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Abstract-The elastostatic deformations of thick isotropic beams subjected to various sets of boundary conditions are presented 

by using different beam theories and the Symmetric Smoothed Particle Hydrodynamics (SSPH) method. The analysis is based 

on the Euler-Bernoulli, Timoshenko and Reddy-Bickford beam theories. The performance of the SSPH method is investigated 

for the comparison of the different beam theories for the first time. For the numerical results, various numbers of nodes are 

used in the problem domain. Regarding to the computed results for RBT, various number of terms in the Taylor Series 

Expansions (TSEs) is employed. To validate the performance of the SSPH method, comparison studies in terms of transverse 

deflections are carried out with the analytical solutions. It is found that the SSPH method has provided satisfactory 

convergence rate and smaller L2 error. 
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1. Introduction 

The kinematics of deformation of a beam can be 

represented by using various beam theories. Among them, 

the Euler Bernoulli Beam Theory (EBT), the Timoshenko 

Beam Theory (TBT) and the Reddy-Bickford Beam Theory 

(RBT) are commonly used. The effect of the transverse shear 

deformation neglected in the EBT is allowed in the latter two 

beam theories.  

Euler Bernoulli Beam Theory is the simplest beam 

theory and assumes that the cross sections which are normal 

to the mid-plane before deformation remain plane/straight 

and normal to the mid-plane after deformation. Both 

transverse shear and transverse normal strains are neglected 

by using these assumptions. In the TBT, the normality 

assumption of the EBT is relaxed and the cross sections do 

not need to normal to the mid-plane but still remain plane. 

The TBT requires the shear correction factor (SCF) to 

compensate the error due to the assumption of the constant 

transverse shear strain and shear stress through the beam 

thickness. The SCF depends on the geometric and material 

parameters of the beam but the loading and boundary 

conditions are also important to determine the SCF [1-2]. In 

the third order shear deformation theory which is named as 

the RBT, the transverse shear strain is quadratic trough the 

thickness of the beam [3]. 

The need for the further extension of the EBT is raised 

for the engineering applications of the beam problems often 

characterized by high ratios, up to 40 for the composite 

structures, between the Young modulus and the shear 

modulus [4]. Various higher order beam theories are 

introduced in which the straightness assumption is removed 

and the vanishing of shear stress at the upper and lower 

surfaces are accommodated. For this purpose, higher order 

polynomials incorporating either one, or more, extra terms 

[5-11] or trigonometric functions [12-13] or exponential 

functions [14] are included in the expansion of the 

longitudinal point-wise displacement component through the 

thickness of the beam. The higher order theories introduce 

additional unknowns that make the governing equations 
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more complicated and provide the solutions much costly in 

terms of CPU time. The theories which are higher than the 

third order shear deformation beam theory are seldom used 

because the accuracy gained by these theories which require 

much effort to solve the governing equations is so little [4].  

The beam theories are still the reference technique in 

many engineering applications. They continue to be 

advantageous in the analysis of slender bodies such as 

airplane wings, helicopter blades, bridges and frames where 

the cumbersome two-dimensional 2D (plate and shell 

theories) and three-dimensional 3D analysis require higher 

cost and computational effort because of their complexity. 

Meshless methods are widely used in static and dynamic 

analyses of the engineering beam problems [15-20]. To 

obtain the approximate solution of the problem by a meshless 

method, the selection of the basis functions is almost the 

most important issue. The accuracy of the computed solution 

can be increased by employing different number of terms in 

TSE or increasing number of nodes in the problem domain or 

by increasing the degree of complete polynomials. Many 

meshless methods have been proposed by researchers to 

obtain the approximate solution of the problem. The 

Smoothed Particle Hydrodynamics (SPH) method is 

proposed by Lucy [21] to the testing of the fission 

hypothesis. However, this method has two important 

shortcomings, lack of accuracy on the boundaries and the 

tensile instability. To remove these shortcomings, many 

meshless methods have been proposed such as the Corrected 

Smoothed Particle Method [22,23], Reproducing Kernel 

Particle Method [24-26], Modified Smoothed Particle 

Hydrodynamics (MSPH) method [27-30], the Symmetric 

Smoothed Particle Hydrodynamics method [31-36] and the 

Strong Form Meshless Implementation of Taylor Series 

Method [37-38], Moving Kringing Interpolation Method [39-

40], the meshless Shepard and Least Squares (MSLS) 

Method [42], Spectral Meshless Radial Point Interpolation 

(SMRPI) Method [42]. 

It is seen form the above literature survey regarding to 

the SSPH method, there is no reported work on the 

elastostatic deformations of the thick isotropic beams 

subjected to the different boundary conditions by employing 

the TBT and RBT.  

Linear elastic problems including quasi-static crack 

propagation [31-33], crack propagation in an adhesively 

bonded joint [34], 2D Heat Transfer problems [35] and 1D 

4th order nonhomogeneous variable coefficient boundary 

value problems [36] have been successfully solved by 

employing the SSPH method.  

The SSPH method has an advantage over the MLS, 

RKPM, MSPH and the SMITSM methods  because basis 

functions used to approximate the function and its 

derivatives are derived simultaneously and even a constant 

weight function can be employed to obtain the approximate 

solution [31-36]. The matrix to be inverted for finding kernel 

estimates of the trial solution and its derivatives is 

asymmetric in the MSPH. In SSPH method which made the 

matrix to be inverted symmetric, reduced the storage 

requirement and the CPU time.  

In view of the above, the objectives of this paper mainly 

are to present the SSPH method formulation for the isotropic 

thick beams subjected to different boundary conditions 

within the framework of EBT, TBT and RBT, to perform 

numerical calculations to obtain the transverse deflections of 

the studied beam problems and finally to compare the results 

obtained by using the SSPH method with analytical 

solutions. It is believed that researchers will probably find 

the SSPH method helpful to solve their engineering 

problems. 

In section 2, the formulation of the EBT, TBT and RBT 

is. In section 3, the formulation of the SSPH method is given 

for 1D problem. In Section 4, numerical results are given 

based on the two types of engineering beam problem which 

are a simply supported beam under uniformly distributed 

load and a cantilever beam under the uniformly distributed 

load. The performance of the SSPH method is compared 

with the analytical solutions.  

2. Formulation of Beam Theories 

To describe the EBT, TBT and RBT, the following 

coordinate system is introduced. The x-coordinate is taken 

along the axis of the beam and the z-coordinate is taken 

through the height (thickness) of the beam. In the general 

beam theory, all the loads and the displacements (u,w) along 

the coordinates (x,z) are only the functions of the x and z 

coordinates. [4] The formulation of the EBT, TBT and RBT 

are given below. 

2.1. Euler Bernoulli Beam Theory 

The following displacement field is given for the EBT, 

𝑢(𝑥, 𝑧) = −𝑧
𝑑𝑤

𝑑𝑥
 

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                  (1) 

where w0 is the transverse deflection of the point (x,0) which 

is on the mid-plane (z=0) of the beam. By using the 

assumption of the smallness of strains and rotations, the only 

the axial strain which is nonzero is given by, 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= −𝑧

𝑑2𝑤0

𝑑𝑥2                                                              (2) 

The virtual strain energy of the beam in terms of the 

axial stress and the axial strain can be expressed by  

𝛿𝑈 = ∫ ∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                                                  (3) 

where δ is the variational operator, A is the cross sectional 

area, L is the length of the beam, 𝜎𝑥𝑥 is the axial stress. The 

bending moment of the EBT is given by, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

                                                               (4) 

By using equation (2) and equation (4), equation (3) can 

be rewritten as, 

𝛿𝑈 = − ∫  𝑀𝑥𝑥𝑧
𝑑2𝛿𝑤0

𝑑𝑥2  
𝐿

0
                                                       (5) 
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The virtual potential energy of the load q(x) which acts 

at the central axis of the beam is given by  

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                        (6) 

If a body is in equilibrium, δW=δU+δV, the total virtual 

work (δW) done equals zero. Then one can obtain, 

𝛿𝑊 = − ∫ ( 𝑀𝑥𝑥𝑧
𝑑2𝛿𝑤0

𝑑𝑥2 + 𝑞(𝑥)𝛿𝑤0) 𝑑𝑥 = 0 
𝐿

0
                  (7) 

After performing integration for the first term in 

equation (7) twice and since 𝛿𝑤0 is arbitrary in (0 < x < L), 

one can obtain the following equilibrium equation, 

−
𝑑2𝑀𝑥𝑥

𝑑𝑥2 = 𝑞(𝑥) 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                                           (8) 

By introducing the shear force 𝑄𝑥  and rewrite equation 

(8) in the following form  

−
𝑑𝑀𝑥𝑥

𝑑𝑥
+ 𝑄𝑥 = 0,   −

𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                                       (9) 

By using Hooke’s law, one can obtain  

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 = −𝐸𝑧
𝑑2𝑤0

𝑑𝑥2                                                     (10) 

where E is the modulus of elasticity. If the equation (10) is 

put into equation (4), it is obtained, 

𝑀𝑥𝑥 = − ∫ 𝐸𝑧2 𝑑2𝑤0

𝑑𝑥2 𝑑𝐴
𝐴

= −𝐷𝑥
𝑑2𝑤0

𝑑𝑥2                               (11) 

where 𝐷𝑥𝑥 = 𝐸𝐼𝑦 is the flexural rigidity of the beam and 

𝐼𝑦 = ∫ 𝑧2𝑑𝐴
𝐴

 the second moment of area about the y-axis. 

The substitution of equation (11) into equation (9) yields the 

EBT governing equation 

𝑑2

𝑑𝑥2 (𝐷𝑥𝑥
𝑑2𝑤0

𝑑𝑥2 ) = 𝑞(𝑥) 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                              (12) 

2.2. Timoshenko Beam Theory 

The following displacement field is given for the TBT, 

𝑢(𝑥, 𝑧) = 𝑧𝜙(𝑥)  

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                (13) 

where 𝜙(𝑥) is the rotation of the cross section. By using 

equation (13), the strain-displacement relations are given by 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= −𝑧

𝑑𝜙

𝑑𝑥
  

𝛾𝑥𝑧 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= 𝜙 +

𝑑𝑤0

𝑑𝑥
                                                  (14) 

The virtual strain energy of the beam including the 

virtual energy associated with the shearing strain can be 

written as, 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                            (15) 

where 𝜎𝑥𝑧 is the transverse shear stress and 𝛾𝑥𝑧 is the shear 

strain. The bending moment and the shear force can be 

written respectively, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑄𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

                           (16) 

By using equation (14) and equation (16), one can 

rewrite equation (15) as, 

𝛿𝑈 = ∫ [ 𝑀𝑥𝑥
𝑑𝛿𝜙

𝑑𝑥
+ 𝑄𝑥 (𝛿𝜙 +

𝑑𝛿𝑤0

𝑑𝑥
)] 𝑑𝑥

𝐿

0
                        (17) 

The virtual potential energy of the load q(x) which acts 

at the central axis of the Timoshenko beam is given by 

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                      (18) 

Since the total virtual work done equals zero and the 

coefficients of 𝛿𝜙 and 𝛿𝑤0 in 0<x<L are zero, one can 

obtain the following equations, 

−
𝑑𝑀𝑥𝑥

𝑑𝑥
+ 𝑄𝑥 = 0,   −

𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                                     (19) 

The bending moment and shear force can be expressed 

in terms of generalized displacement (𝑤0, 𝜙) by using the 

constitutive equations 𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 and 𝜎𝑥𝑧 = 𝐺𝛾𝑥𝑧, 

𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

= 𝐷𝑥
𝑑𝜙

𝑑𝑥
                                               (20) 

𝑄𝑥 = 𝜅𝑠 ∫ 𝜎𝑥𝑧𝑑𝐴 = 𝜅𝑠𝐴𝑥𝑧 (𝜙 +
𝑑𝑤0

𝑑𝑥
)

𝐴
                             (21) 

Where 𝜅𝑠 is the shear correction factor, G is the shear 

modulus, 𝐷𝑥𝑥 = 𝐸𝐼𝑦  is the flexural rigidity of the beam and 

𝐴𝑥𝑧 = 𝐺𝐴 is the shear rigidity. The SCF is used to 

compensate the error caused by the assumption of a constant 

transverse shear stress distribution along the beam thickness. 

The governing equations of the TBT is obtained in terms of 

generalized displacements by substituting equation (20) and 

equation (21) into equation (19), 

−
𝑑

𝑑𝑥
(𝐷𝑥𝑥

𝑑𝜙

𝑑𝑥
) + 𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
) = 0                             (22) 

−
𝑑

𝑑𝑥
[𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞(𝑥)                                        (23) 

2.3. Reddy-Bickford Beam Theory 

The following displacement field is given for the RBT, 

𝑢(𝑥, 𝑧) = 𝑧𝜙(𝑥) − 𝛼𝑧3 (𝜙(𝑥) +
𝑑𝑤(𝑥)

𝑑𝑥
)  

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                (24) 

where 𝛼 = 4/(3ℎ2). By using equation (24), the strain-

displacement relations of the RBT are given by 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= 𝑧

𝑑𝜙

𝑑𝑥
− 𝛼𝑧3 (

𝑑𝜙

𝑑𝑥
+

𝑑2𝑤0

𝑑𝑥2 )  

𝛾𝑥𝑧 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= 𝜙 +

𝑑𝑤0

𝑑𝑥
− 𝛽𝑧2 (𝜙 +

𝑑𝑤0

𝑑𝑥
)                     (25) 

where 𝛽 = 3𝛼 = 4/(ℎ2). 

The virtual strain energy of the beam can be written as, 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                            (26) 

The usual bending moment and the shear force are, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑄𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

                           (27) 

and 𝑃𝑥𝑥  and 𝑅𝑥 are the higher order stress resultants can be 

written respectively, 
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𝑃𝑥𝑥  = ∫ 𝑧3𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑅𝑥 = ∫ 𝑧2𝜎𝑥𝑧𝑑𝐴
𝐴

                       (28) 

By using equation (25), equation (27) and equation 

(2.28), one can rewrite the equation (26) as, 

𝛿𝑈 = ∫ [ (𝑀𝑥𝑥 − 𝛼𝑃𝑥𝑥)
𝑑𝛿𝜙

𝑑𝑥
− 𝛼𝑃𝑥𝑥

𝑑2𝛿𝑤0

𝑑𝑥2 + (𝑄𝑥 −
𝐿

0

 𝛽𝑅𝑥) (𝛿𝜙 +
𝑑𝛿𝑤0

𝑑𝑥
)] 𝑑𝑥                                                      (29) 

In the RBT there is no need to use a SCF unlike the 

TBT. The virtual potential energy of the transverse load q(x) 

is given by  

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                      (30) 

The virtual displacements principle is applied and the 

coefficients of 𝛿𝜙 and 𝛿𝑤0 in 0<x<L are set to zero, the 

governing equations of the RBT are obtained in terms of 

displacements 𝜙 and 𝑤0 as follows, 

−
𝑑

𝑑𝑥
(�̅�𝑥𝑥

𝑑𝜙

𝑑𝑥
− 𝛼�̂�𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) + �̅�𝑥𝑧 (𝜙 +
𝑑𝑤0

𝑑𝑥
) = 0  

−𝛼
𝑑2

𝑑𝑥2 (�̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐻𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) −
𝑑

𝑑𝑥
[�̅�𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞(𝑥)                               

                                                                                           (31) 

where  

�̅�𝑥𝑧 = �̂�𝑥𝑧 −  𝛽�̂�𝑥𝑧 ,     �̅�𝑥𝑥 = �̂�𝑥𝑥 −  𝛼�̂�𝑥𝑥  

�̂�𝑥𝑥 = 𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥 ,    �̂�𝑥𝑥 = 𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥   

�̂�𝑥𝑧 = 𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧 ,   �̂�𝑥𝑧 = 𝐷𝑥𝑧 −   𝛽𝐹𝑥𝑧  

(𝐷𝑥𝑥 , 𝐹𝑥𝑥 , 𝐻𝑥𝑥)  = ∫ (𝑧2, 𝑧4, 𝑧6)𝐸𝑑𝐴
𝐴

  

(𝐴𝑥𝑧, 𝐷𝑥𝑧 , 𝐹𝑥𝑧)  = ∫ (1, 𝑧2, 𝑧4)𝐺𝑑𝐴 
𝐴

                                 (32) 

3. Formulation of Symmetric Smoothed Particle 

Hydrodynamics 

Taylor Series Expansion (TSE) of a scalar function can 

be given by  

𝑓(𝜉1) = ∑
1

𝑚!
[(𝜉1 − 𝑥1)

𝑑

𝑑𝑥1
]

𝑚

𝑓(𝑥1)𝑛
𝑚=0                           (33) 

where 𝑓(𝜉1) is the value of the function at ξ = (ξ1) located in 

near of x = (x1). If the zeroth to sixth order terms are 

employed and the higher order terms are neglected, the 

equation (33) can be written as follows, 

𝑓(𝜉) = 𝑃(𝜉, 𝑥)𝑄(𝑥)                                                          (34) 

where 

𝑄(𝑥) = [𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥1
,

1

2!

𝑑2𝑓(𝑥)

𝑑𝑥1
2  , … ,

1

6!

𝑑6𝑓(𝑥)

𝑑𝑥1
6 ]

𝑇

                     (35) 

𝑃(𝜉, 𝑥) = [1, (𝜉1 − 𝑥1), (𝜉1 − 𝑥1)2, … , (𝜉1 − 𝑥1)6]          (36) 

To determine the unknown variables given in the Q(x), both 

sides of equation (34) are multiplied with W(ξ, x)P(ξ, x)T 

and evaluated for every node in the CSD. The following 

equation is obtained where N(x)  is the number nodes in the 

compact support domain (CSD) of the W(ξ, x) as shown in 

Fig. 1. 

∑ 𝑓(𝜉𝑟(𝑗))𝑁(𝑥)
𝑗=1 𝑊(𝜉𝑟(𝑗), 𝑥)𝑃(𝜉𝑟(𝑗), 𝑥)

𝑇
  

= ∑ [𝑃(𝜉𝑟(𝑗), 𝑥)
𝑇

𝑊(𝜉𝑟(𝑗), 𝑥)𝑃(𝜉𝑟(𝑗), 𝑥)]
𝑁(𝑥)
𝑗=1 𝑄(𝑥)          (37) 

 

 

 

 

 

 

 

 

 

Fig. 1. Compact support of the weight function W(ξ, x) for 

the node located at x = (xi, yi) 

Then, equation (37) can be given by 

𝐶(𝜉, 𝑥)𝑄(𝑥) = 𝐷(𝜉, 𝑥)𝐹(𝑥)(𝜉, 𝑥)                                      (38) 

where C(ξ, x) = P(ξ, x)TW(ξ, x)P(ξ, x) and D(ξ, x) =
P(ξ, x)T W(ξ, x). 

The solution of equation (38) is given by 

𝑄(𝑥) =  𝐾(𝜉, 𝑥)𝐹(𝜉)                                                         (39) 

where K(x)(ξ, x) = C(ξ, x)−1D(ξ, x). Equation (39) can be 

also written as follows 

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,6                              (40) 

Where M is the number of nodes and FJ = f(ξJ). Seven 

components of equation (40) for 1D case are can be written 

as 

𝑓(𝑥) = 𝑄1(𝑥) = ∑ 𝐾1𝐽𝐹𝐽  
𝑀
𝐽=1    

𝑑𝑓(𝑥)

𝑑𝑥1
= 𝑄2(𝑥) = ∑ 𝐾2𝐽𝐹𝐽  

𝑀
𝐽=1   

𝑑2𝑓(𝑥)

𝑑𝑥1
2 = 2! 𝑄3(𝑥) = ∑ 𝐾3𝐽𝐹𝐽  

𝑀
𝐽=1   

𝑑3𝑓(𝑥)

𝑑𝑥1
3 = 3! 𝑄4(𝑥) = ∑ 𝐾4𝐽𝐹𝐽  

𝑀
𝐽=1   

 
𝑑4𝑓(𝑥)

𝑑𝑥1
4 = 4! 𝑄5(𝑥) = ∑ 𝐾5𝐽𝐹𝐽                 

𝑀
𝐽=1   

𝑑5𝑓(𝑥)

𝑑𝑥1
5 = 5! 𝑄6(𝑥) = ∑ 𝐾6𝐽𝐹𝐽  

𝑀
𝐽=1   

𝑑6𝑓(𝑥)

𝑑𝑥1
6 = 6! 𝑄7(𝑥) = ∑ 𝐾7𝐽𝐹𝐽   

𝑀
𝐽=1                                       (41) 

4. Numerical Results 

The pure bending of two engineering beam problems by 

using the formulation of the EBT, TBT and RBT are solved 

by using the SSPH method. Different loading and boundary 

conditions are applied with different node distributions in the 

problem domain. For the numerical solutions obtained by the 

RBT are evaluated with different node distributions in the 

𝒙𝒊 

𝒙𝒈 

Compact 

Support 

Domain 
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problem domain and varying number of terms in the TSEs. 

The numerical results obtained by the SSPH method 

regarding to different beam theories are compared with the 

analytical solution of problem. 

4.1. Simply Supported Beam 

Static transverse deflections of a simply supported beam 

under uniformly distributed load of intensity 𝑞0 as shown in 

Fig.2. is studied. 

 

 

 

 

 

 

 

Fig. 2. Simply supported beam with uniformly 

distributed load 

The physical parameters of the beam are given as L=2m, 

h=0.2m, b=0.02m. Modulus of elasticity E is 210 GPa, shear 

modulus G is 80.8 GPa and the distributed load q_0 is set to 

150000 N/m. 

Based on the EBT, the governing equation of the 

problem can be given by, 

 
𝑑2

𝑑𝑥2 (𝐷𝑥𝑥
𝑑2𝑤0

𝑑𝑥2 ) = 𝑞0       𝑓𝑜𝑟 0 < 𝑥 < 𝐿                            (42) 

where 𝐷𝑥𝑥 = 𝐸𝐼𝑦 is the flexural rigidity of the beam and 

𝐼𝑦 = 𝑏ℎ3/12 the second moment of area about the y-axis. 

The boundary conditions regarding to the EBT are given as 

follows 

𝑥 = 0,    
𝑑2𝑤0

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚 

𝑥 = 𝐿,    
𝑑2𝑤0

𝑑𝑥2
= 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚 

The analytical solution of this boundary value problem based 

on the EBT is given by 

𝑤0
𝐸(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(

𝑥

𝐿
−

2𝑥3

𝐿3 +
𝑥4

𝐿4)                                          (43) 

where the superscript E denotes the quantities in the EBT. 

The governing equations of the problem can be written by 

using TBT as follows, 

−
𝑑

𝑑𝑥
(𝐷𝑥𝑥

𝑑𝜙

𝑑𝑥
) + 𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
) = 0                             (44) 

−
𝑑

𝑑𝑥
[𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞0                                            (45) 

where 𝐷𝑥𝑥 = 𝐸𝐼𝑦 is the flexural rigidity of the beam, 

𝐼𝑦 = 𝑏ℎ3/12 is the second moment of area about the y-

axis, 𝐴𝑥𝑧 = 𝐺𝐴 = 𝐺𝑏ℎ is the shear rigidity and the SCF is 

assumed to be constant 𝜅𝑠 = 5/6 for the rectangular cross 

section. 

The boundary conditions regarding to the TBT are given 

as follows; 

𝑥 = 0,   
𝑑𝜙

𝑑𝑥
= 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚  

𝑥 = 𝐿,    
𝑑𝜙

𝑑𝑥
= 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚  

The analytical solution of this boundary value problem 

based on the TBT is given by  

𝑤0
𝑇(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(

𝑥

𝐿
−

2𝑥3

𝐿3 +
𝑥4

𝐿4) +
𝑞0𝐿2

2𝜅𝑠𝐴𝑥𝑧
 (

𝑥

𝐿
−

𝑥2

𝐿2)            (46) 

where the superscript T denotes the quantities in the TBT. 

The governing equations of the problem can be written 

by using RBT as follows, 

−
𝑑

𝑑𝑥
(�̅�𝑥𝑥

𝑑𝜙

𝑑𝑥
− 𝛼�̂�𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) + �̅�𝑥𝑧 (𝜙 +
𝑑𝑤0

𝑑𝑥
) = 0             (47) 

−𝛼
𝑑2

𝑑𝑥2 (�̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐻𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) −
𝑑

𝑑𝑥
[�̅�𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞 (48) 

where 𝐷𝑥𝑥 = 𝐸𝐼𝑦 is the flexural rigidity of the beam, 

𝐼𝑦 = 𝑏ℎ3/12 is the second moment o farea about the y-

axis, 𝐴𝑥𝑧 = 𝐺𝐴 = 𝐺𝑏ℎ is the shear rigidity,  𝛼 = 4/(3ℎ2) 

and 𝛽 = 4/(ℎ2). �̅�𝑥𝑥, �̅�𝑥𝑧 , �̂�𝑥𝑥 , 𝐻𝑥𝑥  are calculated according 

to the equations given in equation (32). 

The boundary conditions regarding to the TBT are given 

as follows 

𝑥 = 0, �̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐹𝑥𝑥 

𝑑2𝑤0

𝑑𝑥2 = 0, 𝑎𝑛𝑑    𝑤0 = 0 𝑚  

𝑥 = 𝐿,   �̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐹𝑥𝑥 

𝑑2𝑤0

𝑑𝑥2 = 0, 𝑎𝑛𝑑    𝑤0 = 0 𝑚  

The analytical solution of this boundary value problem 

based on the RBT is given by  

 𝑤0
𝑇(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥

(
𝑥

𝐿
−

2𝑥3

𝐿3
+

𝑥4

𝐿4
) + (

𝑞0𝜇

𝜆4
) (

�̂�𝑥𝑥

�̂�𝑥𝑧𝐷𝑥𝑥

) 

  [− tanh (
𝜆𝐿

2
) sinh 𝜆𝑥 + cosh 𝜆𝑥 +

𝜆2

2
𝑥(𝐿 − 𝑥) − 1]       (49) 

where 

𝜆2 =
�̅�𝑥𝑧𝐷𝑥𝑥

𝛼(𝐹𝑥𝑥 �̂�𝑥𝑥−�̂�𝑥𝑥𝐷𝑥𝑥)
,   𝜇 =

𝐴𝑥𝑧�̂�𝑥𝑧

𝛼(𝐹𝑥𝑥 �̂�𝑥𝑥−�̂�𝑥𝑥𝐷𝑥𝑥)
  

The above boundary value problems are solved by using 

the SSPH method for the node distributions of 21, 41 and 

161 equally spaced nodes in the domain x∈ [0, 2]. As the 

weight function, the Revised Super Gauss Function (RSGF) 

which gives the least L2 error norms in numerical solutions in 

[31] is used. 

𝑊(𝑥, 𝜉) =
𝐺

(ℎ√𝜋)
𝜆 {(36 − 𝑑2)𝑒−𝑑2

0 ≤ 𝑑 ≤ 6
0 𝑑 > 6

}      

   𝑑 = |𝑥 − 𝜉|/ℎ                                                                 (50) 

where 𝑑 is the radius of the CSD, ℎ is the smoothing length. 

G and 𝜆 are the parameters which are eliminated by the 

formulation of the SSPH method. 

The numerical solutions are performed according to the 

following meshless parameters; the radius of the support 
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b 

h x 
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domain (d) is chosen as 6 and the smoothing length (h) 

equals to 1.1∆ where ∆ is the minimum distance between two 

adjacent nodes. The meshless parameters, d and h, are 

selected to obtain the lowest error. 

For the numerical solutions based on the formulation of 

the RBT, it is also investigated the effect of the different 

numbers of terms employed in the TSE when the number of 

nodes in the problem domain increases.  Computed results 

obtained by using the SSPH method are compared with the 

analytical solutions, and their accuracy and convergence 

properties are investigated by employing the global L2 error 

norm which is given in equation (51). 

 ‖𝐸𝑟𝑟𝑜𝑟‖2 =
[∑ (𝑣𝑛𝑢𝑚

𝑗
−𝑣𝑒𝑥𝑎𝑐𝑡

𝑗
)2𝑚

𝑗=1 ]
1/2

[∑ (𝑣𝑒𝑥𝑎𝑐𝑡
𝑗

)2𝑚
𝑗=1 ]

1/2                                    (51) 

The L2 error norms of the numerical solutions based on 

the EBT are given in Table 1. For the numerical analysis 

different numbers of nodes are considered in the problem 

domain with 5 terms in TSEs expansion. It is observed in 

Table 1 that the accuracy of the SSPH method is not 

improved by increasing of the number of nodes in the 

problem domain. At least for the problem studied here, it is 

impossible to evaluate the convergence rate of the SSPH 

method because of the level of the numerical errors which 

are too small obtained for different number of nodes in the 

problem domain.  

It is observed in Fig. 3 that the SSPH method agrees very 

well with the analytical solution. The transverse deflection of 

the beam computed by the SSPH method is virtually 

indistinguishable from that for the analytical solution. 

Table 1. L2 error norm for different number of nodes based 

on EBT 

Meshless 

Method 

Number of Nodes 

21 Nodes 41 Nodes 161 Nodes 

SSPH 3.8563x10
-9

 9.0440x10
-8

 3.6898x10
-7

 

 

 

Fig. 3. Deflections of the beam computed based on the EBT 

and the analytical solution 

The global L2 error norms of the solutions based on the 

TBT are given in Table 2 where different numbers of nodes 

are considered with 5 terms in TSEs expansion. The results 

in Table 2 are obtained for the meshless parameters d and h 

which give the best accuracy for each method. It is observed 

in Table 2 that the SSPH method almost gives the exact 

solution of the problem. The SSPH method gives accurate 

values of the displacement even for 21 nodes in the problem 

domain. It is observed in Fig. 4 that the SSPH method agrees 

very well with the analytical solution. 

Table 2. L2 error norm for different number of nodes based 

on TBT 

Meshless 

Method 

Number of Nodes 

21 Nodes 41 Nodes 161 Nodes 

SSPH 4.3044x10
-10

 3.7090x10
-9

 3.5981x10
-9

 

 

 

Fig. 4. Deflections of the beam computed based on the TBT 

and the analytical solution 

The global L2 error norms of the solutions based on the 

RBT are given in Table 3 where different numbers of nodes 

are considered with varying number of terms in TSEs 

expansion. The results in Table 3 are obtained for the 

meshless parameters d and h which gives the best accuracy 

for each method. Different numbers of terms in TSEs, 5 to 7, 

are employed to evaluate the performance of the SSPH 

method. It is found that the convergence rate of the computed 

solution increases by increasing the degree of complete 

polynomials. The rate of convergence for the SSPH method 

increases by increasing the number of nodes in the problem 

domain. It is clear that numerical solutions obtained by the 

SSPH method agree very well with the analytical solution 

given in Fig. 5 to Fig. 7. 

Table 3. L2 error norm for different number of nodes with 

varying number of terms in the TSEs  

Nodes 
Terms in the TSEs 

5 Term 6 Term 7 Term 

21 2.0631 2.0475 2.0014 

41 2.0631 2.0317 1.6977 

161 2.0631 1.9371 0.5556 

 

Comparison of the analytical solutions in terms of 

transverse deflections obtained by the EBT, TBT and RBT 

are given in Fig. 8. It is observed that the analytical solution 

obtained by the EBT is similar to the analytical solution 

obtained by the RBT than the TBT. It is clear that the RBT is 

a higher order shear deformation theory that yields more 

accurate results than the other theories which are studied in 

this paper. 
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Fig. 5. Deflections of the beam computed based on the RBT 

and the analytical solution – 5 term 

 

Fig. 6. Deflections of the beam computed based on the RBT 

and the analytical solution – 6 term 

 

Fig. 7. Deflections of the beam computed based on the RBT 

and the analytical solution – 7 term 

 

Fig. 8. Comparison of the analytical solutions in terms of 

deflections obtained by the EBT, TBT and RBT 

 

Fig. 9. Comparison of the analytical solutions in terms of 

maximum deflections obtained with varying h/L ratio 

For the future studies, the effect of the h/L ratio can be 

investigated to evaluate the accuracy of the TBT in terms of 

transverse deflection. In Fig. 8, the h/L ratio is 0.1. It is 

observed in Fig. 9 that when the h/L ratio increases the 

accuracy of the TBT decreases in terms of transverse 

deflection. 

4.2. Cantilever Beam 

For a cantilever beam the static transverse deflections 

under uniformly distributed load of intensity 𝑞0 as shown in 

Figure 10 is studied. 

 

Fig. 10. Simply supported beam with uniformly distributed 

load 

The physical parameters are given as L=2m, h=0.2m, 

b=0.02m. Modulus of elasticity E is 210 GPa, shear modulus 

G is 80.8 GPa and the uniformly distributed load 𝑞0 is set to 

50000 N/m. 

Based on the EBT, the governing equation of the 

problem is as given in equation (42). The boundary 

conditions are given by; 

𝑥 = 0,    
𝑑𝑤0

𝑑𝑥
= 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚  

𝑥 = 𝐿,    
𝑑2𝑤0

𝑑𝑥2 = 0 𝑎𝑛𝑑 
𝑑3𝑤0

𝑑𝑥3 = 0  

The analytical solution of this boundary value problem 

based on the EBT is given by 

𝑤0
𝐸(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(6

𝑥2

𝐿2 − 4
𝑥3

𝐿3 +
𝑥4

𝐿4)                                    (52) 

Based on the TBT, the governing equations of the 

problem are given in equation (44) and equation (45). The 
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boundary conditions regarding to the TBT are given as 

follows 

𝑥 = 0,    𝜙 = 0 𝑎𝑛𝑑 𝑤0 = 0 𝑚  

𝑥 = 𝐿,    
𝑑𝜙

𝑑𝑥
= 0 𝑎𝑛𝑑 𝜙 +

𝑑𝑤0

𝑑𝑥
= 0  

The analytical solution of this boundary value problem 

based on the TBT is given by 

𝑤0
𝑇(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(6

𝑥2

𝐿2 − 4
𝑥3

𝐿3 +
𝑥4

𝐿4) +
𝑞0𝐿2

2𝜅𝑠𝐴𝑥𝑧
 (2

𝑥

𝐿
−

𝑥2

𝐿2)    (53) 

Based on the RBT, the governing equations of the 

problem are given in equation (47) and equation (48). The 

boundary conditions regarding to the RBT are given as 

follows 

𝑥 = 0,   𝜙 = 0    𝑎𝑛𝑑   𝑤0 = 0 𝑚  

𝑥 = 𝐿,    �̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐹𝑥𝑥 

𝑑2𝑤0

𝑑𝑥2 = 0, 𝑎𝑛𝑑 𝜙 +
𝑑𝑤0

𝑑𝑥
= 0  

The analytical solution of this boundary value problem 

based on the TBT is given by  

𝑤0
𝑅(𝑥) = 𝑤0

𝐸(𝑥) + (
𝑞0𝜇

2𝜆2) (
�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) (2𝐿𝑥 − 𝑥2) +

(
𝑞0𝜇

𝜆4 cosh 𝜆𝐿
) (

�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) [cosh 𝜆𝑥 + 𝜆𝐿 sinh 𝜆(𝐿 − 𝑥) −

(
𝑞0𝜇

𝜆4 ) (
�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) (

1+𝜆𝐿 sinh 𝜆𝐿

cosh 𝜆𝐿
)]                                             (54) 

The above boundary value problems are solved by using 

the SSPH method for different node distributions of 21, 41 

and 161 equally spaced nodes in the domain x∈ [0,2]. The 

Revised Super Gauss Function given in equation (50) is used 

as the weight function. 

For the numerical solutions, the radius of the support 

domain (d) is chosen as 5 and the smoothing length (h) is 

chosen as 1.3∆. Also, for the numerical solutions based on 

the RBT, it is investigated the effect of the various numbers 

of terms employed in the TSEs when the number of nodes in 

the problem domain increases. The meshless parameters, d 

and h, are selected to obtain the best accuracy. Computed 

results by the SSPH method are compared with the analytical 

solutions, and their rate of convergence and accuracy 

properties are investigated by using the global L2 error norm 

given in equation (51). In Table 4 the global L2 error norms 

of the solutions based on the EBT are given for different 

numbers of nodes in the problem domain with 5 terms in 

TSEs expansion. The similar case observed in the previous 

problem is also found in this problem.  

The accuracy of the SSPH method is not improved by 

increasing of the number of nodes in the problem domain. At 

least for the problem studied here, it is impossible to evaluate 

the convergence of the SSPH method because of the level of 

the numerical errors which are too small obtained for 

different number of nodes in the problem domain. The 

computed transverse deflection of the beam is virtually 

indistinguishable from that for the analytical solution as seen 

from Fig. 12. 

 

 

Table 4. L2 error norm for different number of nodes based 

on EBT 

Meshless 

Method 

Number of Nodes 

21 Nodes 41 Nodes 161 Nodes 

SSPH 9.3439x10
-8

 5.7719x10
-6

 7.8041x10
-6

 

 

 

Fig. 12. Deflections of the beam computed based on the EBT 

and the analytical solution 

By using different numbers of nodes in the problem 

domain with 5 terms in TSEs expansion, the global L2 error 

norms of the solutions obtained for the TBT are given in 

Table 5. It is clear in Table 5 that the SSPH method provides 

satisfactory numerical results and rate of convergence. It is 

observed in Fig. 13 that the SSPH method agrees very well 

with the analytical solution. 

Table 5. Global L2 error norm for different number of nodes 

based on TBT 

Meshless 

Method 

Number of Nodes 

21 Nodes 41 Nodes 161 Nodes 

SSPH 1.1353x10
-8

 3.2478x10
-7

 7.2764x10
-8

 

 

The global L2 error norms of the solutions based on the 

RBT are given in Table 6 where different numbers of nodes 

are considered with varying number of terms in TSEs 

expansion. It is observed that the convergence rate of the 

computed solution increases by increasing the degree of 

complete polynomials for 161 nodes in the problem domain.  

 

Fig. 13. Deflections of the beam computed based on the TBT 

and the analytical solution. 
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Table 6. L2 error norm for different number of nodes with 

varying number of terms in the TSEs 

Number of 

Nodes 

Number of Terms in the TSEs 

5 Term 6 Term 7 Term 

21 1.7608 1.7608 1.7479 

41 1.7783 1.7784 1.8504 

161 1.7920 1.7919 1.5278 

 

The convergence rate of the SSPH method is increasing 

as the number of nodes is increased in the problem domain 

even by using same number of terms in the TSEs. It is clear 

that the transverse displacement computed with the SSPH 

method closer to the analytical solution of the problem given 

in Fig. 14 to Fig. 16. 

 

Fig. 14. Deflections of the beam based on the RBT along the 

x-axis computed by the SSPH method using different 

number of nodes and the analytical solution – 5 term 

 

Fig. 15. Deflections of the beam based on the RBT along the 

x-axis computed by the SSPH method using different 

number of nodes and the analytical solution – 6 term 

 

Fig. 16. Deflections of the beam based on the RBT along the 

x-axis computed by the SSPH method using different 

number of nodes and the analytical solution – 7 term 

The analytical solutions of the EBT, TBT and RBT are 

compared in Fig. 17. It is clear that the analytical solution 

obtained by the EBT is more close to the analytical solution 

obtained by the RBT than the TBT. At least for the problem 

studied here, the EBT yields more accurate results in terms 

of transverse deflection than the TBT. 

 

Fig. 17. Comparison of the analytical solutions in terms of 

deflections obtained by the EBT, TBT and RBT (h/L=0.1) 

It is observed that the accuracy of the numerical results 

in terms of transverse deflection for TBT decrease with 

increasing h/L ratio. The h/L ratio is 0.1 in Fig. 17. It is 

found that increasing of the h/L ratio is decreasing the 

accuracy of the TBT in terms of transverse deflection as 

shown in Fig. 18. 

 

Fig. 18. Comparison of the analytical solutions in terms of 

maximum deflections obtained with varying h/L ratio 

5. Conclusion 

The SSPH basis functions are employed to numerically 

solve the transverse deflections of the thick isotropic beams 

subjected to different sets of boundary conditions and 

uniformly distributed load by using strong formulation of the 

problem. The numerical calculations are performed by using 

different number of nodes uniformly distributed in the 

problem domain and by employing different beam theories 

which are the EBT, TBT and RBT. The performance of the 

SSPH method is investigated for the solution of the beam 

problems with the TBT and RBT for the first time. It is found 

that the SSPH method provides satisfactory results and 

0 0.5 1 1.5 2
-40

-35

-30

-25

-20

-15

-10

-5

0

D
e

fl
e

c
ti

o
n

 (
m

m
)

Length Along Beam (m) 

 

 

SSPH - 5 term - 21 Node - RBT

SSPH - 5 term - 41 Node - RBT

SSPH - 5 term - 161 Node - RBT

Analytical Solution - RBT

0 0.5 1 1.5 2
-40

-35

-30

-25

-20

-15

-10

-5

0

D
e

fl
e

c
ti

o
n

 (
m

m
)

Length Along Beam (m) 

 

 

SSPH - 6 term - 21 Node - RBT

SSPH - 6 term - 41 Node - RBT

SSPH - 6 term - 161 Node - RBT

Analytical Solution - RBT

0 0.5 1 1.5 2
-40

-35

-30

-25

-20

-15

-10

-5

0

D
e

fl
e

c
ti

o
n

 (
m

m
)

Length Along Beam (m) 

 

 

SSPH - 7 term - 21 Node - RBT

SSPH - 7 term - 41 Node - RBT

SSPH - 7 term - 161 Node - RBT

Analytical Solution - RBT

0 0.5 1 1.5 2

-35

-30

-25

-20

-15

-10

-5

0

D
e

fl
e

c
ti

o
n

 (
m

m
)

Length Along Beam (m) 

 

 

EBT Analytical Solution

TBT Analytical Solution

RBT Analytical Solution

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-10

2

-10
1

-10
0

-10
-1

M
a

x
im

u
m

 D
e

fl
e

c
ti

o
n

 (
m

m
)

h/L Ratio (m) 

 

 

EBT Analytical Solution

TBT Analytical Solution

RBT Analytical Solution



INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES  
Armagan Karamanli, Vol.2, No.3, 2016 

92 
 

convergence rate for the studied problems here. It is observed 

that the computed results of transverse deflections agree very 

well with the analytical solutions.  

For the problems studied, it is found that the accuracy of 

the computed results based on the TBT is deteriorated by the 

aspect ratio (h/L). The accuracy of the transverse deflections 

computed by using analytical solution based on the TBT 

decreases with an increase in the aspect ratio of the beam.  

It is observed that when the EBT formulation employed 

for the solution of the problems by using the SSPH method, 

the computed results in terms of the displacement are 

virtually indistinguishable from that for analytical solution 

and the solution obtained by the RBT formulation.  

Based on the results of two numerical examples it is 

recommended that the SSPH method can be applied for 

solving linear beam problems by employing different shear 

deformation theories. 
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