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Abstract: Hydrolysis and dehydration reactions of carbohydrates, which are 

used as energy raw materials by all living things in nature, are controlled by 

Carbohydrate Active Enzyme (CAZy) systems. These enzymes are also used 

in different industrial areas today. There are different types of microorganisms 

that have the CAZy system and are used in the industrial sector. Apart from 

current organisms, there are also rumen fungi within the group of candidate 

microorganisms with the CAZy system. It has been reported that xylanase 

(EC3.2.1.8 and EC3.2.1.37) enzyme, a member of the glycoside hydrolase 

enzyme family obtained from Trichoderma sp. and used especially in areas 

such as bread, paper, and feed industry, is more synthesized in rumen fungi 

such as Orpinomyces sp. and Neocallimastix sp. Therefore, this study reviews 

Neocallimastixsp., Orpinomyces sp., Caecomyces sp., Piromyces sp., and 

Anaeromyces sp., registered in the CAZy and Mycocosm database for rumen 

fungi to have both CAZy enzyme activity and to be an alternative 

microorganism in the industry. Furthermore the CAZy enzyme activities of the 

strains are investigated. The review shows thatNeocallimax sp. and 

Orpinomyces sp. areconsidered as candidate microorganisms. 
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1. INTRODUCTION 

Carbohydrates have different chemical forms in nature such as mono-, di-, poly-, and oligo- 

(Asp, 1996). Monosaccharides of these chemical forms can be converted into more complex 

carbohydrates with the help of α and β glycoside bonds of covalent character (Yuan et al., 

2018). Complex carbohydrates, although they have different tasks in living things, constitute 

the structure of the cell wall of plantsand are the most abundant in nature as a source of 

renewable energy (Guo et al.,2018; Singh et al.,2017). Plants can be called lignocellulosic 

biomass due to the complex carbohydrates they have (Vu et al., 2020; da Costa et al., 2019; 

Tsapekos et al., 2018). At the same time, this structure includes carbohydrates such as cellulose, 

hemicellulose, and pectin (Bhutto et al., 2017). The change of this chemical bond found in the 

structure of complex carbohydrates such as lignocellulose occurs with the help of the 

Carbohydrate Active Enzyme (CAZyme) family (Bredon et al., 2019). Due to the enzyme 

families contained in the CAZyme system, assimilation, inheritance, and modification 
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processes related to the bond in the structure of carbohydrates occur (Lombard, 2010). It is 

thanks to symbiotic microorganisms living in the digestive tract of the CAZyme family 

herbivores that provide hydrolysis of plant-based complex carbohydrates (Gruninger et al., 

2014). The digestive tracts of ruminants and monogastrics contain a complex microbiome 

consisting of bacteria, archaea, protozoa, viruses, and anaerobic gut fungi. Although anaerobic 

fungi were reported early, their discovery was delayed because they resembled protozoa. Since 

its first discovery in 1975, 18 genera have been described. The life cycles of AGFs vary 

according to the species. The life cycle of AGFs takes approximately 23-32 hours(Lowe et 

al.,1987; Ozkose et al., 2001). 

The rhizoidal structure of anaerobic fungi is the most important feature that distinguishes 

them from each other( Orpin, 1975; Ozkose, 2001; Kar et al., 2021). Rumen fungi, which are 

among these microorganisms and produce digestive enzymes belonging to the CAZyme 

enzyme family, can deconstruct approximately half of the vegetable substrate and form 

different products for other microorganisms (Solomon et al., 2016; Youssef et al.,2013; Ekinci 

et al., 2006). In addition, it has been observed that some enzymes belonging to the CAZyme 

family of rumen fungi are higher than some commercially used strains such as Trichoderma sp. 

(Solomon et al., 2016). 

1.1. Rumen Fungi 

The existence of rumen fungi was first discovered by Colin Orpin in 1975, when he concluded 

that a previously identified protozoan flagellate (Callamastix frontalis) found in the sheep 

rumen is the motile stage of an obligate anaerobic rumen fungus(Hess et al., 2020; Wood 

&Wilson, 1995; Trinci,1994).Rumen fungi are found in the digestive tract of ruminant and 

monogastric herbivores as a habitat. Also, it  has important functions, both mechanical and 

enzymatic. Rumen fungi are classified taxonomically at the genus level according to their 

morphological characteristics (Orpin, 1977).However, today, morphological features are not 

sufficient for the classification of rumen fungi. Therefore, molecular approaches targeting at 

specific phylogenetic marker genes are utilized to facilitate taxonomic classification of the 

complex life cycles of rumen fungi (Hess et al., 2020). Recently, a large number of new, yet 

uncultured rumen fungus taxa have been identified in culture-independent diversity studies. 

Many rumen fungi species still wait to be identified in intestinal ecosystems(Hanafy et al., 

2021; Hess et al., 2020; Haitjema et al., 2014). 

The rumen fungi, which taxonomically belong to the Neocallimastimycota phylum, 

physically break down the plant cell wall with the mycelium in their structure, thus increasing 

the energy source for other microorganisms in the rumen (Yanuartono et al., 2019; Hibbet et 

al., 2007; Heath et al., 1983). Rumen fungi are one of the microorganisms that play a vital role 

in the deterioration of the fibrous structure in the rumen, as they can produce cellulase enzyme 

and penetrate the feed particles(Agustına et al., 2022).In addition, they have great potential in 

the biofuel production process, as they hydrolyze lignocellulose with this enzyme and can 

convert this substrate into H2 and ethanol (Saye, 2021).In other words, due to the fact that rumen 

fungi are very successful in the hydrolysis ofcarbohydrates with their hydrolysis enzyme,  the 

CAZy system is thought to be present in these microorganisms and may be a candidate 

microorganism for this system (Kameshwar et al., 2019). 

1.2. Carbohydrate Active Enzymes  

CarbohydrateActive Enzymes provide control of chemical reactions such as hydrolysis, 

dehydration, and modification (glycoside transferases, glycoside hydrolases, polysaccharide 

lyases, and carbohydrate esterases) of complex carbohydrates (Lombard et al., 2010). The 

concept of Carbohydrate-Active Enzymes (CAZymes), first used in the late 1990s, are based 

on structurally similar, related, or functional areas, and since then related studies have been 

https://sciprofiles.com/profile/author/dTdzMDFjRHpQaFNWbHFMTlZ5OWljejJyS1NMSFQrajl3d0Nvdi8xMWl2OD0=
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carried out to provide a database about the enzym system (Lombard et al., 2014; Cantarel et al., 

2009). It is known that CAZymes, which are especially effective on glycosidic bonds, are 

necessary for significant biotechnological progress in the bioenergy and biobased (such as food, 

feed, materials, and chemical) industry sectors (Kameshwar et al., 2018). Apart from bioenergy 

and agricultural industries, CAZymes also have a very important place for human health. As a 

result of metagenomic studies conducted on symbiotics, which are responsible for decomposing 

various dietary and which host carbohydrates found in the digestive tract of humans, it has been 

found that these microorganisms encode more than one hundred CAZyme genes in their 

genomes (Huang et al., 2017). It is expected that these metabolic enzymes secreted by both 

aerobic and anaerobic fungi that perform the hydrolysis of biopolymer compounds such as 

cellulose, hemicellulose, pectin, and chitin represent a fairly rich and diverse enzyme pool 

(Lange et al., 2019).  

The CAZymes database also provides online and up-to-date access to a sequence-based 

enzyme family classification that demonstrates the specificity and 3D structure of biological 

catalysts that assemble, alter, and degrade the sequence encoding these enzymes (Lombard et 

al., 2014; Benson et al.,2004). In other words, the CAZy database is uptodate with sequence 

studies from the National Center for Biotechnology Information (NCBI), including taxonomic, 

sequence, and reference information, enzymatic family classification, and known functional 

information. These data allow an enzyme (CAZyme) to be searched for all CAZyme in an 

organism or a CAZyme protein family. The addition of new family members and the inclusion 

of biochemical information from the literature are regularly updated after a careful review.  

The classification system of the CAZyme family covers all taxonomic groups, providing 

basic commonality(Davies et al.,2005). It has various enzymes involved in obtaining nutrients 

from substrates, hydrolysis, or dehydration, especially those that play a key role in the 

degradation of substrates and all known variants in databases and related bioinformatics tools 

of CAZymes (Davies & Williams, 2016) associated with the hydrolysis of polysaccharides in 

six main groups classified as Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs), 

Polysaccharide Lyases (PLs), Carbohydrate Esterases (CEs), Auxiliary Activities (AAs), and 

Carbohydrate-Binding Modules (CBMs) (Lombard et al., 2014; Lombard et al., 2013; 

Levasseur et al., 2013). 

1.2.1. Glycoside hydrolases  

It forms a family of proteins responsible for the hydrolysis (Park et al., 2017) or 

transglycosylation (Manas et al., 2018) of glycosidic bonds. Glycoside hydrolases (EC3.2.1.-), 

a common group of enzymes that hydrolyze the glycosidic bond between two or more 

carbohydrates or between a carbohydrate and a non-carbohydrate compound and make up 

almost half of the CAZyme family of genes encoding GH. Glycoside hydrolases are among the 

key enzymes of carbohydrate metabolism found in all three main domains (archaebacteria, 

bacteria, and eukaryotes). As it is actively used in biotechnological and biomedical applications, 

it creates the most successful set of biochemically characterized enzymes available in the 

CAZyme database (Henrissat et al., 1991). 

1.2.2. Polysaccharide lyases  

Polysaccharide lyases (PLs) function as a mechanism of hydrolysis of glycosidic bonds or 

acidic group elimination mechanism in acidic polysaccharides such as polysaccharides 

containing uronic acid. PLsdisrupt the structure of organic compounds such as 

glycosaminoglycans and pectin found in some microorganisms (Cantarel et al., 2009; Yip et 

al., 2006). Although many PLs are involved in biotechnological and biomedical fields and their 

total number is low compared to other enzymes belonging to the CAZyme family, there are 

biochemically characterized examples in the database (Yip et al., 2006; Coutinho et al., 1999). 

https://bioresourcesbioprocessing.springeropen.com/articles/10.1186/s40643-019-0286-0#ref-CR34
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1.2.3. Carbohydrate esterases  

Carbohydrate esterases eliminate ester-based modifications found in mono-, oligo- and 

polysaccharides, thereby facilitating the action of GHs on complex polysaccharides. Because 

of the low barrier of specificity between carbohydrate esterases and other esterase activities, 

sequence-based classification is likely to include some enzymes that can act on non-

carbohydrate esters (Coutinho et al., 1999).CEs also catalyze the -O or de-N-acylation of esters 

or amides and other substituted saccharides, where sugars play the role of alcohol and amine 

(Biely et al., 2012). 

1.2.4. Carbohydrate binding modules  

CarbohydrateBinding Modulesaim at a long-term interaction with other enzymes involved in 

the hydrolysis of some polysaccharides such as cellulose, which generally forms the structure 

of the water-insoluble plant cell wall.At the same time, CBMs help hydrolysis of these insoluble 

polysaccharides (Boraston et al., 2004). CBMs are known to be most likely associated with 

other carbohydrate active enzyme catalytic modules within the same polypeptide and can target 

at different substrate forms due to their different structural properties (Biely et al.,2012). 

1.2.5. Glycosyl transferases  

Glycosyltransferase enzymes (EC2.4.x.y) are involved in the biosynthesis of disaccharides, 

oligosaccharides, and polysaccharides. These enzymes transfer sugar groups from activated 

giver molecules to specific recipient molecules by forming a glycosidic bond (Campbell et al., 

1998). 

1.2.6. Auxiliary activities  

Carbohydrateactive enzymes are the first described families of enzymes that break down or 

form complex carbohydrates, namely glycoside hydrolases (GH), polysaccharide lyases (PL), 

carbohydrate esterases (CE), Glycosyltransferases (GT), and non-catalytic carbohydrate-

binding modules (CBM) added to them.The recent discovery that members of some families in 

this group are lytic polysaccharide mono-oxygenases (LPMO) has necessitated the 

reclassification of these families into an appropriate category.Since lignin is always present in 

the plant cell wall together with polysaccharides and lignin fragments which are likely to act in 

concert with (LPMO), the families of lignin degradation enzymes were decided to be added to 

the LPMO familiesand initiate a new CAZy class.For this reason, the so-called "auxiliary 

activities" group has been established to accommodate several enzyme mechanisms and 

substrates (Levasseur et al., 2013). 

1.3. Numbering of the Carbohydrate Active Enzymes System 

The enzyme commission number (EC) is also used scientifically to name enzymes and other 

enzymes that are bound to the CAZyme system. In EC, according to the terminology, the first 

three digits indicate enzymes that hydrolyze O-glycosyl bonds, while the last digit indicates the 

substrate, and sometimes reflects the molecular mechanism. This classification provides a 

unique classification that provides ease of use, especially to avoid ambiguities and to prevent 

the proliferation of unimportant names (Henrissat et al., 1991). Table1 shows the functions and 

EC numbers of enzymes belonging to the CAZyme system. 
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Table 1. The enzyme groups that are members of the CAZyme system: the Enzyme Commission 

Number (EC), the enzyme family to which they are attached (function), and the types of glycoside bonds 

by which they act (naming) (http://www.cazy.org). 

SUBSTRATE ECNUMBER FUNCTION NAMING 

CELLULOSE 

3.2.1.91 

 

 

 

3.2.1.4 

 

3.2.1.176 

endo-β-1,4-glucanase / cellulase 

 

 

 

cellulose 1,4-β-cellobiosidase 

 

cellulose 1,4-β-cellobiosidase 

GH5, GH6, GH7, GH8, GH45, GH9, 

GH10, GH12, GH44, GH48, GH51, 

GH74, GH124 

 

GH5, GH6, GH9, GH51 

 

GH7, GH48 

HEMICELULOSE 

3.2.1.37 

 

 

 

3.2.1.55 

 

 

 

3.1.1.72 

xylan 1,4-β-xylosidase 

 

 

 

α-L-arabinofuranosidase 

 

 

 

acetylxylan esterase 

GH1, GH2, GH3, GH30, GH39, 

GH43, GH51, GH52, GH54, GH116, 

GH120 

 

GH2, GH3, GH5, GH39, GH43, 

GH51, GH54, GH62 

CE1, CE2, CE3, CE4, CE5, CE6,  

 

CE7, CE12 

PECTIN 

3.1.1.11 

 

3.2.1.23 

 

 

4.2.2.2 

Pectinesterase 

 

β-galactosidase 

 

 

pectate lyase 

CE8 

 

GH1, GH2, GH35, GH39, GH42, 

GH59, GH147, GH165 

 

PL1, PL2, PL3, PL9, PL10 

STARCH 

3.2.1.1 

 

3.2.1.20 

 

 

3.2.1.28 

α-amylase 

 

α-glucosidase 

 

 

α,α-trehalase 

GH13, GH57, GH119 

 

GH4, GH13, GH31, GH63, GH76, 

GH97, GH122 

 

GH15, GH37, GH65  

MANNAN 

3.2.1.24 

 

3.2.1.78 

 

3.2.1.113 

α-mannosidaz 

 

mannan endo-1,4-β mannosidaz 

 

mannosyl-oligosaccharide 1,2-α-

mannosidase 

GH38, GH31, GH92 

 

GH5, GH26, GH45, GH113, GH134 

 

GH38, GH47, GH92 

1.4. Rumen Fungi and Carbohydrate Active Enzyme Activity 

Herbal substrates, which are the main nutrition source of herbivores, have an average of 65% 

carbohydrates in their structure, and these organic compounds are mainly cellulose, 

hemicellulose, and pectin(Pettersen et al., 1984).A large number of species and genus levels 

continue to be added to the Neocallimastimycota phylum, which includes rumen fungi 

discovered by Orpin (1975) in the middle of the 20th century (Hanafy et al., 2020). The fact 

that rumen fungi have a morphologically filamentous structure positively affects the surface of 

attachment to the plant material contained in the habitat of these microorganisms. It is also 

known that these microorganisms have a high degree of enzyme activity, such as lignocellulosic 

(Meng et al., 2021; Liang et al., 2020). Complex carbohydrates which rumen fungi use both as 

a habitat and as a substrate increase the activity of carbohydrate-active enzymes (CAZy) of 

these microorganisms (Solden et al., 2018; Haitijema et al., 2017; Cantarel et al., 2009). Due 

to this property of rumen fungi, it has a symbiotic positive effect on the rumen ecosystem by 

http://www.cazy.org/
http://www.cazy.org/GH5.html
http://www.cazy.org/GH6.html
http://www.cazy.org/GH7.html
http://www.cazy.org/GH8.html
http://www.cazy.org/GH45.html
http://www.cazy.org/GH9.html
http://www.cazy.org/GH10.html
http://www.cazy.org/GH12.html
http://www.cazy.org/GH44.html
http://www.cazy.org/GH48.html
http://www.cazy.org/GH51.html
http://www.cazy.org/GH74.html
http://www.cazy.org/GH124.html
http://www.cazy.org/GH5.html
http://www.cazy.org/GH6.html
http://www.cazy.org/GH9.html
http://www.cazy.org/GH51.html
http://www.cazy.org/GH7.html
http://www.cazy.org/GH48.html
http://www.cazy.org/GH1.html
http://www.cazy.org/GH2.html
http://www.cazy.org/GH3.html
http://www.cazy.org/GH30.html
http://www.cazy.org/GH39.html
http://www.cazy.org/GH43.html
http://www.cazy.org/GH51.html
http://www.cazy.org/GH52.html
http://www.cazy.org/GH54.html
http://www.cazy.org/GH116.html
http://www.cazy.org/GH120.html
http://www.cazy.org/GH2.html
http://www.cazy.org/GH3.html
http://www.cazy.org/GH5.html
http://www.cazy.org/GH39.html
http://www.cazy.org/GH43.html
http://www.cazy.org/GH51.html
http://www.cazy.org/GH54.html
http://www.cazy.org/GH62.html
http://www.cazy.org/CE1.html
http://www.cazy.org/CE2.html
http://www.cazy.org/CE3.html
http://www.cazy.org/CE4.html
http://www.cazy.org/CE5.html
http://www.cazy.org/CE6.html
http://www.cazy.org/CE7.html
http://www.cazy.org/CE12.html
http://www.cazy.org/GH1.html
http://www.cazy.org/GH2.html
http://www.cazy.org/GH35.html
http://www.cazy.org/GH39.html
http://www.cazy.org/GH42.html
http://www.cazy.org/GH59.html
http://www.cazy.org/GH147.html
http://www.cazy.org/GH165.html
http://www.cazy.org/PL1.html
http://www.cazy.org/PL2.html
http://www.cazy.org/PL3.html
http://www.cazy.org/PL9.html
http://www.cazy.org/PL10.html
http://www.cazy.org/GH13.html
http://www.cazy.org/GH57.html
http://www.cazy.org/GH119.html
http://www.cazy.org/GH4.html
http://www.cazy.org/GH13.html
http://www.cazy.org/GH31.html
http://www.cazy.org/GH63.html
http://www.cazy.org/GH76.html
http://www.cazy.org/GH97.html
http://www.cazy.org/GH122.html
http://www.cazy.org/GH15.html
http://www.cazy.org/GH37.html
http://www.cazy.org/GH65.html
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completely hydrolyzing the plant material in the rumen (Terry et al., 2019). The complete 

genome sequencing of some of the microorganisms belonging to the Neocallimastimycota 

phylum has been performed and is given in Table 2 (Wilken et al., 2021; Haitijema et al., 2017). 

As a result of the sequencing process, a JGI based database (fungal genomic database) is used 

in relation to the CAZy enzyme system belonging to these microorganisms (Barrett & Lange, 

2019). 

Table 2.The identified rumen fungi, registered in the MycoCosm database:microorganism name; 

summation of nucleotide length; number of genes; and authors who published them 

Microorganism Name Nucleotide Lenght Number of Genes Published by Author 

Anaeromyces robustus 71.685.009 12.832 Haitijema et al.,2017 

Caecomyces churravis 165.495.782 15.009 Brown et al.,2021 

Neocallimasix california 193.032.485 20.219 Haitijema et al.,2017 

Neocallimastix lanati 200.974.851 27.677 Wilken et al.,2021 

Orpinomyces sp. 100.954.185 18.936 Yussef et al.,2013 

Piromyces finnis 56.455.805 10.992 Haitijema et al.,2017 

Piromyces sp. 71.019.055 14.648 Haitijema et al.,2017 

(https://mycocosm.jgi.doe.gov/neocallimastigomycetes/neocallimastigomycetes.info.html) 

Figure 1. Enzyme group and corresponding substrates of rumen fungi according to Cazyme system 

(http://cazy.org) (http://mycocosm.jgi.doe.gov) (https://biorender.com/)   

 

The CAZy system is classified into glycoside hydrolases (GH), glycosyltransferases (GT), 

polysaccharide lyases (PL), carbohydrate esterases (CE), auxiliary activity enzymes (AA), and 

carbohydrate-binding modules (CBM) (Lombard, 2013). Although the CAZy system is studied 

under different groups, they are generally named according to the substrate they act on. The 

https://mycocosm.jgi.doe.gov/neocallimastigomycetes/neocallimastigomycetes.info.html
http://cazy.org/
http://mycocosm.jgi.doe.gov/
https://biorender.com/
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genome information belonging to other microorganisms, especially rumen fungi, is provided 

by Interpro (Blum et al., 2021; Richardson et al., 2019) and is also registered in different 

databases such as dbCAN (Ausland et al.,2021;Huang et al.,2018). In this study, research was 

carried out on the CAZy system of rumen fungi registered in current databases. The preferred 

web databases for analysis are cazy.org (http://cazy.org) and mycocosm 

(http://mycocosm.jgi.doe.gov).Data on different CAZy enzymes belonging to rumen fungi are 

shown in Figure 1. Accordingly, it is observed that Neocallimastix sp. and Piromyces sp. have 

activity in all groups belonging to the CAZy enzyme system (AA: Except Auxiliary Activity) 

in six different rumen fungi registered in the cazy database with mycocosm. It was determined 

that no rumen fungi were registered for the enzyme activity known as auxiliary activity (AA). 

1.4.1. Carbohydrate active enzymes system in Neocallimastix sp. 

Endo-1,4-β-D-glucanase (EC3.2.1.4) registered to the glycoside hydrolase (GH) enzyme family 

of Neocallimastix sp. or CAZy enzyme activity related to the cellulase family has a higher rate 

than that of microorganisms with high activity such as aerobic Trichoderma reesei. known to 

have a secretoma (Wood et al., 1986). Currently, glucanase enzymes from Trichoderma sp. are 

used commercially and the mechanism of action of this enzyme is shown in Figure 2. 

Figure 2. Mechanism of action (glucosidase) of Trichoderma sp. enzymes registered in Sigmaaldrich 

database (https://www.sigmaaldrich.com/TR/en/product/sigma/g4423)  

 

Chen et al. (2012) determined that the optimum pH range of β-glucosidase, which is defined 

with the number EC3.2.1.21 related to the CAZy enzyme family in the literature, is in the range 

of 5-6 and its molecular weight is 85.1 kDa. Mountfort et al. (1989) reported that the optimum 

pH for its activity is 5 and the optimum temperature is 55oC for the xylanase enzyme (EC 

3.2.1.8), a member of the GH family.After the commercial use of the xylanase enzyme (Hemi-

Cellulase) became widespread, Huang et al. (2021) conducted immobilization studies on the 

gene region related to the xylanase enzyme belonging to Neocallimastix sp. Zhang et al. (2019) 

reported the optimum in vitro working conditions of acetyl xylan esterase (CE - EC3.1.1.72) 

enzyme, a member of the CAZy enzyme family (Figure 3), which hydrolyzes the ester bonds 

of acetyl groups in the xylose parts of naturally acidified xylan substrates. Kwon et al. (2016) 

also reported that this enzyme has a molecular weight of 36.5kDa. 

 

 

 

http://mycocosm.jgi.doe.gov/
file:///C:/Users/sysadm/Downloads/Figure%202
https://www.sigmaaldrich.com/TR/en/product/sigma/g4423
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Figure 3.The mechanism of action of the enzyme acetyl xylan esterase (Krastanova et al., 2005). 

 

1.4.2. Carbohydrate active enzymes system in Orpinomyces sp. 

The activity of endo-1,4-β-D-glucanase has a very important place in terms of microorganisms. 

It is known that the activity of this enzyme in the species Trichoderma reesei is significantly 

higher and endo-1,4-β-D-glucanase is used in the textile industry. Because of this, it has been 

observed that the effectiveness of this enzyme of Orpinomyces sp. is also significantly 

important in studies conducted for living beings alternative to this microorganism (Jin & Xia, 

2011). In studies on the characterization of Orpinomyces sp, its properties such as acetyl xylan 

esterase enzyme, optimum pH, temperature and molecular weight were determined (Blumm et 

al., 1999; Razeq et al., 2011).The enzyme xylanase is actively used in the production of biofuels 

and different industrial fields, and Orpinomyces sp. studies on the production of thermo-stable 

form have been reported (Passarinho et al.,2019; Ventorim et al., 2018). 

1.4.3. Carbohydrate active enzymes system in Caecomyces sp. 

Breton et al. (1995) reported that Caecomyces sp. has the enzyme activity of β-glucosidase (EC 

3.2.1.21), while β-galactosidase ( EC 3.2.1.23 related to the GH family) has no activity.Brown 

et al. (2021) preferred Caecomyces sp. in co-culture studies with methanogenic microorganisms 

because CAZy enzyme activity and the effect of carbohydrate-binding module (CBM) are 

significantly increased. 

1.4.4. Carbohydrate active enzymes system in Piromyces sp. 

Ali et al. (1995) reported that the molecular weights of xylanase, endoglucanase, and aviselase 

enzymes, which are members of the cellulase and hemicellulase enzyme family, are in the range 

of 50kDA to 190kDa.Thanks to its CAZy activities,Piromyces sp. can be used among the 

microorganisms used in silage production (Wang et al., 2019).Characterization and 

immobilization studies of the enzyme β-glucosidase, which is involved in the hydrolysis of 

cellulose, a renewable polysaccharide, have been reported (Chu et al.,2011; Tseng et al.,2015). 

1.4.5. Carbohydrate active enzymes system in Anaeromyces sp. 

The presence of enzymes such as endoglucanase, xylanase, and β-glucosidase, which are 

members of the Anaeromyces sp. enzyme family, and whose patterns range from 26 kDa to 130 

kDa, has been reported (Wen et al.,2021; Novotná et al., 2010).Qi et al. (2011) reported that 

cloning and purification of the enzyme was achieved as a result of isolation and characterization 

of the enzyme ferulic acid esterase (EC 3.1.1.73), which belongs to the carbohydrate esterase 

(CE) enzyme group, from Anaeromyces sp. 

2. CONCLUSION 

In the CAZy family of enzymes, there are such groups of enzymes as Cellulase, Hemi-

Cellulase, Pectin (galactosidase, pectinesterase, etc.), and Chitin (Chitinase) (Lange et 

al.,2019).Most of these enzymes are involved in the hydrolysis of substrates found in the plant 

cell wall (Dally et al.,2017).The rumen fungi living in the digestive tract of herbivores are a 

group with an important role in the hydrolysis of the plant cell wall and have a high ligninolytic 

enzyme activity (Kar et al., 2021; Henske et al., 2018; Zahang et al., 2016). In previous studies, 
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it was reported that microorganisms with CAZy enzyme activity can hydrolyze plant biomass 

at a high rate (Dally et al., 2017; Min et al., 2017). 

Research studies show that rumen fungi have a high degree of lignocellulolytic enzyme 

activity, these enzymes are present in studies such as isolation or cloning of rumen fungi, and 

there are also numerous enzyme groups in the cazy and mycocosm databases that belong to the 

CAZy enzyme family. 

Futhermore, based on our review of the related research, the rumen fungi can be reported to 

have CAZy activity, Neocallimaxsp can be used for the xylanase enzyme, which is industrially 

important, and Orpinomyces sp. can be considered as candidate microorganisms. 
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