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ABSTRACT

In this paper, we have studied the smallest dimensional submanifold of para f-Kenmotsu manifold. Necessary
and sufficient conditions are given on 3-dimensional submanifolds of a 5-dimensional para f-Kenmotsu manifold to
be a slant submanifold. After that, we have studied the 3-dimensional minimal slant submanifolds of para g-

Kenmotsu manifold.
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1. INTRODUCTION

As a generalization of invariant submanifold and anti-
invariant submanifolds, B.Y. Chen introduced slant
submanifolds of almost Hermitian manifold in 1990 [5],
[6]. On the other hand A. Lotta introduced the notion of
slant immersion of a Riemannian manifold into an almost
contact manifold [9]. He also studied 3-dimensional slant
submanifolds K-contact manifold [10] . Recently,
Cabrerizo et al. [2] studied slant submanifold of Sasakian
manifold and general view about slant immersions can be
founds in [3]. Khan et al. studied slant submanifold of
Kenmotsu manifold [7], [8] .

*Corresponding author, e-mail: avanli@gazi.edu.tr

In 1976, Sato defined the notion of an almost para
contact Riemannian manifold [11]. After [12], Olszak
introduced para pB-Kenmotsu manifold. Many authors
studied smallest dimension submanifolds [4], [8].

The purpose of present paper is to study slant
submanifolds of para g-Kenmotsu manifolds with the
smallest dimension. The paper organized as follows. In
section 2, we give basic formula and defination of para -
Kenmotsu manifold. We review, in section 3, formulas and
definitions for para p-Kenmotsu manifolds and their
submanifolds, which we use later. In section 4, we obtain

the smallet dimension slant submanifold of para p-
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Kenmotsu manifold. Necessary and sufficient conditions
are given on a 3-dimensional submanifolds of 5-
dimensional para pA-Kenmotsu manifold to be slant
submanifold after studied 3-dimensional minimal
submanifolds of para p-Kenmotsu manifold.
2. PRELIMINARIES
Let M be a (2n+1)-dimensional differentiable manifold
endowed with a quadruplet (¢, ¢,n,g), where ¢ is (1,1)-
tensor field, & is a vector field, n is a 1-form, and g is a
pseudo-Riemannian such that
@*X = pX —n(X9), n@ =1

)

9(px, @Y) = —p(g(X,¥Y) —enCOn(¥))  (2)
for all X,Yel'(TM), where u,e = +1. In addition, we
have

() =0, nog =0, nX) =eg(X,3).
@)

The manifold M will be called almost para contact metric,
and the quadruplet (¢, ¢&,n,g) will be called the almost
para contact metric structure on M.

When u =1, then the manifold M is an almost contact
metric manifold. In this case the metric g is assumed to be
pseudo-Riemannian in general, including Riemannian.
Thus, if "e = 1, the signature of g is equal to 2p, where 0 <
p<n andif" & = 1, the signature of g is equal to 2p+1,
where 0 < p <n.

When u =1, then the manifold M is an almost
paracontact metric manifold. In this case, the metric g is
pseudo-Riemannian, and its signature is equal to n when
" g=1,0r n+l when" & = —1. One notes that in this
case, the -eigenspaces of the linear operator ¢
corresponding to the eigenvalues 1 and -1 are both n-
dimensional at every point of the manifold [12].

Then a 2-form @ is defined by ®(X,Y) = g(X, ¢Y), for
any X,Yel'(TM) , called the fundamental 2-form.
Moreover, an almost para contact metric manifold is

normal if
[p, 0] —2dn @ £ = 0.

where [, @] is denoting the Nijenhuis tensor field
associated to ¢ [12] . A normal almost para contact metric
manifold is called para contact metric manifold.
the almost para contact metric structure on M.
Proposition 1 Let (M, ¢,&,1,g) be an almost para
contact manifold. Then , the Levi-Civita connection V
satisfies the following equality, for any X,Y,Zel'(TM),
29((Vx@)Y,Z) = 3dd(X, @Y, 9Z) — 3dDd(X,Y,Z)
+g(N(Y, 2), @X) + uN>(Y, Z)n(X)
+ 2udn (Y, X)n(Z)
= 2pdn(eZ, X)n(Y)
where N2(X,Y) = 2dn(eX,Y) — 2dn(eY, X).
Definition 1 Let M be an almost para contact metric
manifold of dimension (2n+1), with (¢,¢,n,9). M is said
to be an almost para f-Kenmotsu manifold if 1-form n
are closed and d® = 28n A ®. A normal almost para p-
Kenmotsu manifold M is called a para f-Kenmotsu
manifold.
Theorem 1 Let (M, ¢,&,1,g) be an almost para contact
metric manifold. M is a para g-Kenmotsu manifold if and
only if
(Vx@)Y = p{g(@X,V)§ — ()X}  (4)
for all X,Yel'(TM) where V is Levi-Civita connection on
M.
Proof. Let M be a para -Kenmotsu manifold. From
Proposition 1, V X,Ye['(TM) we have
29((Vx@)Y,Z) = 3do(X, @Y, Z) — 3dDd(X, Y, 7).
Then, we have
9((Vx9)Y,Z) = =pn(X)g(eY,9>Z) + pn(X)g(Y, ¢Z)
—pn(Ng(Z, X) — pn(2)g(X, Y)
= —pn(V)g(Z,oX) — pn(Z)g(X, Y)
= g(Blg(eX,Y)§ —n(V)eX},2).

Conversely, firstly, using (4) , we get
oVx¢ = B{g(pX, )& — n($)pX}
hence, we get
Vxé = Bo*X.
On the other hand, we have
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an(X,Y) = 2 {9V, ~92X) — g(X, 9?1} = 0
for all X,Yel'(TM). In addition, we know
3dP(X,Y,Z) = g(Y, (Vx@)Z) — 8(Z, (Vy@)X)
- 8X, (Vz9)Y)
From hypothesis, we have
3do(X,Y,Z) = B{g(pX,2)g(Y,§) —n(Z)g (Y, pX)
—9(eY, 2)g(X, %) + n(Z2)g(X, ¢Y)
+9(9Z,Y)gX,8) —n(V)g(X, 9Z})
= 2p{®(Z, X)n(Y) + ©(X,Y)n(2)
+o(Y, Z)n(X).

Then, we obtain
dd = 280 A ®.

Moreover, the Nijenhuis torsion of ¢ is obtained
N,(X, V) = o(—B{g(pX, V) —n(V)eX}
+ B{g(pY, X)§ —n(X)e¥})
+B{g(@*X, )¢ —n(V)p*X}
= Bg(@*Y,X)¢ —n(X)@?Y}
=0.
Hence, we have
[p, 0] —2dn ® ¢ = 0.
The proof is completed.
Corollary 1 Let M be (2n+1)-dimensional a para /-
Kenmotsu manifold with structure (¢, &,7, g). Then we
have
Vxé = Bo*X ®)
for all X,Yel'(TM).
3 SUBMANIFOLDS OF PARA g-KENMOTSU
MANIFOLD
Now, let M be a submanifold of the (2n+1)
dimensional a para -Kenmotsu manifold M. Let V be the
Levi-Civita connection of M with respect to the induced
metric g. Then Gauss and Weingarten formulas are given
by
VyY = VY —h(X,Y) (6)
ViV = VgY — AyX (7

for any X,Ye['(TM) and Ve[(TM): . V% is the
connection in the normal bundle, h is the second
fundamental from of M and Ay is the Weingarten
endomorphism associated with V. The second fundamental
form h and the shape operator A related by

g(rh(X,Y),V) = g(AvX,Y). ®)
The mean curvature tensor H is defined by

1 m
H=—
— " h(ew ex)
k=1

where {ey, ...,e,,} is a local orthonormal basis of TM. M
said to be minimal if H vanishes identically.

Now, let {eq,..,en €41, -, €m} be local
orthonormal basis of TM such that the vector fields
{es, ..., en} are tanget to M and {e,,4, ..., e, } are normal
tom . Then for any Xel['(TM)

_yn Jj m k
Vxer = Xj-1Wj e + Xxens1 Wi €k 9)
n m
Vye, = Zwr’e]- + Z w)e,
j=1 k=n+1

where i=1,...,nand r=n+1,...mand w/ = g(V,.,e;). The

k

1-forms wl.j,wi andwrj can called connection forms of
M.
On the other hand, the mix second fundamental
form in the direction e, is defined
hi; = g(h(en ). e)
For every tangent vector field X we write
©X =TX + NX (10)
where TX (resp. NX) denotes the tangential (resp. normal)
component of X and NX is the normal one. Moreover
for every normal vector field V,
oV =tV +nV (11)
where tV in the tangential component and nV is the normal
one.
Now, for later use, we establish proposition for

submanifolds of para f-Kenmotsu manifold.

Proposition 2 Let M be submanifold of para -
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Kenmotsu manifold M. Then,
(VxT)Y = AyyX + th(X,Y)
+B{9(TX,Y)§ —
n(Y)TX} (12)
(VxN)Y = nh(X,Y) — h(X,TY) — Bn(Y)NX (13)

forall X,Yel'(TM)
Proof. For any X,Yel'(TM)
(Vx@)Y = Vx@Y — @V,Y.

Then, using (4), (6) and (7)
Blg(TX + NX,Y)§ —n(Y)(TX + NX)}
= Vx(TY + NY) — @(VyY + h(X,Y))
= VxTY 4+ h(X,TY) — AyyX 4+ VENY — TV, Y —
NV, Y — th(X,Y) —
nh(X,Y)
= (VxT)Y + (VxN)Y + h(X,TY) — Ay X
—th(X,Y) — nh(X,Y)
or
(V)Y + (VxN)Y = B{g(TX + NX,Y)§ —n(Y)TX
—n(Y)NX} — h(X,TY) + ApyX
+th(X,Y) —nh(X, V).
Proposition 3 Let M be submanifold of para -
Kenmotsu manifold M, tanget to the structure vector
field. Then,
Vxé = Bo*X
and
h(X,&) =0
forany X,Yel'(TM).
Now, we defined slant submanifold of para S-Kenmotsu
manifold.
Definition 2 Let M be a submanifold of a para -
Kenmotsu manifold M . M is a slant submanifold if for
any xeM and XeT,M linearly independent of {¢}, the

angle between X and T, M is a constant 0¢[0, %]. Then

6 called the slant angle of M in M.

Theorem 2 Let M be a submanifold of para S-

Kenmotsu manifold M, tanget to the structure vector
fields. Then, M is a slant submanifold if and only if there
exists a constant Ae[0, g]. such that
T?=210-1Q®%) (14)

Furthermore in such case, if 6 is the slant angle of M it
satisfies that 4 = cos?26.
Corollary 2 Let M be a slant submanifold of para -
Kenmotsu manifold M, with slant angle 8. Then, for any
X,Yel'(TM) we have

g(TX,TY) = —cos?0(g(X,Y) — en(X)n(¥))

9(TX,TY) = —sin?8(g(X,Y) — en(X)n(Y)).

4 SUBMANIFOLDS OF SMALLEST DIMENSION
IN PARA B-KENMOTSU MANIFOLD

Let M be 3-dimensional slant submanifold of 5-
dimensional para  contact manifold M  and
{eq, e;,e3,e4,&} be local orthonormal basis of THM. Let

e; be unit vector field. @ is para contact structure,
g(ey, Pey) = 0.
Then, we can choice
e, = secOTe,.
Then
{—secOTe,, —secOTe;, &}
is a local orthonormal basis of TM.
On the other hand,
{cscONey, cscONe,}
is a local orthonormal basis of TM*.
Proposition 4 Let M be a 3-dimensional non-invariant
slant submanifold of a 5-dimensional para contact
manifold M. Let e; be an unit vector field and tanget to
M. If
e, = —seclTe,, e, = —seclTe,,
e; = cscONeq, e4 = cscONe,.
Then {eq, e, e3,e4,¢} be a local orthonormal basis of
TM, where {e;, e, &} are tanget to M and {es, e,} are
normal to M. Moreover, we have

te; = —sinfey, nesz = —cosbe,,
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te, = —sinfe,, ne, = —cosbfes.
Proof. It is easy that {e;, e, es5,€,¢&} is local
orthonormal basis off TM. We only show that last section
@e; = p{cscONe,}
tez + ne; = cscO{p(pe; — Te,)}
= cscH{e, — p(cosbBe,)}
= cscB{e, — cosO(Te, + Ne,)}

= cscO{e, — cosO(cosBe, + sinbe,)

1 cos?6
= %el - mel — cosBe,.
Then
te; = sinfe,
and
ne; = —cosfe,.
Similarly
te, = —sinfe,, ne, = —cosfes .

Theorem 3 Let M be 3-dimensional submanifold of para
B-Kenmotsu manifold M Then M is slant submanifold if

and only if
(VxDY = B{g(TX,Y)§ —n(Y)TX} (15)

(15)
forall X,Yel'(TM).

Proof. Let M be slant submanifold. We can
choose local orthonormal basis {e;, e;, €} of TM, where
e, = secfTe, and e, = secOTe,. Then V X,Yel'(TM)
(VxT)e, = VyTe; — TVyey

= VyT(secOTe,) — TVye,
= secOVyT?e, — TVye,
from (14)
(VxT)e; = cosOVye, — TVyxe;.

Then using (9)

3
(VxT)e, = cos6 Y B g(TX, )%
i=1

3
=) Bgx. Tt
i=1

= —COSZG Z?:l B g(X' el)fi
(16)

Similarly,
(VxT)e, = VxTe, — TVxe,

3
= —cosf » wi(X)¢
= —cos’0 201 g(X, ) §, (17)
and
(VxT)¢é = —T(cos?0B(T?X))
= —cos?0B(TX). (18)

On the other hand, for any Yel'(TM) writing
Y =cie + crep, +n(Y)E.

Then

VxTY = ¢1VxTey + c,VxTe, + g(Y,E)VxTE (19)
and

TVxY = ¢,TVye; + ¢, TVxe, + g(Y,E)TVE. (20)

Finally, using (19) and (20)
(VxT)Y = c1(VxT)ey + c2(VxT)e, + n(Y)(VxT)E. (21)

(21)
Then, using (16), (17) and (18) into (21) it follows that
(VxT)Y = p{g(TX,Y)§ —n(Y)TX}.
Corollary 3 Let M be 3-dimensional submanifold of para
B-Kenmotsu manifold M Then M is slant submanifold if
and only if
AnyX = AnxY

for all X,Yel(TM).
Proposition 5 Let M be 3-dimensional proper slant
submanifold of 5-dimensional para  —Kenmotsu
manifold M and let {e;, e,, e3, e4, es = &} be basis of
TM. Then

hi, = hi1, h3; = hi, (22)
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and the other mixed second fundamental forms are zero.
Proof. Firstly,
hi, = g(h(ey, e;), €3)
= g(h(ey, e;),cscONey)
= cscBg(h(ey, e;), Ney)
using (8),

hi, = cscOg(Ane, ez, €1)

from Corollary 3,
h3, = cscOg(Aye,e1,€1)
= cscg(h(e,, e1),Ney)
=g(h(es, e1),e4)

— pt
= hi;.

Similary

hgz = h‘fz-
Theorem 4 Let M be 3-dimensional submanifold of 5-
dimensional para f-Kenmotsu manifold M Then M
proper slant submanifold of para g-Kenmotsu manifold M

if and only if

(VxN)Y = —pn(Y)NX.
Proof. Let {eq, e, e3 4,5 =&} be basis of
TM. Using (13)
" (VgN)Y =nh(X,Y) — h(X,TY) — Bn(Y)NX

and from (22),
(VxN)Y = —pn(Y)NX.

Conversely, let (23) hold. Then, vV X,Yel(TM)
nh(X,Y) = h(X,TY).

On the other hand, from (8)
g(ANelez, X) = g(h(ey, X),Ney).

Then
g(ANeleZ'X) = g(h(secOTe,, X), sinBes3)
= sinfg(h(ey, X), es)

= g(h(es, X),sinbe,)
= g(h(el!X)rNeZ)
= Q(ANezer)-

On the other hand,
g(ANeleS'X) = g(h(es, X),Ne;) = 0.

In that case, M is slant submanifold of corollary 2.

Moreover,
h3, = g(h(ey, e1), e3)
= —g(h(ey, e;),4)
=secOg(h(Tey, e;),e4)
= —g(h(ez e3), €3)
= _hgz-
Similarly
hty = —h3,.

Then M is minimal slant submanifold.

Example 1 Inwhat follows, (R?"*1,¢p,&,1n,9) will
denote the manifold R2™*1 with its usual f- Kenmotsu
structure given by

Pt oo X Vi oo Y ©) = (Vs oo, Yo =X, o =X

d
f = a, n= dz
n
g=e? Z[dxi ®dx; + dy;®dy;] — edzQdz
i=1

15

where 8 =e~??. The consider a submanifold of RS
defined by
M = X(u,v,t) = (ucosd,usind, v,0,t).

Then the local frame of TM
e; = cos@aixl+sin66372, e, =aiy1' e =§ =
On the other hand
(VxkN)e; =0, (VxN)e, =0, (VxN)e; = —BNX.
Forany Yel'(TM) writing

Y =cie; + e +1(Y) e3
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In that case,
(VxN)Y = ¢;(VxN)es + c(VxN)e, +n(Y)(VxN)es.

Then M is a minimal slant submanifold.
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