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Abstract-The elastostatic deformations of functionally graded beams under various boundary conditions are investigated by 

using different beam theories and the Symmetric Smoothed Particle Hydrodynamics (SSPH) method. The numerical 

calculations are performed based on the Euler-Bernoulli, Timoshenko and Reddy-Bickford beam theories. The performance of 

the SSPH method is investigated for the comparison of the different beam theories where the beams are composed of two 

different materials for the first time. For the numerical results various numbers of nodes are used in the problem domain. 

Regarding to the computed results for Reddy-Bickford beam theory various numbers of terms in the Taylor Series Expansions 

(TSEs) are employed to improve the accuracy. To validate the performance of the SSPH method, comparison studies in terms 

of transverse deflections are carried out with the analytical solutions by using the global L2 error norm. 

Keywords Meshless method, functionally graded beam, bending deflection, SSPH method, shear deformation theories. 

 

1. Introduction 

One of the biggest problems that the engineers face with 

during the new product development process is the selecting 

of the proper material to be used for the engineering 

applications. There are many factors to be considered for the 

optimization of the selection process such as the cost of raw 

material and production, fabrication techniques, logistics, 

material properties, requirements of customers with severe 

operating conditions for instance; the material should be hard 

but also ductile or the material can withstand very high 

surface temperature of 2000K and a temperature gradient of 

1000K across a 10 mm thickness and so on. In 1984, a group 

of Japanese scientists working on a space shuttle project 

requiring a thermal barrier with high performance properties 

introduced a novel material called Functionally Graded 

Material (FGM). FGMs can be classified as advanced 

materials which are inhomogeneous and made up of two (or 

more) different materials combined in solid states with 

varying properties as the dimension changes.  

The engineering applications where the FGMs may be 

used are the aerospace, biomedical, defence, energy, 

optoelectronics, automotive (engine components), turbine 

blade, reactor components (nuclear energy) and etc. FGMs 

may be used in different application areas with the 

development of new fabrication technologies, the reduction 

in cost of production, improvement in the properties of 

FGMs.  

The advantages of the FGMs over the conventional and 

classical composite materials are basically due to varying 

material properties over a changing dimension which allows 

enhancing the bond strength through the layer interfaces, 

high resistance to temperature shocks, lower transverse shear 

stresses, etc. Researchers have been devoted a considerable 

number of studies to predict and to understand the mechanics 

of the FGM structures. 

An elasticity solution of a FGM beam subjected to 

transverse loads based on the Euler Bernoulli Beam Theory 

(EBT) is given in [1]. By using the semi inverse method, a 

closed form 2D plane elasticity solution of a cantilever beam 
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with different loading conditions and gradation laws can be 

found in [2]. In [3], the analytical solution of a 2D plane 

stress problem for a Functionally Graded Beam (FGB) 

subjected to normal and shear tractions of arbitrary form on 

the top and bottom surfaces and under various end boundary 

conditions is presented. The bending solutions of the 

generally anisotropic beams with elastic compliance 

parameters being arbitrary functions of the thickness 

coordinate are investigated in [4]. The static behaviour of 

FGBs under ambient temperature by using the higher order 

beam theory is studied extensively in [5] for the transverse 

displacements, axial stress and transverse shear stress 

distribution. The static and dynamic behaviours of 

functionally graded Timoshenko and Euler–Bernoulli beams 

are investigated by introducing a new function which helps 

to decouple the governing equations and allows representing 

the transverse deflection and rotational angle only in the 

terms of this new function [6]. The static response of 

functionally graded material short beam is studied in [7] 

using the parabolic shear deformation theory and sinusoidal 

shear deformation theory to show the ability of higher order 

theories to enhance predictions provided by classical beam 

theories. The flexional bending of a simply supported FGB is 

studied by using different higher order beam theories with 

varying gradation laws [8]. The refined beam theories are 

introduced for the static analysis of the FGBs whose 

properties are graded along one or two directions in [9]. The 

determination of the shear correction factor is investigated in 

[10] for various gradation laws. The static bending solutions 

of the FGM Timoshenko Beams are obtained analytically in 

terms of the homogeneous Euler Bernoulli beams by using 

mathematical similarity and load equivalence between the 

governing equations [11]. The static behaviour of the FGBs 

are also studied by using the quasi-3D theory to show the 

effects of shear deformation and thickness stretching on the 

displacement and stresses [12]. Several refined beam finite 

elements obtained by means of the Carrera Unified 

Formulation (CUF) are used to static analysis of the FGBs 

[13]. In 14, the combination of the Timoshenko Beam 

Theory (TBT) and the finite volume method is developed for 

the static and the free vibration of the FGBs. Due to the 

different implementation areas of the FGMs in engineering 

applications, free and forced vibration [15-26] and buckling 

behaviour [27-34] of the functionally graded structures have 

been extensively investigated by several researchers.   

As it is seen form above discussions, the studies related 

to analytical and semi-analytical solutions of these initial and 

boundary value problems which have complex governing 

equations are very limited in the literature. Therefore, one 

may easily show that the numerical methods such as finite 

element methods (FEM), meshless methods, GDQM, etc. are 

widely used and have shown great progress for the analysis 

of these complex problems. However, for convenience and 

generality considerations at least to the best of the author’s 

knowledge, there is no common agreement and also no 

reported work regarding to the meshless methods of which 

best fit in terms of accuracy, CPU time, flexibility for 

dealing with the complex geometries, extendibility to multi-

dimensional problems and etc., for the static and dynamic 

analysis of the FGBs based on the different beam theories.  

Meshless methods are the most promising and have 

attracted considerable attention for the analysis of 

engineering problems with intrinsic complexity. Meshless 

methods are widely used in static and dynamic analyses of 

the isotropic, laminated composite and FGM beam problems 

[35-41].  To obtain the approximate solution of the problem 

by a meshless method, the selection of the basis functions is 

almost the most important issue. The accuracy of the 

computed solution can be increased by employing different 

number of terms in TSE or increasing number of nodes in the 

problem domain or by increasing the degree of complete 

polynomials. Many meshless methods have been proposed 

by researchers to obtain the approximate solution of the 

problem. The Smoothed Particle Hydrodynamics (SPH) 

method is proposed by Lucy [42] to the testing of the fission 

hypothesis. However, this method has two important 

shortcomings, lack of accuracy on the boundaries and the 

tensile instability. To remove these shortcomings, many 

meshless methods have been proposed by several researchers 

[43-63]. 

The main scope of this work is to evaluate the 

performance of the SSPH method employing the strong 

formulation for the static transverse deflection analysis of the 

FGBs based on various beam theories such as EBT, TBT and 

the Reddy – Bickford Beam Theory (RBT). To provide a fair 

and comparable evaluation, two FGB problems of which 

analytical solutions are available in the literature will be used 

for the numerical calculations. 

Based on the above discussions, the main novelty of this 

work is that there is no reported work on the bending 

deflections of the functionally graded beams subjected to the 

different boundary conditions by using the SSPH method. 

Since the basis functions and the derivatives of these 

functions are obtained simultaneously and the usage of a 

constant weight function is possible to obtain the 

approximate solution, the SSPH method has an advantage 

over the Moving Least Squares, Reproducing Kernel Particle 

Method, Modified Smoothed Particle Hydrodynamics and 

the Strong Form Meshless Implementation of Taylor Series 

Method [51-56].  

In section 2, the formulation of the basis function of the 

SSPH method is given. In section 2, the homogenization of 

material properties of the FGB is presented. The formulation 

of the EBT, TBT and RBT based on the FGM and the SSPH 

method are given in Section 4. In Section 5, numerical 

results are given based on the two FGB problems which are a 

simply supported FGB under uniformly distributed load and 

a cantilever FGB under the uniformly distributed load. The 

performance of the SSPH method is evaluated by using the 

analytical solutions of studied problems.  

2. Formulation of Symmetric Smoothed Particle 

Hydrodynamics 

Taylor Series Expansion (TSE) of a scalar function for 

1D case can be given by 

𝑓(𝜉) = ∑
1

𝑚!
[(𝜉 − 𝑥)

𝑑

𝑑𝑥
]

𝑚

𝑓(𝑥)                                         𝑛
𝑚=0 (1) 
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where 𝑓(𝜉) is the value of the function at 𝜉 located in near of 

x. If the zeroth to sixth order terms are employed and the 

higher order terms are neglected, the equation (1) can be 

written as follows, 

𝑓(𝜉) = 𝑃(𝜉, 𝑥)𝑄(𝑥)                                                            (2) 

where 

𝑄(𝑥) = [𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥1
,

1

2!

𝑑2𝑓(𝑥)

𝑑𝑥1
2  , … ,

1

6!

𝑑6𝑓(𝑥)

𝑑𝑥1
6 ]

𝑇

                       (3) 

𝑃(𝜉, 𝑥) = [1, (𝜉1 − 𝑥1), (𝜉1 − 𝑥1)2, … , (𝜉1 − 𝑥1)6]            (4) 

To determine the unknown variables given in the Q(x), both 

sides of equation (2) are multiplied with W(𝜉, x)P(𝜉, x)T and 

evaluated for every node in the CSD. In the global 

numbering system, let the particle number of the kth particle 

in the compact support of W(𝜉, x) be r ( k ).  The following 

equation is obtained 

∑ 𝑓(𝜉𝑟(𝑘))𝑁(𝑥)
𝑘=1 𝑊(𝜉𝑟(𝑘), 𝑥)𝑃(𝜉𝑟(𝑘), 𝑥)

𝑇
  

= ∑ [𝑃(𝜉𝑟(𝑘), 𝑥)
𝑇

𝑊(𝜉𝑟(𝑘), 𝑥)𝑃(𝜉𝑟(𝑘), 𝑥)]
𝑁(𝑥)
𝑘=1 𝑄(𝑥)          (5) 

where  N(x)  is the number nodes in the compact support 

domain (CSD) of the W(𝜉,x) as shown in Fig.1. 

 

 

 

 

 

 

 

 

Fig. 1. Compact support of the weight function W(ξ, x) for 

the node located at x = (xi, yi) 

Then, equation (5) can be given by 

𝐶(𝜉, 𝑥)𝑄(𝑥) = 𝐷(𝜉, 𝑥)𝐹(𝑥)(𝜉, 𝑥)                                      (6) 

where C(𝜉, x) = P(𝜉, x)TW(𝜉, x)P(𝜉, x) and D(ξ, x) =
P(ξ, x)T W(ξ, x). 

The solution of equation (6) is given by 

𝑄(𝑥) =  𝐾(𝜉, 𝑥)𝐹(𝜉)                                                         (7) 

where K(x)(𝜉, x) = C(𝜉, x)−1D(𝜉, x). Equation (7) can be 

also written as follows 

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,6                              (8) 

Where M is the number of nodes and FJ = f(𝜉J). Seven 

components of equation (8) for 1D case are can be written as 

𝑓(𝑥) = 𝑄1(𝑥) = ∑ 𝐾1𝐽𝐹𝐽  
𝑀
𝐽=1    

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑄2(𝑥) = ∑ 𝐾2𝐽𝐹𝐽  

𝑀
𝐽=1   

𝑑2𝑓(𝑥)

𝑑𝑥2 = 2! 𝑄3(𝑥) = ∑ 𝐾3𝐽𝐹𝐽  
𝑀
𝐽=1   

𝑑3𝑓(𝑥)

𝑑𝑥3 = 3! 𝑄4(𝑥) = ∑ 𝐾4𝐽𝐹𝐽  
𝑀
𝐽=1   

 
𝑑4𝑓(𝑥)

𝑑𝑥4 = 4! 𝑄5(𝑥) = ∑ 𝐾5𝐽𝐹𝐽                 
𝑀
𝐽=1   

𝑑5𝑓(𝑥)

𝑑𝑥5 = 5! 𝑄6(𝑥) = ∑ 𝐾6𝐽𝐹𝐽  
𝑀
𝐽=1    

𝑑6𝑓(𝑥)

𝑑𝑥6 = 6! 𝑄7(𝑥) = ∑ 𝐾7𝐽𝐹𝐽   
𝑀
𝐽=1                                       (9) 

The formulation of the SSPH method can be found in 

[52-57]. 

3. Homogenization of Material Properties 

We assume that the beam of length L, width b, thickness 

h is made of two randomly distributed different isotropic 

constituents. Further, the macroscopic response of the FGB 

is isotropic and the material parameters vary only in z 

direction as shown in Fig. 2. The rule of mixture is used to 

find the effective material properties at a point. According to 

the rule of mixtures, the effective material properties of the 

beam, Young’s modulus E and shear modulus G can be 

given by 

 

Fig. 2. Geometry of the FGB composed of two isotropic 

constituents 

𝐸(𝑧) = 𝐸1𝑉1(𝑧) + 𝐸2𝑉2(𝑧) 

 𝐺(𝑧) = 𝐺1𝑉1(𝑧) + 𝐺2𝑉2(𝑧)                                                     (10) 

where 𝐸1, 𝐸2, 𝐺1 and 𝐺2 are the material properties of two 

constituents, 𝑉1 and 𝑉2 are volüme fractions of the 

constituents. The relation of the volume fractions can be 

expressed as follows; 

𝑉1(𝑧) + 𝑉2(𝑧) = 1                                                             (11) 

According to the power law form, the volume fraction of 

the constitute 1 can be given by 

𝑉1(𝑧) = (
1

2
+

𝑧

ℎ
)

𝑝

                                                                      (12) 

where p is the gradation exponent which determines the 

material property through thickness of the beam. At the 

bottom surface of the beam, the volume fraction of the 

constitute 1 is zero, 𝑉1 = 0. At the top surface it is found as 

𝑉1 = 1. The effective material properties can be found by 

using the equations (10), (11) and (12) as follows 

𝐸(𝑧) = (𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2  

𝐺(𝑧) = (𝐺1 − 𝐺2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐺2                                          (13)   

4. Formulation of Beam Theories 

𝒙𝒊 

𝒙𝒈 

Compact 

Support 

Domain 
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The kinematics of deformation of a beam can be 

represented by using various beam theories. Among them, 

the EBT, TBT and RBT are commonly used [64-67]. Various 

higher order beam theories are introduced in which the 

straightness assumption is removed and the vanishing of 

shear stress at the upper and lower surfaces is 

accommodated. For this purpose, higher order polynomials 

incorporating either one, or more, extra terms [68-74] or 

trigonometric functions [75,76] or exponential functions [77] 

are included in the expansion of the longitudinal point-wise 

displacement component through the thickness of the beam. 

The higher order theories introduce additional unknowns that 

make the governing equations more complicated and provide 

the solutions much costly in terms of CPU time. The theories 

which are higher than the third order shear deformation beam 

theory are seldom used because the accuracy gained by these 

theories which require much effort to solve the governing 

equations is so little [66]. 

4.1. Euler Bernoulli Beam Theory 

The following displacement field is given for the EBT, 

𝑢(𝑥, 𝑧) = −𝑧
𝑑𝑤

𝑑𝑥
 

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                (14) 

where w0 is the transverse deflection of the point (x,0) which 

is on the mid-plane (z=0) of the beam. By using the 

assumption of the smallness of strains and rotations, the only 

the axial strain which is nonzero is given by, 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= −𝑧

𝑑2𝑤0

𝑑𝑥2                                                            (15) 

The virtual strain energy of the beam in terms of the 

axial stress and the axial strain can be expressed by  

𝛿𝑈 = ∫ ∫ 𝜎𝑥𝑥𝛿𝜀𝑥𝑥𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                                                (16) 

where δ is the variation operator, A is the cross sectional 

area, L is the length of the beam, 𝜎𝑥𝑥 is the axial stress. The 

bending moment of the EBT is given by, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

                                                             (17) 

By using equation (15) and equation (17), equation (16) 

can be rewritten as, 

𝛿𝑈 = − ∫  𝑀𝑥𝑥𝑧
𝑑2𝛿𝑤0

𝑑𝑥2  
𝐿

0
                                                     (18) 

The virtual potential energy of the load q(x) which acts 

at the central axis of the beam is given by  

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                      (19) 

If a body is in equilibrium, δW=δU+δV, the total virtual 

work (δW) done equals zero. Then one can obtain, 

𝛿𝑊 = − ∫ ( 𝑀𝑥𝑥𝑧
𝑑2𝛿𝑤0

𝑑𝑥2 + 𝑞(𝑥)𝛿𝑤0) 𝑑𝑥 = 0 
𝐿

0
                (20) 

After performing integration for the first term in 

equation (20) twice and since 𝛿𝑤0 is arbitrary in (0 < x < L), 

one can obtain the following equilibrium equation, 

−
𝑑2𝑀𝑥𝑥

𝑑𝑥2 = 𝑞(𝑥) 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                                         (21) 

By introducing the shear force 𝑄𝑥  and rewrite equation 

(21) in the following form  

−
𝑑𝑀𝑥𝑥

𝑑𝑥
+ 𝑄𝑥 = 0,   −

𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                                     (22) 

By using Hooke’s law, one can obtain  

 𝜎𝑥𝑥 = 𝐸(𝑧)𝜀𝑥𝑥 = − [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] 𝑧
𝑑2𝑤0

𝑑𝑥2     (23)                                              

If the equation (23) is put into equation (17), it is obtained, 

𝑀𝑥𝑥 = − ∫ [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] 𝑧2 𝑑2𝑤0

𝑑𝑥2 𝑑𝑧
+ℎ/2

−ℎ/2
=

−𝐷𝑥𝑥
𝑑2𝑤0

𝑑𝑥2                                                                            (24) 

where  

𝐷𝑥𝑥 = ∫ [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] 𝑧2𝑑𝑧
+ℎ/2

−ℎ/2
                   (25) 

The substitution of equation (24) into equation (22) yields 

the EBT governing equation for a FGB subjected to the 

distributed load 

𝑑2

𝑑𝑥2 (𝐷𝑥𝑥
𝑑2𝑤0

𝑑𝑥2 ) = 𝑞(𝑥) 𝑓𝑜𝑟 0 < 𝑥 < 𝐿                              (26) 

4.2. Timoshenko Beam Theory 

The following displacement field is given for the TBT, 

𝑢(𝑥, 𝑧) = 𝑧𝜙(𝑥)  

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                (27) 

where 𝜙(𝑥) is the rotation of the cross section. By using 

equation (27), the strain-displacement relations are given by 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= −𝑧

𝑑𝜙

𝑑𝑥
  

𝛾𝑥𝑧 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= 𝜙 +

𝑑𝑤0

𝑑𝑥
                                                  (28) 

The virtual strain energy of the beam including the 

virtual energy associated with the shearing strain can be 

written as, 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                            (29) 

where 𝜎𝑥𝑧 is the transverse shear stress and 𝛾𝑥𝑧  is the shear 

strain. The bending moment and the shear force can be 

written respectively, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑄𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

                           (30) 

By using equation (28) and equation (30), one can 

rewrite equation (29) as, 

𝛿𝑈 = ∫ [ 𝑀𝑥𝑥
𝑑𝛿𝜙

𝑑𝑥
+ 𝑄𝑥 (𝛿𝜙 +

𝑑𝛿𝑤0

𝑑𝑥
)] 𝑑𝑥

𝐿

0
                        (31) 

The virtual potential energy of the load q(x) which acts 

at the central axis of the Timoshenko beam is given by 

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                      (32) 
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Since the total virtual work done equals zero and the 

coefficients of 𝛿𝜙 and 𝛿𝑤0 in 0<x<L are zero, one can 

obtain the following equations, 

−
𝑑𝑀𝑥𝑥

𝑑𝑥
+ 𝑄𝑥 = 0,   −

𝑑𝑄𝑥

𝑑𝑥
= 𝑞(𝑥)                                     (33) 

The constitutive equations can be written as follows 

𝜎𝑥𝑥 = 𝐸(𝑧)𝜀𝑥𝑥 = [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] 𝑧
𝑑𝜙

𝑑𝑥
            (34) 

𝜎𝑥𝑧 = 𝐺(𝑧)𝛾𝑥𝑧 = [(𝐺1 − 𝐺2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐺2] (𝜙 +
𝑑𝑤0

𝑑𝑥
) (35) 

The bending moment and shear force can be expressed 

in terms of generalized displacement (𝑤0, 𝜙) by using the 

constitutive equations given above 

𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝑧
+ℎ/2

−ℎ/2
= ∫ [(𝐸1 − 𝐸2) (

1

2
+

𝑧

ℎ
)

𝑝

+
+ℎ/2

−ℎ/2

𝐸2] 𝑧2 𝑑𝜙

𝑑𝑥
𝑑𝑧 = 𝐷𝑥𝑥

𝑑𝜙

𝑑𝑥
                                                         

𝑄𝑥 = 𝜅𝑠 ∫ 𝜎𝑥𝑧𝑑𝑧 = 𝜅𝑠 ∫ [(𝐺1 − 𝐺2) (
1

2
+

𝑧

ℎ
)

𝑝

+
+

ℎ

2

−
ℎ

2

+
ℎ

2

−
ℎ

2

𝐺2] (𝜙 +
𝑑𝑤0

𝑑𝑥
) 𝑑𝑧 = 𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)                                   (36) 

where  

𝐷𝑥𝑥 = ∫ [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] 𝑧2𝑑𝑧
+ℎ/2

−ℎ/2
  

𝐴𝑥𝑧 = ∫ [(𝐺1 − 𝐺2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐺2] 𝑑𝑧
+

ℎ

2

−
ℎ

2

                          (37) 

Where 𝜅𝑠 is the shear correction factor which is used to 

compensate the error caused by the assumption of a constant 

transverse shear stress distribution along the beam thickness. 

The governing equations of the TBT is obtained in terms of 

generalized displacements by using the equations (33) and 

(36) as follows 

−
𝑑

𝑑𝑥
(𝐷𝑥𝑥

𝑑𝜙

𝑑𝑥
) + 𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
) = 0                             (38) 

−
𝑑

𝑑𝑥
[𝜅𝑠𝐴𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞(𝑥)                                        (39) 

4.3. Reddy-Bickford Beam Theory 

The following displacement field is given for the RBT, 

𝑢(𝑥, 𝑧) = 𝑧𝜙(𝑥) − 𝛼𝑧3 (𝜙(𝑥) +
𝑑𝑤(𝑥)

𝑑𝑥
)  

𝑤(𝑥, 𝑧) = 𝑤0(𝑥)                                                                (40) 

where 𝛼 = 4/(3ℎ2). By using equation (41), the strain-

displacement relations of the RBT are given by 

𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= 𝑧

𝑑𝜙

𝑑𝑥
− 𝛼𝑧3 (

𝑑𝜙

𝑑𝑥
+

𝑑2𝑤0

𝑑𝑥2 )  

𝛾𝑥𝑧 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= 𝜙 +

𝑑𝑤0

𝑑𝑥
− 𝛽𝑧2 (𝜙 +

𝑑𝑤0

𝑑𝑥
)                     (41) 

where 𝛽 = 3𝛼 = 4/(ℎ2). 

The virtual strain energy of the beam can be written as, 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0
                            (42) 

The usual bending moment and the shear force are, 

 𝑀𝑥𝑥 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑄𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

                           (43) 

and 𝑃𝑥𝑥  and 𝑅𝑥 are the higher order stress resultants can be 

written respectively, 

𝑃𝑥𝑥  = ∫ 𝑧3𝜎𝑥𝑥𝑑𝐴
𝐴

,       𝑅𝑥 = ∫ 𝑧2𝜎𝑥𝑧𝑑𝐴
𝐴

                       (44) 

By using equation (41), equation (43) and equation (44), 

one can rewrite the equation (42) as, 

𝛿𝑈 = ∫ [ (𝑀𝑥𝑥 − 𝛼𝑃𝑥𝑥)
𝑑𝛿𝜙

𝑑𝑥
− 𝛼𝑃𝑥𝑥

𝑑2𝛿𝑤0

𝑑𝑥2 + (𝑄𝑥 −
𝐿

0

 𝛽𝑅𝑥) (𝛿𝜙 +
𝑑𝛿𝑤0

𝑑𝑥
)] 𝑑𝑥                                                      (45) 

In the RBT there is no need to use a SCF unlike the 

TBT. The virtual potential energy of the transverse load q(x) 

is given by  

𝛿𝑉 = − ∫ 𝑞(𝑥)𝛿𝑤0𝑑𝑥
𝐿

0
                                                      (46) 

The virtual displacements principle is applied and the 

coefficients of 𝛿𝜙 and 𝛿𝑤0 in 0<x<L are set to zero, the 

governing equations of the RBT are obtained in terms of 

displacements 𝜙 and 𝑤0 as follows, 

−
𝑑

𝑑𝑥
(�̅�𝑥𝑥

𝑑𝜙

𝑑𝑥
− 𝛼�̂�𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) + �̅�𝑥𝑧 (𝜙 +
𝑑𝑤0

𝑑𝑥
) = 0  

−𝛼
𝑑2

𝑑𝑥2 (�̂�𝑥𝑥
𝑑𝜙

𝑑𝑥
− 𝛼𝐻𝑥𝑥

𝑑2𝑤0

𝑑𝑥2 ) −
𝑑

𝑑𝑥
[�̅�𝑥𝑧 (𝜙 +

𝑑𝑤0

𝑑𝑥
)] = 𝑞(𝑥)                               

                                                                                           (47) 

where  

�̅�𝑥𝑧 = �̂�𝑥𝑧 −  𝛽�̂�𝑥𝑧 ,     �̅�𝑥𝑥 = �̂�𝑥𝑥 −  𝛼�̂�𝑥𝑥  

�̂�𝑥𝑥 = 𝐷𝑥𝑥 − 𝛼𝐹𝑥𝑥 ,    �̂�𝑥𝑥 = 𝐹𝑥𝑥 − 𝛼𝐻𝑥𝑥   

�̂�𝑥𝑧 = 𝐴𝑥𝑧 − 𝛽𝐷𝑥𝑧 ,   �̂�𝑥𝑧 = 𝐷𝑥𝑧 −   𝛽𝐹𝑥𝑧  

(𝐷𝑥𝑥 , 𝐹𝑥𝑥 , 𝐻𝑥𝑥) =

∫ [(𝐸1 − 𝐸2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐸2] (𝑧2, 𝑧4, 𝑧6)𝑑𝑧
+

ℎ

2

−
ℎ

2

  

(𝐴𝑥𝑧, 𝐷𝑥𝑧 , 𝐹𝑥𝑧) = 

∫ [(𝐺1 − 𝐺2) (
1

2
+

𝑧

ℎ
)

𝑝

+ 𝐺2] (1, 𝑧2, 𝑧4)𝑑𝑧 
+ℎ/2

−ℎ/2
                (48)                                                 

5. Numerical Results 

The bending deflections of two FGB problems are 

investigated by using the formulation of the EBT, TBT and 

RBT and the SSPH method. Different loading and boundary 

conditions are applied with different node distributions in the 

problem domain. By employing different aspect ratios and 

gradation exponents, the maximum transverse deflections are 

calculated. The numerical results obtained by the SSPH 

method regarding to different beam theories are compared 

with the analytical solution of problems. 

5.1. Simply Supported Beam 
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Static transverse deflections of a simply supported FGB 

under uniformly distributed load of intensity 𝑞0 as shown in 

Fig.3. is studied. 

 

Fig. 2. Simply supported fgb with uniformly distributed load 

The physical parameters of the beam are given as L=1m, 

h=0.1m, b=0.1m. The distributed load 𝑞0 is set to 10000 

N/m. The material properties of the two constitutes are given 

as 

𝐸1 = 70𝐺𝑃𝑎,  𝐸2 = 151𝐺𝑃𝑎, 𝐺1 = 27𝐺𝑃𝑎,  𝐺2 = 58𝐺𝑃𝑎 

Based on the EBT, the governing equation of the 

problem can be presented as algebraic equations by using the 

SSPH basis function given in equation (9) and replacing 

𝑓(𝑥)  with 𝑤0(𝑥) as follows, 

𝐷𝑥𝑥 ∑ 24𝐾5𝐽𝑊𝐽 
𝑀
𝐽=1 = 𝑞0       𝑓𝑜𝑟 0 < 𝑥 < 𝐿                     (49) 

The boundary conditions regarding to the EBT are given 

as follows; 

𝑥 = 0,   ∑ 2𝐾3𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚  

𝑥 = 𝐿,    ∑ 2𝐾3𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚   

The analytical solution of this boundary value problem 

based on the EBT is given by 

𝑤0
𝐸(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(

𝑥

𝐿
−

2𝑥3

𝐿3 +
𝑥4

𝐿4)                                               (50) 

where the superscript E denotes the quantities in the EBT. 

The governing equations of the problem can be written 

in a similar way by replacing 𝑓(𝑥) given in equation (9) with 

𝑤0(𝑥) and 𝜙(𝑥)  and by using the SSPH basis functions as 

follows, 

∑ 𝜅𝑠𝐴𝑥𝑧𝐾2𝐽𝑊𝐽 
𝑀
𝐽=1 + ∑ [𝜅𝑠𝐴𝑥𝑧𝐾2𝐽 − 2𝐷𝑥𝑥𝐾3𝐽]𝑀

𝐽=1 Φ𝐽 = 0(51) 

− ∑ 2𝜅𝑠𝐴𝑥𝑧𝐾3𝐽𝑊𝐽 
𝑀
𝐽=1 − ∑ 𝜅𝑠𝐴𝑥𝑧𝐾2𝐽

𝑀
𝐽=1 Φ𝐽 = 𝑞0             (52) 

The SCF is assumed to be constant as 𝜅𝑠 = 5/6 for the 

rectangular cross section,  

The boundary conditions regarding to the TBT are given 

as follows; 

𝑥 = 0,   ∑ 𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚   

𝑥 = 𝐿,    ∑ 𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚   

The analytical solution of this boundary value problem 

based on the TBT is given by 

 𝑤0
𝑇(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(

𝑥

𝐿
−

2𝑥3

𝐿3 +
𝑥4

𝐿4) +
𝑞0𝐿2

2𝜅𝑠𝐴𝑥𝑧
 (

𝑥

𝐿
−

𝑥2

𝐿2)           (53) 

where the superscript T denotes the quantities in the TBT. 

By using RBT and the SSPH basis functions the 

governing equations can be written by replacing 𝑓(𝑥) given 

in equation (9) with 𝑤0(𝑥) and 𝜙(𝑥) as follows, 

∑ [�̅�𝑥𝑧𝐾2𝐽 + 6𝛼�̂�𝑥𝑥𝐾4𝐽]𝑊𝐽 
𝑀
𝐽=1 + ∑ [�̅�𝑥𝑧𝐾1𝐽 −𝑀

𝐽=1

2�̅�𝑥𝑥𝐾3𝐽] Φ𝐽 = 0                                                               (54) 

∑ [−2�̅�𝑥𝑧𝐾3𝐽 + 24𝛼2𝐻𝑥𝑥𝐾4𝐽]𝑊𝐽 
𝑀
𝐽=1 + ∑ [−�̅�𝑥𝑧𝐾2𝐽 −𝑀

𝐽=1

6𝛼�̂�𝑥𝑥𝐾4𝐽] Φ𝐽 = 𝑞                                                             (55) 

The boundary conditions regarding to the TBT are given 

as follows; 

𝑥 = 0, ∑ �̂�𝑥𝑥𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 − ∑ 2𝛼𝐹𝑥𝑥 𝐾3𝐽𝑊𝐽 

𝑀
𝐽=1 = 0,

𝑎𝑛𝑑    ∑ 𝐾1𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑚  

𝑥 = 𝐿, ∑ �̂�𝑥𝑥𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 − ∑ 2𝛼𝐹𝑥𝑥 𝐾3𝐽𝑊𝐽 

𝑀
𝐽=1 = 0,

𝑎𝑛𝑑    ∑ 𝐾1𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑚  

The analytical solution of this boundary value problem 

based on the RBT is given by 

 𝑤0
𝑅(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(

𝑥

𝐿
−

2𝑥3

𝐿3 +
𝑥4

𝐿4) +  

(
𝑞0𝜇

𝜆4 ) (
�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) [− tanh (

𝜆𝐿

2
) sinh 𝜆𝑥 + cosh 𝜆𝑥 +

𝜆2

2
𝑥(𝐿 − 𝑥) − 1]                                                                (56) 

where 

𝜆2 =
�̅�𝑥𝑧𝐷𝑥𝑥

𝛼(𝐹𝑥𝑥 �̂�𝑥𝑥−�̂�𝑥𝑥𝐷𝑥𝑥)
,   𝜇 =

𝐴𝑥𝑧�̂�𝑥𝑧

𝛼(𝐹𝑥𝑥 �̂�𝑥𝑥−�̂�𝑥𝑥𝐷𝑥𝑥)
  

For the numerical computations performed by the SSPH 

method uniformly distributed 21, 41 and 161 nodes are used 

in the domain 𝑥 ∈ [0, 1]. The Revised Super Gauss Function 

(RSGF) which gives the least L2 error norms in numerical 

solutions in [52] is used. 

𝑊(𝑥, 𝜉) =
𝐺

(ℎ√𝜋)
𝜆 {(36 − 𝑑2)𝑒−𝑑2

0 ≤ 𝑑 ≤ 6
0 𝑑 > 6

}       

 𝑑 = |𝑥 − 𝜉|/ℎ                                                                   (57) 

where 𝑑 is the radius of the CSD, ℎ is the smoothing length. 

G and 𝜆 are the parameters which are eliminated by the 

formulation of the SSPH method.  

The numerical solutions are performed according to the 

following meshless parameters; the radius of the support 

domain (d) is chosen as 6 and the smoothing length (h) 

equals to 1.1∆ where ∆ is the minimum distance between 

two adjacent nodes. The meshless parameters, d and h, are 

selected to obtain the lowest error. 

Computed results obtained by using the SSPH method 

are compared with the analytical solutions, and their 

accuracy and convergence properties are investigated by 

employing the global L2 error norm which is given by 

𝐿2 =
[∑ (𝑣𝑛𝑢𝑚

𝑗
−𝑣𝑒𝑥𝑎𝑐𝑡

𝑗
)2𝑚

𝑗=1 ]
1/2

[∑ (𝑣𝑒𝑥𝑎𝑐𝑡
𝑗

)2𝑚
𝑗=1 ]

1/2                                                 (58) 

The computed L2 error norms of the numerical solutions 

based on the EBT are given in Table 1. For the numerical 

 

L 

z 

q0 

b 

h 

x 
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analysis different numbers of nodes are considered in the 

problem domain with 5 terms in TSEs expansion and varying 

gradation exponents. It is observed in Table 1 that the 

difference between the computed and analytical results is too 

small and the SSPH method almost gives the analytical 

solution of the problem. In Table 2, maximum deflection of 

the FGB is presented with varying aspect ratios and 

gradation exponent values. 

Table 1. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 - 

EBT 

Gradation 

Exponent - 

p 

Number of Nodes 

21 41 161 

0 3.8621*10
-9 

9.0384*10
-8

 3.6786*10
-7

 

0.5 3.8606*10
-9

 9.0484*10
-8

 3.7665*10
-7

 

1 3.8636*10
-9

 9.0442*10
-8

 3.6774*10
-7

 

2 3.8591*10
-9

 9.0416*10
-8

 3.7251*10
-7

 

5 3.8635*10
-9

 9.0434*10
-8

 3.6998*10
-7

 

 

Table 2. Maximum deflection (mm) of the beam with 

varying gradation exponent and different aspect ratios for 41 

nodes - EBT 

Gradation 

Exponent 

(p) 

Aspect Ratio (L/h) 

5 10 20 50 

0 -0.0279 -0.2232 -1.7857 -27.9018 

0.5 -0.0195 -0.1561 -1.2489 -19.5145 

1 -0.0176 -0.1414 -1.1312 -17.6753 

2 -0.0164 -0.1317 -1.0539 -16.4681 

5 -0.0152 -0.1221 -0.9776 -15.2758 

 

Table 3. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ration L/h=10 - 

TBT 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 4.1559*10-10 3.5002*10-9 5.9457*10-9 

0.5 4.0629*10-10 3.5696*10-9 4.8358*10-9 

1 3.8775*10-10 3.4994*10-9 5.6451*10-9 

2 4.1133*10-10 3.5803*10-9 2.8734*10-9 

5 3.9839*10-10 3.6220*10-9 4.3202*10-9 

        

In Fig. 3, the numerical results in terms of transverse 

deflections are compared with the analytical solutions with 

different number of nodes in the problem domain and 

varying gradation exponent values. The aspect ratio (L/h) is 

set as 50. It is observed in Fig. 4 that the SSPH method 

agrees very well with the analytical solution. The transverse 

deflection of the FGB computed by the SSPH method is 

virtually indistinguishable from that for the analytical 

solution. 

 

Fig. 3. Deflections of the beam computed based on the EBT 

with varying number of nodes and the analytical solution. 

Table 4. Maximum deflection (mm) of the beam with 

varying gradation exponent and different aspect ratios for 41 

nodes -TBT 

Gradation 

Exponent 

(p) 

Aspect Ratio (L/h) 

5 10 20 50 

0 -0.0306 -0.2287 -1.7968 -27.9295 

0.5 -0.0215 -0.1601 -1.2569 -19.5346 

1 -0.0194 -0.1449 -1.1383 -17.6929 

2 -0.0180 -0.1349 -1.0603 -16.4839 

5 -0.0166 -0.1250 -0.9833 -15.2900 

 

       The global L2 error norms of the solutions based on the 

TBT with different numbers of nodes in the problem domain, 

5 terms in TSEs expansion and varying gradation exponents 

are given in Table 3. One can easily notice that the computed 

results are very close to analytical values when global L2 

error norms are investigated. The results in Table 3 are 

obtained for the meshless parameters d and h which gives the 

best accuracy for each method. In Table 4, maximum 

deflection of the FGB is presented with varying aspect ratios 

and gradation exponent values. As expected, the deflection 

value increases either an increase or a decrease for the aspect 

ratio and the gradation exponent. It is clear that numerical 

solutions obtained by the SSPH method agree very well with 

the analytical solution given in Fig. 5. 
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Fig. 4. Deflections of the beam computed based on the TBT 

and the analytical solution. 

Table 5. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 – 5 

terms in TSEs -RBT 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 2.056779 2.056786 2.056786 

0.5 2.167582 2.167589 2.167589 

1 2.064060 2.064066 2.064067 

2 1.924057 1.924063 1.924063 

5 1.845563 1.845569 1.845569 

 

Table 6. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 – 7 

terms in TSEs - RBT 

Gradation 

Exponent (p) 

Number of Nodes 

21 41 161 

0 1.7794 1.6913 0.5618 

0.5 1.8838 1.7994 0.4541 

1 1.7866 1.6986 0.5545 

2 1.6544 1.5619 0.6909 

5 1.5820 1.4860 0.7665 

 

By setting the aspect ratio as 10, the global L2 error 

norms of the solutions based on the RBT are computed for 

different number of nodes, varying gradation exponent and 

different number of terms in TSEs. By using 5 terms in 

TSEs, the accuracy of the SSPH method is not improved 

when the number of nodes increases in the problem domain. 

However, the convergence of the SSPH method increases 

when 7 terms in TSEs are employed. 

Table 7. Maximum deflection (mm) of the beam with 

varying gradation exponent and different aspect ratios for 

161 nodes - RBT 

Gradation 

Exponent 

(p) 

Aspect Ratio (L/h) 

5 10 20 50 

0 -0.0271 -0.2231 -1.7524 -27.2619 

0.5 -0.0189 -0.1562 -1.2259 -19.0676 

1 -0.0172 -0.1413 -1.1101 -17.2700 

2 -0.0160 -0.1315 -1.0340 -16.0899 

5 -0.0149 -0.1218 -0.9591 -14.9247 

 

It is observed that the numerical solutions obtained by 

employing 7 terms in TSEs and using 161 equally spaced 

nodes in the problem domain agree very well with the 

analytical solution given in Fig. 5. 

Fig. 5. Deflections of the beam computed based on the RBT 

and the analytical solution 

5.2. Cantilever Beam 

For a cantilever FGB the static transverse deflections 

under uniformly distributed load of intensity 𝑞0 is studied as 

shown in Figure 6. 

 



INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES  
Armagan Karamanli, Vol.2, No.3, 2016 

113 
 

 

 

Fig. 6. Simply supported FGB with uniformly distributed 

load 

As the physical parameters, the similar material 

geometry and properties are used. The uniformly distributed 

load 𝑞0 is set to 10000 N/m. 

The governing equation of the problem is given in equation 

(49). The boundary conditions are given by; 

𝑥 = 0,   ∑ 𝐾2𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚  

𝑥 = 𝐿,    ∑ 2𝐾3𝐽𝑊𝐽 
𝑀
𝐽=1 = 0 𝑎𝑛𝑑 ∑ 6𝐾4𝐽𝑊𝐽 

𝑀
𝐽=1 = 0    

The analytical solution of this boundary value problem based 

on the EBT is given by 

𝑤0
𝐸(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(6

𝑥2

𝐿2 − 4
𝑥3

𝐿3 +
𝑥4

𝐿4)                                    (59) 

The governing equations of the problem based on the TBT 

formulation are given in equation (51) and equation (52). The 

boundary conditions regarding to the TBT are given as 

follows; 

𝑥 = 0,   ∑ 𝐾1𝐽
𝑀
𝐽=1 Φ𝐽 = 0 𝑎𝑛𝑑 ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚   

𝑥 = 𝐿,    ∑ 𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 = 0 𝑎𝑛𝑑  ∑ 𝐾1𝐽

𝑀
𝐽=1 Φ𝐽 +

∑ 𝐾2𝐽𝑊𝐽 
𝑀
𝐽=1 = 0  

The analytical solution of this boundary value problem based 

on the TBT is given by 

𝑤0
𝑇(𝑥) =

𝑞0𝐿4

24𝐷𝑥𝑥
(6

𝑥2

𝐿2 − 4
𝑥3

𝐿3 +
𝑥4

𝐿4) +
𝑞0𝐿2

2𝜅𝑠𝐴𝑥𝑧
 (2

𝑥

𝐿
−

𝑥2

𝐿2)    (60) 

Based on the RBT, the governing equations of the problem 

are given in equation (54) and equation (55). The boundary 

conditions regarding to the RBT are given as follows; 

𝑥 = 0,   ∑ 𝐾1𝐽
𝑀
𝐽=1 Φ𝐽 = 0    𝑎𝑛𝑑  ∑ 𝐾1𝐽𝑊𝐽 

𝑀
𝐽=1 = 0 𝑚  

𝑥 = 𝐿,    ∑ �̂�𝑥𝑥𝐾2𝐽
𝑀
𝐽=1 Φ𝐽 − ∑ 2𝛼𝐹𝑥𝑥 𝐾3𝐽𝑊𝐽 

𝑀
𝐽=1 =

0, 𝑎𝑛𝑑 ∑ 𝐾1𝐽
𝑀
𝐽=1 Φ𝐽 + ∑ 𝐾2𝐽𝑊𝐽 

𝑀
𝐽=1 = 0   

The analytical solution of this boundary value problem based 

on the TBT is given by 

𝑤0
𝑅(𝑥) = 𝑤0

𝐸(𝑥) + (
𝑞0𝜇

2𝜆2) (
�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) (2𝐿𝑥 − 𝑥2) +

(
𝑞0𝜇

𝜆4 cosh 𝜆𝐿
) (

�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) [cosh 𝜆𝑥 + 𝜆𝐿 sinh 𝜆(𝐿 − 𝑥) −

(
𝑞0𝜇

𝜆4 ) (
�̂�𝑥𝑥

𝐴𝑥𝑧𝐷𝑥𝑥
) (

1+𝜆𝐿 sinh 𝜆𝐿

cosh 𝜆𝐿
)]                                             (61) 

The above boundary value problems are solved by using the 

SSPH method for different node distributions of 21, 41 and 

161 equally spaced nodes in the domain 𝑥 ∈ [0, 1]. The 

Revised Super Gauss Function given in equation (57) is used 

as the weight function. 

For the numerical solutions, the radius of the support domain 

(d) is chosen as 5 and the smoothing length (h) is chosen 

as 1.3∆. The meshless parameters, d and h, are selected to 

obtain the best accuracy. Computed results by the SSPH 

method are compared with the analytical solutions, and their 

rate of convergence and accuracy properties are investigated 

by using the global L2 error norm given in equation (58). 

In Table 8 the global L2 error norms of the solutions based on 

the EBT are given for different numbers of nodes in the 

problem domain with varying gradation exponent and 5 

terms in TSEs expansion. The aspect ratio is set to 10. The 

computed deflection values of the FGB are almost equal to 

analytical solution as seen Table 8 and Table 9. The 

computed transverse deflection of the beam is virtually 

indistinguishable from that for the analytical solution as seen 

from Fig. 7.  

Table 8. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 - 

EBT 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 9.3464*10
-7 

5.7715*10
-6 

7.7978*10
-6 

0.5 9.3463*10
-7

 5.7716*10
-6

 7.8008*10
-6

 

1 9.3462*10
-7

 5.7715*10
-6

 7.7981*10
-6

 

2 9.3463*10
-7

 5.7716*10
-6

 7.7986*10
-6

 

5 9.3462*10
-7

 5.7715*10
-6

 7.8015*10
-6

 

 

Table 9. Maximum deflection of the beam for different 

number of nodes with varying gradation exponent (p) and 

aspect ratio L/h=10 – EBT 

Gradation 

Exponent 

(p) 

Number of Nodes Analytical 

Solution 

(mm) 
21 41 161 

0 -2.142857 -2.142857 -2.142856 -2.142857 

0.5 -1.498715 -1.498715 -1.498715 -1.498715 

1 -1.357466 -1.357465 -1.357465 -1.357466 

2 -1.264755 -1.264755 -1.264755 -1.264755 

5 
-

1.1731843 

-

1.1731842 

-

1.1731842 

-1.173184 

 

       By using different numbers of nodes in the problem 

domain with 5 terms in TSEs expansion, the global L2 error 

norms of the solutions obtained for the TBT are given in 

Table 10. It is clear in Table 10 that the SSPH method 

provides satisfactory numerical results and rapid 

convergence to the analytical solution. In Table 11, 

maximum deflection values computed by using different 

number of nodes with varying gradation exponent are 

compared with the analytical solution.  It is observed in Fig. 

8 that the SSPH method agrees very well with the analytical 

solution. 
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Fig. 7. Deflections of the beam computed based on the 

EBT and the analytical solution. 

Table 10. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 - 

TBT 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 1.1737*10
-8 

3.2575*10
-7 

6.0033*10
-8 

0.5 1.0989*10
-8

 3.1489*10
-7

 5.3044*10
-8

 

1 1.1602*10
-8

 3.2470*10
-7

 6.6439*10
-8

 

2 1.1786*10
-8

 3.4013*10
-7

 5.8399*10
-8

 

5 1.2413*10
-8

 3.4943*10
-7

 6.5123*10
-8

 

 

Table 11. Maximum deflection of the beam for different 

number of nodes with varying gradation exponent (p) and 

aspect ratio L/h=10 - TBT 

Gradation 

Exponent 

(p) 

Number of Nodes Analytical 

Solution 

(mm) 
21 41 161 

0 -2.165079 -2.165079 -2.165079 -2.165079 

0.5 -1.514786 -1.514786 -1.514786 -1.514786 

1 -1.371583 -1.371583 -1.371583 -1.371583 

2 -1.277342 -1.277342 -1.277342 -1.277342 

5 -1.184540 -1.184540 -1.184540 -1.184540 

 

 

Fig. 8. Deflections of the beam computed based on the 

TBT and the analytical solution. 

Table 12. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 – 5 

terms in TSEs - RBT 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 1.7557 1.7732 1.7868 

0.5 1.8593 1.8778 1.8921 

1 1.7615 1.7791 1.7927 

2 1.6317 1.6481 1.6607 

5 1.5523 1.5729 1.5850 

 

Table 13. L2 error norm for different number of nodes with 

varying gradation exponent (p) and aspect ratio L/h=10 – 7 

terms in TSEs 

Gradation 

Exponent 

(p) 

Number of Nodes 

21 41 161 

0 1.7309 1.8455 1.5222 

0.5 1.8357 1.9472 1.6351 

1 1.7368 1.8512 1.5287 

2 1.6054 1.7244 1.3857 

5 1.5299 1.6518 1.3035 

 

The global L2 error norms of the solutions based on the 

RBT are given in Table 12 where different numbers of nodes 

and gradation exponents are considered with 5 terms in TSEs 

expansion. It is found that the number of terms in TSEs 

should be increased to obtain conventional convergence 
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properties. The results obtained by employing 7 terms in 

TSEs are better than the results given in Table 12 for 161 

nodes in the problem domain.  It is clear that the transverse 

displacement computed with the SSPH method closer to the 

analytical solution of the problem given in Fig. 9.  

 

Fig. 9. Deflections of the beam computed based on the 

RBT and the analytical solution 

6. Conclusion 

The SSPH basis functions are employed to numerically 

solve the transverse deflections of the functionally graded 

beams subjected to different sets of boundary conditions and 

uniformly distributed load by using strong formulation of the 

problem. The numerical calculations are performed by using 

different number of nodes uniformly distributed in the 

problem domain and by employing different beam theories 

which are the EBT, TBT and RBT. The performance of the 

SSPH method is investigated for the solution of the 

functionally graded beam problems with the EBT, TBT and 

RBT for the first time. The performance of the SSPH method 

employing the strong formulation for the static transverse 

deflection analysis of the FGBs based on various beam 

theories are evaluated by comparing the analytical solutions 

which are available in the literature. It is found that the SSPH 

method provides satisfactory results and convergence rate for 

the studied problems here. It is observed that the computed 

values of transverse deflections agree very well with the 

analytical solutions. It is clear that when the EBT and TBT 

formulations are employed for the solution of the FGB 

problems by using the SSPH method, the computed results in 

terms of the transverse displacement are virtually 

indistinguishable from that for analytical solution.  Based on 

the results of two numerical examples it is recommended that 

the SSPH method can be applied for solving linear 

functionally graded beam problems by employing different 

shear deformation theories. 
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