
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (1) (2023), 151 – 162
DOI : 10.15672/hujms.1074783

Research Article

Polynomially partial isometric operators

Dijana Mosić

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

Abstract
In order to extend the notion of semi-generalized partial isometries and partial isometries,
we introduce a new class of operators called polynomially partial isometries. Since this new
class of operators contains semi-generalized partial isometries, partial isometries, isome-
tries and co-isometries, we proposed a wider class of operators. Several basic properties of
polynomially partial isometries and some invariant subspaces of corresponding operators
are presented. We study decomposition theorems and spectral theorems for polynomially
partial isometries, generalizing some well-known results for partial isometries and semi-
generalized partial isometries to polynomially partial isometries. Applying polynomially
partial isometries, we solve some equations.
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1. Introduction
Let H represent a complex Hilbert space, and let B(H) stand for the set of all bounded

linear operators on H. For T ∈ B(H), we denote by T ∗ the adjoint operator of T , by R(T )
its range and by N(T ) its kernel. The spectrum, the point spectrum and the approximate
point spectrum of T will be denoted by σ(T ), σp(T ) and σap(T ), respectively.

We use Poly to denote the set of all complex polynomials in one variable. Taking
conjugate coefficients of p ∈ Poly, we obtain p ∈ Poly, precisely: if z ∈ C, then p(z) :=
p(z).

Extending the notion of normal operators (TT ∗ = T ∗T ), Alzraiqi and Patel [2] intro-
duced n-normal operators as: T ∈ B(H) is n-normal (n ∈ N) if T nT ∗ = T ∗T n. The class
of n-normal operators includes n-nilpotent operators T n = 0, Hermitian (T = T ∗) and
unitary operators (TT ∗ = T ∗T = I). Observe that T is n-normal if and only if T n is
normal. For recent results concerning n-normal operators see [7, 8, 10].

Recently, polynomially normal operators were defined in [9], generalizing the notion of
n-normal operators. Let T ∈ B(H) and p ∈ Poly be nontrivial. If p(T )T ∗ = T ∗p(T ), then
T is p-normal. According to [9], T is p-normal if and only if p(T ) is normal.

Let us recall that T ∈ B(H) is an isometry if ∥Tx∥ = ∥x∥, for all x ∈ H. Note that
T is an isometry if and only if T ∗T = I. For T ∈ B(H), if T ∗ is an isometry, then T is
co-isometry. In the case that ∥T∥ ≤ 1, T is a contraction.
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An operator T ∈ B(H) is a partial isometry if ∥Tx∥ = ∥x∥, for all x ∈ N(T )⊥ (or
equivalently T |N(T )⊥ : N(T )⊥ → H is an isometry). Recall that T is a partial isometry if
and only if TT ∗T = T if and only if T ∗ is a partial isometry if and only if TT ∗ (or T ∗T ) is
the orthogonal projection onto R(T ) (N(T )). Partial isometries present an important class
of operators which contains isometries, co-isometries, unitary operators and orthogonal
projections. Since every square matrix can be represented as a linear combination of
mutually orthogonal partial isometries with positive coefficients [12], many authors were
motivated to investigate partial isometries [14]. Operators similar to partial isometries
were studied in [5]. Various results for partial isometries for Banach algebra, C∗-algebra
and ring elements can be found in [1, 4, 18, 19, 21]. Some extensions of partial isometries
were presented in [15,16,20].

As a generalization of partial isometries and nilpotent operators, Garbouj and Skhiri
[13] introduced a new class of operators called semi-generalized partial isometries in the
following way: let T ∈ B(H) and n ∈ N. Then:

(i) T is a n-left generalized partial isometry if T nT ∗T = T n;
(ii) T is a n-right generalized partial isometry if TT ∗T n = T n;
(iii) T is a semi-generalized partial isometry if T is k-left or k-right generalized partial

isometry for some k ∈ N.
Motivated by the previous research about semi-generalized partial isometries [13] and

partial isometries as well as the results from [9], our goal is to continue studying gener-
alizations of partial isometries. We present a new class of operators called polynomially
partial isometries including semi-generalized partial isometries, partial isometries, isome-
tries, co-isometries, which means that we proposed a wider class of operators. We give
some elementary properties of polynomially partial isometries and some invariant sub-
spaces of corresponding operators. Since there are polynomially partial isometries which
are not partial isometries, we develop conditions for polynomially partial isometries to be
partial isometries. Several decomposition theorems for polynomially partial isometries are
established. We also prove spectral theorems for this class of operators. Thus, we general-
ize some well-known results for partial isometries and semi-generalized partial isometries
to polynomially partial isometries.

2. Polynomially partial isometries
As an extension of semi-generalized partial isometries and partial isometries, we define

a new class of operators called polynomially partial isometries.

Definition 2.1. Let T ∈ B(H) and p ∈ Poly be nontrivial. If
(i) p(T )T ∗T = p(T ), then T is called left p-partial isometry;
(ii) TT ∗p(T ) = p(T ), then T is called right p-partial isometry;
(iii) T is both left and right p-partial isometry, then T is called p-partial isometry;
(iv) S ∈ B(H) is q-partial isometry for some q ∈ Poly, then S is called polynomially

partial isometry.

Obviously, for arbitrary p ∈ Poly, every isometry is left p-partial isometry, and every
co-isometry is right p-partial isometry. The converse is not true in general as we can see
below in Example 2.2.

Also, if T ∈ B(H) is a left p-partial isometry and p(T ) is one-to-one, then T is an
isometry. When T is a right p-partial isometry and p(T ) is onto, then T is a co-isometry.
In particular, if T is a p-partial isometry and p(T ) is invertible, then T is unitary.

Remark that, if T ∈ B(H) is a left (or right) p-partial isometry for p(t) = tn, n ∈ N,
then T is a n-left (n-right) generalized partial isometry. In the case that T is a left or
right p-partial isometry for p(t) = t, then T is a partial isometry. Hence, the set of all
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polynomially partial isometric operators contains n-left and n-right generalized partial
isometries from [13] and partial isometries.

We now give two examples of left p-partial isometries which are not partial isometries.

Example 2.2. Consider an operator T on H = C3 given by

T =

 0 3 0
1 0 0
0 0 1


and a polynomial p(t) = t3 + t2 − 3t − 3. Using

T 2 =

 3 0 0
0 3 0
0 0 1

 , T 3 =

 0 9 0
3 0 0
0 0 1

 , T ∗T =

 1 0 0
0 9 0
0 0 1

 ,

T 2T ∗T =

 3 0 0
0 27 0
0 0 1

 , T 3T ∗T =

 0 81 0
3 0 0
0 0 1

 , TT ∗T =

 0 27 0
1 0 0
0 0 1

 ,

we get

p(T ) = T 3 + T 2 − 3T − 3I =

 0 0 0
0 0 0
0 0 −4

 = p(T )T ∗T.

Hence, T is a left p-partial isometry, but TT ∗T ̸= T .

Example 2.3. For an operator T on H = C3 defined by

T =

 0 3 0
0 0 0
0 0 1


and a polynomial p(t) = antn + an−1tn−1 + · · · + a3t3 + a2t2, a2, . . . , an ∈ C, we observe
that TT ∗T ̸= T ,

T ∗T =

 0 0 0
0 9 0
0 0 1

 , T k =

 0 0 0
0 0 0
0 0 1

 = T kT ∗T, 2 ≤ k ≤ n.

Thus, p(T ) = anT n + an−1T n−1 + · · · + a3T 3 + a2T 2 = p(T )T ∗T .

Under additional assumptions, partial isometries can become polynomially partial isome-
tries. If we suppose, for p(t) = antn+· · ·+a1t+a0, where a0, a1, . . . , an ∈ C, that p(0) = 0,
i.e. a0 = 0, we easily obtain the next conclusion.

Corollary 2.4. If T ∈ B(H) is a partial isometry and p ∈ Poly such that p(0) = 0, then
T is a p-partial isometry.

The fact that T is a partial isometry if and only if T ∗ is a partial isometry, can be
generalized for polynomially partial isometries in the following way.

Lemma 2.5. Let T ∈ B(H) and p ∈ Poly. Then:
(i) T is a left p-partial isometry if and only if T ∗ is a right p-partial isometry;
(ii) T is a right p-partial isometry if and only if T ∗ is a left p-partial isometry;
(iii) T is a p-partial isometry if and only if T ∗ is a p-partial isometry.
(iv) for an unitary operator S ∈ B(H), T is a left (or right) p-partial isometry if and

only if STS∗ is a left (right) p-partial isometry.



154 D. Mosić

Proof. (i) Notice that

T is left p−partial isometry ⇔ p(T )T ∗T = p(T )
⇔ T ∗Tp(T ∗) = p(T ∗)
⇔ T ∗ is right p−partial isometry.

(ii) Applying part (i) for T ∗ and p, we prove this part.
(iii) It follows by parts (i) and (ii).
(iv) Since S is unitary, then p(STS∗) = Sp(T )S∗ and so

p(STS∗)(STS∗)∗STS∗ = p(STS∗) ⇔ Sp(T )S∗ST ∗S∗STS∗ = Sp(T )S∗

⇔ p(T )T ∗T = p(T ).

□

By properties of polynomials, we immediately check the next elementary result.

Lemma 2.6. Let T ∈ B(H), λ ∈ C\{0} and p, q ∈ Poly.
(i) If T is a left (or right) p-partial isometry, then T is a left (right) λp-partial isom-

etry.
(ii) If T is both left p-partial isometry and left q-partial isometry, then T is a left

p + q-partial isometry.
(iii) If T is both right p-partial isometry and right q-partial isometry, then T is a right

p + q-partial isometry.

For a closed subspace M of H and T ∈ B(H), recall that T (M) ⊆ M if and only
if T ∗(M⊥) ⊆ M⊥. Using this equivalence, we get the following invariant subspaces of
corresponding operators.

Lemma 2.7. Let T ∈ B(H) and p ∈ Poly. Then
(i) T (N(p(T ))) ⊆ N(p(T )) and T (R(p(T ))) ⊆ R(p(T ));
(ii) T ∗(N(p(T ))⊥) ⊆ N(p(T ))⊥ and T ∗(R(p(T ))⊥) ⊆ R(p(T ))⊥;
(iii) for a left p-partial isometry T ,

T ∗T (N(p(T ))) ⊆ N(p(T )) and T ∗T (N(p(T ))⊥) ⊆ N(p(T ))⊥;

(iv) for a right p-partial isometry T ,

TT ∗(R(p(T ))) ⊆ R(p(T )) and TT ∗(R(p(T ))⊥) ⊆ R(p(T ))⊥;

It is well-known, for a partial isometry T ∈ B(H), that T ∗T |N(T )⊥ = I|N(T )⊥ and
T ∗T |R(T ) = I|R(T ). For n ∈ N, notice that T is a n-left (or n-right) generalized partial
isometry if and only if T ∗T |N(T n)⊥ = I|N(T n)⊥ (T ∗T |

R(T n) = I|
R(T n)) [13]. This result is

now generalized for left and right p-partial isometries.

Theorem 2.8. Let T ∈ B(H) and p ∈ Poly. Then:
(i) T is a left p-partial isometry if and only if T ∗T |N(p(T ))⊥ = I|N(p(T ))⊥;
(ii) T is a right p-partial isometry if and only if TT ∗|

R(p(T )) = I|
R(p(T )).

Proof. (i) Suppose that T is a left p-partial isometry and x ∈ N(p(T ))⊥. Then, by
Lemma 2.7, T ∗Tx − x ∈ N(p(T ))⊥. Because p(T )(T ∗Tx − x) = 0, we have T ∗Tx − x ∈
N(p(T )) ∩ N(p(T ))⊥ which gives T ∗Tx − x = 0.

If T ∗T |N(p(T ))⊥ = I|N(p(T ))⊥ , then T ∗T (N(p(T ))⊥) ⊆ N(p(T ))⊥. Since (T ∗T )∗ = T ∗T ,
we have T ∗T (N(p(T ))) ⊆ N(p(T )). For x ∈ N(p(T ))⊥ and y ∈ N(p(T )), we observe
that p(T )T ∗Tx = p(T )x and p(T )T ∗Ty = 0 = p(T )y. Thus, for all z = x + y ∈ H =
N(p(T ))⊥ ⊕ N(p(T )), p(T )T ∗Tz = p(T )z.
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(ii) Assume that T is a right p-partial isometry and y ∈ R(p(T )). There exists x ∈ H
such that p(T )x = y. So, TT ∗y = TT ∗p(T )x = p(T )x = y and, by continuity of TT ∗, we
deduce that TT ∗|

R(p(T )) = I|
R(p(T )).

The equality TT ∗|
R(p(T )) = I|

R(p(T )) implies TT ∗p(T )x = p(T )x, for all x ∈ H. □

A subspace M of H is a reducing subspace for T ∈ B(H) if both M and M⊥ are
invariant subspaces for T (or equivalently if M is invariant for both T and T ∗). Recall
that, if M is a reducing closed space for T , (T |M )∗ = T ∗|M . By Theorem 2.8, we have the
next consequence.
Corollary 2.9. Let T ∈ B(H) and p ∈ Poly.

(i) If N(T ) is a reducing subspace for T , then
T is a left p − partial isometry ⇔ T |N(p(T ))⊥ is an isometry.

(ii) If R(T ) is a reducing subspace for T , then
T is a right p − partial isometry ⇔ T |

R(p(T )) is an co − isometry.

For a non-zero partial isometry T ∈ B(H), by [17, Corollary 32], note that ∥T∥ = 1
and R(T ) is closed. It is interesting to consider these properties for left and right p-partial
isometries.
Lemma 2.10. Let T ∈ B(H) and p ∈ Poly. If ∥T∥ < 1, then

T is a left (or right) p − partial isometry ⇔ p(T ) = 0.

Proof. If T is a left p-partial isometry, then
∥p(T )∥ = ∥p(T )T ∗T∥ ≤ ∥p(T )∥∥T ∗T∥ = ∥p(T )∥∥T∥2.

In the case that p(T ) ̸= 0, notice that 1 ≤ ∥T∥2 which is a contradiction.
The equality p(T ) = 0 yields that T is a left p-partial isometry.
The proof is similar for a right p-partial isometry. □

Theorem 2.11. Let T ∈ B(H) and p ∈ Poly.
(i) If T is a left p-partial isometry, then

T (N(p(T ))⊥) ⊥ T (N(p(T ))).
In addition, if p(T ) ̸= 0, then

∥T∥ = max{1, ∥T |N(p(T ))∥}.

(ii) If T is a right p-partial isometry, then

T ∗(R(p(T ))) ⊥ T ∗(R(p(T ))⊥).
In addition, if p(T ) ̸= 0, then

∥T∥ = max{1, ∥T ∗|N(p(T ∗))∥}.

Proof. (i) By Theorem 2.8, T is a left p-partial isometry implies that T ∗T |N(p(T ))⊥ =
I|N(p(T ))⊥ . For x ∈ N(p(T ))⊥ and y ∈ N(p(T )), < Tx, Ty >=< T ∗Tx, y >=< x, y >= 0
and thus T (N(p(T ))⊥) ⊥ T (N(p(T ))).

Let z = x + y, x ∈ N(p(T ))⊥ and y ∈ N(p(T )). Applying Lemma 2.7, N(p(T )) is a
reducing subspace of T ∗T . Therefore,

∥Tz∥2 = < T ∗T (x + y), x + y >=< T ∗Tx, x > + < T ∗Ty, y >

= ∥x∥2 + ∥Ty∥2 ≤ max{1, ∥T |N(p(T ))∥2}∥z∥2

which gives ∥T∥ ≤ max{1, ∥T |N(p(T ))∥}. Using the assumption p(T ) ̸= 0 and Lemma 2.10,
we deduce that max{1, ∥T |N(p(T ))∥} ≤ ∥T∥ implying ∥T∥ = max{1, ∥T |N(p(T ))∥}.

(ii) It follows by Lemma 2.8, duality and part (i). □
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In the case that N(T ) ⊆ N(p(T )), we present one equivalent condition for a left p-partial
isometry T to be a partial isometry. Notice that the hypothesis N(T ) ⊆ N(p(T )) can be
replaced with p(0) = 0.

Corollary 2.12. Let p ∈ Poly and T ∈ B(H) be a left p-partial isometry. If N(T ) ⊆
N(p(T )), then the following statements are equivalent:

(i) T is a partial isometry;
(ii) ∥Tx∥ = ∥x∥, for all x ∈ N(p(T )) ∩ N(T )⊥.

Proof. Using Theorem 2.8 and the hypothesis T is a left p-partial isometry, we obtain,
for x ∈ N(p(T ))⊥,

∥Tx∥2 =< T ∗Tx, x >=< x, x >= ∥x∥2.

Because N(T )⊥ = N(p(T ))⊥ ⊕ (N(p(T )) ∩ N(T )⊥), we can write x ∈ N(T )⊥ as

x = x1 + x2 ∈ N(p(T ))⊥ ⊕ (N(p(T )) ∩ N(T )⊥).
By Theorem 2.11,

∥Tx∥2 = ∥Tx1∥2 + ∥Tx2∥2 = ∥x1∥2 + ∥Tx2∥2.

Hence, T is a partial isometry if and only if ∥Tx2∥2 = ∥x2∥2. □
By Corollary 2.12 and duality, we verify the next result related to a right p-partial

isometry.

Corollary 2.13. Let p ∈ Poly and T ∈ B(H) be a right p-partial isometry. If R(p(T )) ⊆
R(T ), then the following statements are equivalent:

(i) T is a partial isometry;
(ii) ∥T ∗x∥ = ∥x∥, for all x ∈ R(p(T ))⊥ ∩ R(T ).

The next example contains some polynomials for which the conditions N(T ) ⊆ N(p(T ))
and R(p(T )) ⊆ R(T ) of Corollary 2.13 and Corollary 2.13, respectively, are satisfied.

Example 2.14. For p ∈ Poly such that p(0) = 0, note that p(t) = tq(t) for some q ∈ Poly.
Therefore, if T ∈ B(H), p(T ) = Tq(T ) = q(T )T implies N(T ) ⊆ N(p(T )) and R(p(T )) ⊆
R(T ).

In the following theorem, we obtain the decomposition for a left p-partial isometry.

Theorem 2.15. Let T ∈ B(H) and p ∈ Poly. Then the following statements are equiva-
lent:

(i) T is a left p-partial isometry;
(ii) there exist B ∈ B(H) and a partial isometry A ∈ B(H) such that

T = A + B, AB = A∗B = BA∗ = 0, p(B) = p(0)A∗A.

Proof. (i) ⇒ (ii): Suppose that T is a left p-partial isometry and Q ∈ B(H) is the
orthogonal projection onto N(p(T ))⊥. Set A = TQ and B = T (I − Q). By Lemma
2.7, N(p(T )) is an invariant subspace of T and T ∗T . Then we can easily check that
AB = A∗B = BA∗ = 0, (I−Q)T (I−Q) = T (I−Q) and Bn = T n(I−Q), for n ∈ N. Using
Theorem 2.8, we get T ∗TQ = Q which yields A∗A = QT ∗TQ = Q, AA∗A = TQ = A and
p(B) = p(T )(I − Q) + p(0)Q = p(0)A∗A.

(ii) ⇒ (i): Let p(z) =
n∑

i=0
aiz

i. From AB = A∗B = BA∗ = 0 and p(B) = a0A∗A, we

firstly obtain

p(T ) = an

n∑
i=0

BiAn−i + an−1

n−1∑
i=0

BiAn−1−i + · · · + a1(A + B) + a0I
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and

p(T )B∗B = anBnB∗B + an−1Bn−1B∗B + · · · + a1BB∗B + a0B∗B

= p(B)B∗B = a0A∗AB∗B = 0.

Further, the equality AA∗A = A gives

p(T )A∗A = an

n−1∑
i=0

BiAn−i + an−1

n−2∑
i=0

BiAn−1−i + · · · + a1A + a0A∗A

= p(T ) − p(B) + a0A∗A = p(T ).

Thus,
p(T )T ∗T = p(T )(A∗A + B∗B) = p(T )A∗A + p(T )B∗B = p(T ).

□

By duality and Theorem 2.15, we obtain the decomposition for a right p-partial isometry.

Theorem 2.16. Let T ∈ B(H) and p ∈ Poly. Then the following statements are equiva-
lent:

(i) T is a right p-partial isometry;
(ii) there exist B ∈ B(H) and a partial isometry A ∈ B(H) such that

T = A + B, BA = A∗B = BA∗ = 0, p(B) = AA∗p(0).

Corollary 2.17. Let T ∈ B(H) and p ∈ Poly.
(i) If T is a left p-partial isometry, then T (N(p(T ))⊥) is closed and

R(T ) is closed ⇔ R(T |N(p(T ))) is closed.

In addition, if dimN(p(T )) < +∞, then R(T ) is closed.
(ii) If T is a right p-partial isometry, then T ∗(R(p(T ))) is closed and

R(T ) is closed ⇔ R(T ∗|
R(p(T ))

⊥) is closed.

In addition, if dimR(p(T ))⊥
< +∞, then R(T ) is closed.

Proof. (i) Using the same notations as in the proof of Theorem 2.15, we have that A is a
partial isometry and R(A) = T (N(p(T ))⊥) is closed. By the equality R(T ) = R(A)⊕R(B),
we obtain

R(T ) is closed ⇔ R(B) is closed.

In the case that dimN(p(T )) < +∞, we have dimR(B) < +∞ which gives that R(T ) is
closed.

(ii) By duality and part (i), we prove this part. □

For a partial isometry T ∈ B(H), it is well-known that ∥Tx∥ = ∥x∥, for all x ∈ N(T )⊥

(or ∥T ∗x∥ = ∥x∥, for all x ∈ R(T )). Now, we generalize this result for left and right
p-partial isometries.

Corollary 2.18. Let T ∈ B(H) and p ∈ Poly. Then
(i) T is a left p-partial isometry if and only if ∥Tx∥ = ∥x∥ for all x ∈ N(p(T ))⊥ and

T ∗T (N(p(T ))) ⊆ N(p(T )).
(ii) T is a right p-partial isometry if and only if ∥T ∗x∥ = ∥x∥, for all x ∈ R(p(T )) and

TT ∗(R(p(T ))) ⊆ R(p(T )).
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Proof. (i) If T is a left p-partial isometry, by Lemma 2.7, N(p(T )) is an invariant subspace
for T ∗T and, by Theorem 2.8,

∥Tx∥2 =< T ∗Tx, x >=< x, x >= ∥x∥2,

for all x ∈ N(p(T ))⊥.
On the other hand, let Q ∈ B(H) be the orthogonal projection onto N(p(T ))⊥ and

x ∈ H. We can write x = Qx + (I − Q)x. Since ∥TQx∥ = ∥Qx∥ and R(I − Q) is invariant
for T ∗T , then

< T ∗TQx, x > = < T ∗TQx, Qx + (I − Q)x >

= < T ∗TQx, Qx > + < Qx, T ∗T (I − Q)x >

= < TQx, TQx > + < Qx, (I − Q)x >

= < Qx, Qx > +0 =< Qx, x >,

which yields T ∗TQ = Q. So, by Theorem 2.8, T is a left p-isometry.
(ii) This part follows from (i) by duality. □
We can easily check the following auxiliary result.

Lemma 2.19. Let T ∈ B(H) and p ∈ Poly. If T is a left (or right) p-partial isometry and
M ⊂ H is an invariant closed subspace of T and T ∗T , then T |M is left (right) p-partial
isometry.

Recall that a n-left generalized partial isometry can be written as a direct sum of an
isometry and a nilpotent operator of degree n [13, Theorem 3.6]. When N(T ) ⊆ N(p(T ))
(or p(0) = 0), we prove that a left p-partial isometry is the direct sum of an isometry and
an operator for which the value of polynomial p is zero.

Theorem 2.20. Let T ∈ B(H) and p ∈ Poly. If N(T ) ⊆ N(p(T )), then T is a left
p-partial isometry if and only if there exist two closed subspaces M and N of H such that

(i) H = M ⊕ N and T ∗T (M) ⊆ M ,
(ii) T |M is an isometry, T (N) ⊆ N and N ⊆ N(p(T )).

Proof. Suppose that T is a left p-partial isometry, M = N(p(T ))⊥ and N = N(p(T )).
Applying Lemma 2.7 and Corollary 2.18, we obtain that (i) and (ii) hold.

Conversely, by T ∗T (M) ⊆ M , M⊥N and H = M ⊕ N , we have that N is an invariant
subspace of T ∗T . Then, for x = x1 + x2, x1 ∈ M and x2 ∈ N , we get T ∗Tx1 = x1 and
T ∗Tx2 ∈ N(p(T )), which implies

p(T )T ∗Tx = p(T )T ∗Tx1 + p(T )T ∗Tx2 = p(T )x1 = p(T )x.

□
Using Theorem 2.20, we obtain the next theorem related to right p-partial isometries.

Theorem 2.21. Let T ∈ B(H) and p ∈ Poly. If R(p(T )) ⊆ R(T ), then T is a right
p-partial isometry if and only if there exist two closed subspaces M and N of H such that

(i) H = M ⊕ N and TT ∗(M) ⊆ M ,
(ii) T ∗|M is an isometry, T ∗(N) ⊆ N and N ⊆ N((p(T ))∗).

We now study the decomposition of an operator which is both p-normal and left (or
right) p-partial isometry. For T ∈ B(H), we can consider the following condition proposed
by Apostol [3]:

lim
n

∥T ∗T n − T nT ∗∥
1
n = 0. (2.1)

Also, denote by
H0 = {x ∈ H : lim

n
∥T nx∥

1
n = 0}.

Observe that H0 is subspace of H and it is invariant under T .
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Theorem 2.22. Let p ∈ Poly and T ∈ B(H) be p-normal.
(i) If T is a left p-partial isometry, then T is decomposed by N(p(T ))⊥ and N(p(T ))

in the direct sum T = S ⊕ A, where S is an isometry and p(A) = 0. In addition,
if T satisfies (2.1) and N(p(T )) = H0, then S is unitary.

(ii) If T is a right p-partial isometry, then T is decomposed by R(p(T )) and R(p(T ))⊥

in the direct sum T = S ⊕ A, where S is a co-isometry and p(A) = 0. In addition,
if T ∗ satisfies (2.1) and R(p(T ))⊥ = H0, then S is unitary.

Proof. (i) From the equality p(T )T ∗ = T ∗p(T ), we have that N(p(T )) is a reducing
subspace for T . By Corollary 2.9, we deduce that S = T |N(p(T ))⊥ is an isometry. It is clear
that p(A) = 0 for A = T |N(p(T )).

Using [3] (or [11, Proposition 2]), if T satisfies (2.1) and N(p(T )) = H0, we deduce that
S = T |

H0
⊥ is normal an so S is unitary.

(ii) This part is evident by (i) and duality. □

Theorem 2.23. Let p ∈ Poly, T ∈ B(H) satisfy (2.1) and N(p(T )) ⊆ H0. Then T is a
left p-partial isometry if and only if there exist three subspaces M1, M2, M3 ⊆ H such that

(i) M1, M2, M3 are reducing subspaces of T ∗T ;
(ii) H = M1 ⊕ M2 ⊕ M3;
(iii) M1 is invariant under T , M1 ⊆ N(P (T )), T |M2 is isometry, M3 reduce T and

T |M3 is unitary.

Proof. Suppose that T is a left p-partial isometry. By the hypothesis N(p(T )) ⊆ H0, for
M1 = N(p(T )), M2 = N(p(T ))⊥ ∪ H0 and M3 = H0

⊥, we can write N(p(T ))⊥ = M2 ⊕ M3
and H = M1 ⊕ M2 ⊕ M3. Using Lemma 2.7 and [3] (or [11, Proposition 2]), we have that
M1, M2, M3 are reducing subspaces of T ∗T and M3 is a reducing subspace of T . Applying
Theorem 2.8, Lemma 2.19, [11, Proposition 2] and H0

⊥ ⊆ N(p(T ))⊥, we conclude that
T |M2 is isometry and T |M3 is unitary.

Conversely, let x = x1 + x2 + x3 ∈ M1 ⊕ M2 ⊕ M3. Then, by (T ∗T )|Mk
= T ∗|Mk

T |Mk
,

k = 1, 3,

p(T )T ∗Tx = p(T )T ∗|M1T |M1x1 + p(T )T ∗|M2T |M2x2 + p(T )T ∗|M3T |M3x3

= p(T )(x2 + x3) = p(T )x.

So, T is a left p-partial isometry. □

Recall that, T ∈ B(H) is quasicommuting [11] if

lim
n

∥T ∗T n − T nT ∗∥ = 0. (2.2)

Set
H1 = {x ∈ H : lim

n
∥T nx∥ = 0}.

Theorem 2.24. Let p ∈ Poly, T ∈ B(H) be a left (or right) p-partial isometry satisfying
(2.2) and N(p(T )) ⊆ H1. If there is a number M > 0 such that ∥T n∥ ≤ M for all n, then

T = U ⊕ V,

where U is unitary and, for x in the domain of V , limn ∥V nx∥ = 0 (limn ∥(V ∗)nx∥ = 0).

Proof. By [11, Lemma 2 and Theorem 8], H1 is a reducing closed subspace of T . Set
U = T |H⊥

1
and V = T |H1 . Using H⊥

1 ⊆ N(p(T ))⊥, [11, Theorem 8] and Theorem 2.8, we
have that U is unitary. □
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We now extend some well-known results related to the spectral theory for partial isome-
tries [11] and semi-generalized partial isometries [13] to left p-partial isometries. For
T ∈ B(H)\{0}, define

ΓT = {λ ∈ C : 1
∥T∥

≤ |λ| ≤ ∥T∥}

and if T = 0, let ΓT = ∅. Notice that ΓT = ΓT ∗ and ΓT = ∅ when ∥T∥ < 1.

Theorem 2.25. Let p ∈ Poly and T ∈ B(H) be p-normal. If T is a left p-partial isometry,
then

σp(T ) ⊂ ΓT ∪ {λ ∈ C : p(λ) = 0} ∪ {0}.

Proof. If λ ∈ σp(T )\{0}, then exists a nonzero vector x ∈ H such that Tx = λx. Hence,
T nx = λnx, for n ∈ N, p(T )x = p(λ)x and x = λ−1Tx. Since T is p-normal and left
p-partial isometry, we get

0 = T ∗p(T )x − p(T )T ∗x = p(λ)T ∗x − λ−1p(T )T ∗Tx

= p(λ)T ∗x − λ−1p(T )x = p(λ)T ∗x − λ−1p(λ)x
= p(λ)(T ∗x − λ−1x)

which gives p(λ) = 0 or T ∗x = λ−1x, i.e. λ−1 ∈ σp(T ∗). Because |λ| ≤ ∥T∥ and
|λ−1| ≤ ∥T∥, we have λ ∈ ΓT . □
Theorem 2.26. Let p ∈ Poly and T ∈ B(H) be p-normal. If T is a left p-partial isometry,
then

σap(T ) ⊂ ΓT ∪ {λ ∈ C : p(λ) = 0} ∪ {0}.

Proof. Berberian [6] introduced an extension of a Hilbert space H to a Hilbert space
K and reduced the problem of the approximate point spectrum of an operator T on H
to the point spectrum problem of the corresponding operator T ′ on K. Recall that, for
T, S ∈ B(H), (T ∗)′ = (T ′)∗, I ′ = I, (λT )′ = λT ′, (S + T )′ = S′ + T ′, (TS)′ = T ′S′ and
∥T ′∥ = ∥T∥. Because T ′ is p-normal and left p-partial isometry, then, by [6, Theorem 1]
and Theorem 2.25,

σap(T ) = σp(T ′) ⊂ ΓT ∪ {λ ∈ C : p(λ) = 0} ∪ {0}.

□
In the end, we apply polynomially partial isometries to solve some equations.

Remark 2.27. Let T ∈ B(H), p ∈ Poly and
Sn = (T ∗T )nT ∗ = T ∗(TT ∗)n, n ∈ N.

(i) If T is a left p-partial isometry, then, for all n ∈ N,
p(T )(T ∗T )n = p(T ) and p(T )SnT = p(T ).

For arbitrary U, V, R, W ∈ B(H), set
E = U − T ∗TU + Q1W and F = RQ2,

where Q1 is a projection onto N(p(T )) and Q2 is a projection onto R(T )⊥. The
equalities p(T )E = 0 and FT = 0 imply that (T ∗T )n + E is the solution of the
equation p(T )S = p(T ) and Sn + E + F is the solution of the equation p(T )ST =
p(T ), for all n ∈ N.

(ii) If T is a right p-partial isometry, then, for all n ∈ N,
(TT ∗)np(T ) = p(T ) and TSnp(T ) = p(T ).

For arbitrary U, V, R, W ∈ B(H), let
E = U − UTT ∗ + WQ1 and F = Q2R,



Polynomially partial isometric operators 161

where Q1 is a projection onto R(p(T ))⊥ and Q2 is a projection onto N(T ). From
Ep(T ) = 0 and TF = 0, we have that (TT ∗)n + E is the solution of the equation
Sp(T ) = p(T ) and Sn + E + F is the solution of the equation TSp(T ) = p(T ), for
all n ∈ N.
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