y) ~ 1+d(x,y)  1+d(xy) | 1+d(xy)

Thus,
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A(STy) =[xy P i [x=y ] <[y F i -y )

5[%714% x=yF+ilx=yFJ=4(x y)d(xy)

< 2% y)d (X, y)+ 4(X,y) d(?fz)(dx(x;,)Ty)
d(y, $9)d(x.Ty) , , (x.y) d(x, S)d (x, Ty)
1+d(x,y) 4\ % 1rd(xy)
d(y, Sx)d(y,Ty)
1+d(x,y)

So we get inequality (3.3). Hence the required condition of Theorem 3.2 are satisfied and there exists a unique common fixed
point O of the mappings S and T .

= A(%Y)

= (% Y)

Example 3.4. Let X={(1,2),(2,3),(3,4),(4,5),(5,6)} . Define the mapping d: X xX —C for all
2,2, X, by
d(x,y) = x—y[ +i|x-y[

where Z, =X, + iyl, Z, =X, + iy2. Then (X; d) is a complete complex valued b -metric space with the coefficient
S=2 . Now, define two mappings T, S : X — X by S(2)=T(2)=|x-y|+2i|X-y|, forallz =X +iy € X .

Let 4, 1 X x X —[0,1) where i=1,2,3,4,5 forall Z,,Z, € X be defined as follows:

|X1_y1||xz_y2| 1 |X1_y1||X2_y2| H
Z,2,)= +—, A(z,,2,) = Vi=2,3,4,5.
ﬂl(l 2) 10 24 |(1 2) 24

Clearly 24,(2,,2,)+ A4,(2,,2,) + A4,(2,,2,) +6(4,(2,,2,) + A (2,, 2,)) <1 and also,

4TSz, 2,) = AT (I % -y, [+21[ % - ¥, 1), 2,)
=ﬂi(|lx1'y1|'2|X1'y1”+2i||X1'y1|'2|X1'y1”122)

] - ) . X - 1
= (1% 420 -y ] 7p) = DBl ED D e, 2

|X1'y1||X2'y2| 1
= 4+ —= Z,2,),
TR PACES
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A(2,,ST2,) = 4 (2, S(I X, - ¥, | +21 | X, - ¥, ]))

= (21X - Y, [ 221 %, - Y, [ +20 ][ X5 - Y, [-2] %5 - Y, [])

”Xz'yz |'2|X2’y2 |||X1'y1|+i
10 24

:&(Zlilxz'yzl"'z”xz'yz |):

:|X1'Y1”X2'y2|
10

Similarly for i=2,3,4,5 we will have

11(1-821'22)3]1(21’22) and /11(217st2)§21(21’22)-

For all Z,,Z, € X we have 0=0(Sz_1, Tz_2), therefore the inequality (3.3) is trivial. Hence the required condition of

1
+ﬂ = 21(21' Zz)-

Theorem 3.2 are satisfied also the point (1,2) € X is a unique common fixed pointof S and T .

If we let S=T in Theorem 3.2, then we get the following corollary.
Corollary 35. Let (X,d) be a complete complex valued D -metric space with the coefficient S>1and T : X — X .
Suppose there exist mappings A, : X x X —[0,1) where i=1,2,3,4,5such that
(@) 4(T°x,y) <A (xy) and A (x,T?y) < A (x ),
(0) s, (X, ¥) + A, (X, ) + A (X, y) + (5° +8) (A, (X, Y) + A5 (%, ¥)) <1,
d(x,Tx)d(y,T
(©) dTXTY) < 4,0 YA (x, )+ 4, (x,y) LTI )

1+d(x,y)
d(y, TX)d(x,Ty) 2, (x y)d(x,Tx)d(x,Ty)
1+d(x,y) e 1+d(x,y)
d(y, Tx)d(y,Ty)

1+d(x,y)

+4,(X,Y)

+25(X,Y)

forall X,y € X . Then there exists a unique point U € X suchthatU = TU .

Remark 3.6. For A (X, Y) =0 for i=4,5and S=1in Theorem 3.2, we get result obtained by Sitthikul and Saejung in [13,
Theorems 2.4].

Remark 3.7. By definition 4, (X, Y) = A(X), 4, (X, y) =Z(X) and 4 (X, y) =0 for i=3,4,5and S=1in Theorem

3.2, we get result obtained by Sintunavarat and Kumam in [14, Theorems 3.1].

Remark 3.8. By choosing A (X, y) =4 for i=1, 2, A(X,y)=0for i=3,4,5 and S=1in Theorem 3.2, we deduce
Theorem 2.8.

Remark 3.9. By choosing 4 (X, ) =4 for i=1, 2 and A (X, y) =0for i=3,4,5 in Theorem 3.2, we deduce Theorem
2.9.

Remark 3.10. By letting A (X, Y) = A, fori=1, 2,3, A4 (X, y) =0for i=4,5 and S=1in Theorem 3.2, we get Theorem
2.10.
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Remark 3.11. By letting A, (X, y) = A for i=1, 2, 3, 4, 5 and S=1in Theorem 3.2, we get Theorem 2.11.
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