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Abstract: Hydrolysis and dehydration reactions of carbohydrates, which are ARTICLE HISTORY
used as energy raw materials by all living things in nature, are controlled by N

Carbohydrate Active Enzyme (CAZy) systems. These enzymes are also used Received: Feb. 17, 2022
in different industrial areas today. There are different types of microorganisms ~Revised: May 17, 2022
that have the CAZy system and are used in the industrial sector. Apart from  Accepted: July 02, 2022
current organisms, there are also rumen fungi within the group of candidate

microorganisms with the CAZy system. It has been reported that xylanase KEyWORDS
(EC3.2.1.8 and EC3.2.1.37) enzyme, a member of the glycoside hydrolase

enzyme family obtained from Trichoderma sp. and used especially in areas CAZy,

such as bread, paper, and feed industry, is more synthesized in rumen fungi  Rumen Fungi,

such as Orpinomyces sp. and Neocallimastix sp. Therefore, this study reviews
Neocallimastixsp., Orpinomyces sp., Caecomyces sp., Piromyces sp., and )
Anaeromyces sp., registered in the CAZy and Mycocosm database for rumen ~ Glycoside Hydrolase,

fungi to have both CAZy enzyme activity and to be an alternative Carbohydrate Active Enzyme.
microorganism in the industry. Furthermore the CAZy enzyme activities of the

strains are investigated. The review shows thatNeocallimax sp. and

Orpinomyces sp. areconsidered as candidate microorganisms.

Xylanase,

1. INTRODUCTION

Carbohydrates have different chemical forms in nature such as mono-, di-, poly-, and oligo-
(Asp, 1996). Monosaccharides of these chemical forms can be converted into more complex
carbohydrates with the help of a and B glycoside bonds of covalent character (Yuan et al.,
2018). Complex carbohydrates, although they have different tasks in living things, constitute
the structure of the cell wall of plantsand are the most abundant in nature as a source of
renewable energy (Guo et al.,2018; Singh et al.,2017). Plants can be called lignocellulosic
biomass due to the complex carbohydrates they have (Vu et al., 2020; da Costa et al., 2019;
Tsapekos et al., 2018). At the same time, this structure includes carbohydrates such as cellulose,
hemicellulose, and pectin (Bhutto et al., 2017). The change of this chemical bond found in the
structure of complex carbohydrates such as lignocellulose occurs with the help of the
Carbohydrate Active Enzyme (CAZyme) family (Bredon et al., 2019). Due to the enzyme
families contained in the CAZyme system, assimilation, inheritance, and modification
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processes related to the bond in the structure of carbohydrates occur (Lombard, 2010). It is
thanks to symbiotic microorganisms living in the digestive tract of the CAZyme family
herbivores that provide hydrolysis of plant-based complex carbohydrates (Gruninger et al.,
2014). The digestive tracts of ruminants and monogastrics contain a complex microbiome
consisting of bacteria, archaea, protozoa, viruses, and anaerobic gut fungi. Although anaerobic
fungi were reported early, their discovery was delayed because they resembled protozoa. Since
its first discovery in 1975, 18 genera have been described. The life cycles of AGFs vary
according to the species. The life cycle of AGFs takes approximately 23-32 hours(Lowe et
al.,1987; Ozkose et al., 2001).

The rhizoidal structure of anaerobic fungi is the most important feature that distinguishes
them from each other( Orpin, 1975; Ozkose, 2001; Kar et al., 2021). Rumen fungi, which are
among these microorganisms and produce digestive enzymes belonging to the CAZyme
enzyme family, can deconstruct approximately half of the vegetable substrate and form
different products for other microorganisms (Solomon et al., 2016; Youssef et al.,2013; Ekinci
et al., 2006). In addition, it has been observed that some enzymes belonging to the CAZyme
family of rumen fungi are higher than some commercially used strains such as Trichoderma sp.
(Solomon et al., 2016).

1.1. Rumen Fungi

The existence of rumen fungi was first discovered by Colin Orpin in 1975, when he concluded
that a previously identified protozoan flagellate (Callamastix frontalis) found in the sheep
rumen is the motile stage of an obligate anaerobic rumen fungus(Hess et al., 2020; Wood
&Wilson, 1995; Trinci,1994).Rumen fungi are found in the digestive tract of ruminant and
monogastric herbivores as a habitat. Also, it has important functions, both mechanical and
enzymatic. Rumen fungi are classified taxonomically at the genus level according to their
morphological characteristics (Orpin, 1977).However, today, morphological features are not
sufficient for the classification of rumen fungi. Therefore, molecular approaches targeting at
specific phylogenetic marker genes are utilized to facilitate taxonomic classification of the
complex life cycles of rumen fungi (Hess ef al., 2020). Recently, a large number of new, yet
uncultured rumen fungus taxa have been identified in culture-independent diversity studies.
Many rumen fungi species still wait to be identified in intestinal ecosystems(Hanafy et al.,
2021; Hess et al., 2020; Haitjema ef al., 2014).

The rumen fungi, which taxonomically belong to the Neocallimastimycota phylum,
physically break down the plant cell wall with the mycelium in their structure, thus increasing
the energy source for other microorganisms in the rumen (Yanuartono et al., 2019; Hibbet et
al., 2007; Heath ef al., 1983). Rumen fungi are one of the microorganisms that play a vital role
in the deterioration of the fibrous structure in the rumen, as they can produce cellulase enzyme
and penetrate the feed particles(Agustina ef al., 2022).In addition, they have great potential in
the biofuel production process, as they hydrolyze lignocellulose with this enzyme and can
convert this substrate into H, and ethanol (Saye, 2021).In other words, due to the fact that rumen
fungi are very successful in the hydrolysis ofcarbohydrates with their hydrolysis enzyme, the
CAZy system is thought to be present in these microorganisms and may be a candidate
microorganism for this system (Kameshwar et al., 2019).

1.2. Carbohydrate Active Enzymes

CarbohydrateActive Enzymes provide control of chemical reactions such as hydrolysis,
dehydration, and modification (glycoside transferases, glycoside hydrolases, polysaccharide
lyases, and carbohydrate esterases) of complex carbohydrates (Lombard et al., 2010). The
concept of Carbohydrate-Active Enzymes (CAZymes), first used in the late 1990s, are based
on structurally similar, related, or functional areas, and since then related studies have been
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carried out to provide a database about the enzym system (Lombard ez al., 2014; Cantarel et al.,
2009). It is known that CAZymes, which are especially effective on glycosidic bonds, are
necessary for significant biotechnological progress in the bioenergy and biobased (such as food,
feed, materials, and chemical) industry sectors (Kameshwar et al., 2018). Apart from bioenergy
and agricultural industries, CAZymes also have a very important place for human health. As a
result of metagenomic studies conducted on symbiotics, which are responsible for decomposing
various dietary and which host carbohydrates found in the digestive tract of humans, it has been
found that these microorganisms encode more than one hundred CAZyme genes in their
genomes (Huang et al., 2017). It is expected that these metabolic enzymes secreted by both
aerobic and anaerobic fungi that perform the hydrolysis of biopolymer compounds such as
cellulose, hemicellulose, pectin, and chitin represent a fairly rich and diverse enzyme pool
(Lange et al., 2019).

The CAZymes database also provides online and up-to-date access to a sequence-based
enzyme family classification that demonstrates the specificity and 3D structure of biological
catalysts that assemble, alter, and degrade the sequence encoding these enzymes (Lombard ef
al., 2014; Benson et al.,2004). In other words, the CAZy database is uptodate with sequence
studies from the National Center for Biotechnology Information (NCBI), including taxonomic,
sequence, and reference information, enzymatic family classification, and known functional
information. These data allow an enzyme (CAZyme) to be searched for all CAZyme in an
organism or a CAZyme protein family. The addition of new family members and the inclusion
of biochemical information from the literature are regularly updated after a careful review.

The classification system of the CAZyme family covers all taxonomic groups, providing
basic commonality(Davies et al.,2005). It has various enzymes involved in obtaining nutrients
from substrates, hydrolysis, or dehydration, especially those that play a key role in the
degradation of substrates and all known variants in databases and related bioinformatics tools
of CAZymes (Davies & Williams, 2016) associated with the hydrolysis of polysaccharides in
six main groups classified as Glycoside Hydrolases (GHs), Glycosyl Transferases (GTs),
Polysaccharide Lyases (PLs), Carbohydrate Esterases (CEs), Auxiliary Activities (AAs), and
Carbohydrate-Binding Modules (CBMs) (Lombard et al., 2014; Lombard et al., 2013;
Levasseur et al., 2013).

1.2.1. Glycoside hydrolases

It forms a family of proteins responsible for the hydrolysis (Park et al., 2017) or
transglycosylation (Manas ef al., 2018) of glycosidic bonds. Glycoside hydrolases (EC3.2.1.-),
a common group of enzymes that hydrolyze the glycosidic bond between two or more
carbohydrates or between a carbohydrate and a non-carbohydrate compound and make up
almost half of the CAZyme family of genes encoding GH. Glycoside hydrolases are among the
key enzymes of carbohydrate metabolism found in all three main domains (archaebacteria,
bacteria, and eukaryotes). As it is actively used in biotechnological and biomedical applications,
it creates the most successful set of biochemically characterized enzymes available in the
CAZyme database (Henrissat et al., 1991).

1.2.2. Polysaccharide lyases

Polysaccharide lyases (PLs) function as a mechanism of hydrolysis of glycosidic bonds or
acidic group elimination mechanism in acidic polysaccharides such as polysaccharides
containing uronic acid. PLsdisrupt the structure of organic compounds such as
glycosaminoglycans and pectin found in some microorganisms (Cantarel et al., 2009; Yip et
al., 2006). Although many PLs are involved in biotechnological and biomedical fields and their
total number is low compared to other enzymes belonging to the CAZyme family, there are
biochemically characterized examples in the database (Yip et al., 2006; Coutinho ef al., 1999).
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1.2.3. Carbohydrate esterases

Carbohydrate esterases eliminate ester-based modifications found in mono-, oligo- and
polysaccharides, thereby facilitating the action of GHs on complex polysaccharides. Because
of the low barrier of specificity between carbohydrate esterases and other esterase activities,
sequence-based classification is likely to include some enzymes that can act on non-
carbohydrate esters (Coutinho et al., 1999).CEs also catalyze the -O or de-N-acylation of esters
or amides and other substituted saccharides, where sugars play the role of alcohol and amine
(Biely et al., 2012).

1.2.4. Carbohydrate binding modules

CarbohydrateBinding Modulesaim at a long-term interaction with other enzymes involved in
the hydrolysis of some polysaccharides such as cellulose, which generally forms the structure
of the water-insoluble plant cell wall. At the same time, CBMs help hydrolysis of these insoluble
polysaccharides (Boraston et al., 2004). CBMs are known to be most likely associated with
other carbohydrate active enzyme catalytic modules within the same polypeptide and can target
at different substrate forms due to their different structural properties (Biely et al.,2012).

1.2.5. Glycosyl transferases

Glycosyltransferase enzymes (EC2.4.x.y) are involved in the biosynthesis of disaccharides,
oligosaccharides, and polysaccharides. These enzymes transfer sugar groups from activated
giver molecules to specific recipient molecules by forming a glycosidic bond (Campbell ef al.,
1998).

1.2.6. Auxiliary activities

Carbohydrateactive enzymes are the first described families of enzymes that break down or
form complex carbohydrates, namely glycoside hydrolases (GH), polysaccharide lyases (PL),
carbohydrate esterases (CE), Glycosyltransferases (GT), and non-catalytic carbohydrate-
binding modules (CBM) added to them.The recent discovery that members of some families in
this group are lytic polysaccharide mono-oxygenases (LPMO) has necessitated the
reclassification of these families into an appropriate category.Since lignin is always present in
the plant cell wall together with polysaccharides and lignin fragments which are likely to act in
concert with (LPMO), the families of lignin degradation enzymes were decided to be added to
the LPMO familiesand initiate a new CAZy class.For this reason, the so-called "auxiliary
activities" group has been established to accommodate several enzyme mechanisms and
substrates (Levasseur ef al., 2013).

1.3. Numbering of the Carbohydrate Active Enzymes System

The enzyme commission number (EC) is also used scientifically to name enzymes and other
enzymes that are bound to the CAZyme system. In EC, according to the terminology, the first
three digits indicate enzymes that hydrolyze O-glycosyl bonds, while the last digit indicates the
substrate, and sometimes reflects the molecular mechanism. This classification provides a
unique classification that provides ease of use, especially to avoid ambiguities and to prevent
the proliferation of unimportant names (Henrissat ef al., 1991). Tablel shows the functions and
EC numbers of enzymes belonging to the CAZyme system.
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Table 1. The enzyme groups that are members of the CAZyme system: the Enzyme Commission
Number (EC), the enzyme family to which they are attached (function), and the types of glycoside bonds

by which they act (naming) (http://www.cazy.org).

SUBSTRATE ECNUMBER  FUNCTION NAMING
3.2.191 endo-fB-1,4-glucanase / cellulase ~ GHS5, GH6, GH7, GH8, GH45, GHO,
GH10, GH12, GH44, GH48, GHS51.
GH74, GH124
CELLULOSE
3.2.14 cellulose 1,4-B-cellobiosidase GHS, GH6, GH9, GH51
3.2.1.176 cellulose 1,4-B-cellobiosidase GH7, GH48
3.2.1.37 xylan 1,4-B-xylosidase GHI1, GH2, GH3, GH30, GH39.
GH43, GH51, GH52, GH54, GH116.
GHI120
HEMICELULOSE  3.2.1.55 a-L-arabinofuranosidase GH2, GH3, GHS5, GH39, GHA43,
GHS51, GH54, GH62
CEl, CE2, CE3, CE4, CES5, CE6,
3.1.1.72 acetylxylan esterase CE7, CE12
3.1.1.11 Pectinesterase CES
3.2.1.23 B-galactosidase GHI1, GH2, GH35, GH39, GH42.
PECTIN GH59, GH147, GH165
4222 pectate lyase PL1, PL2, PL3, PL9, PL10
3.2.1.1 a-amylase GH13, GH57, GH119
3.2.1.20 a-glucosidase GH4, GHI13, GH31, GH63, GH76.
STARCH GH97, GH122
3.2.1.28 o,o-trehalase GH15, GH37, GH65
3.2.1.24 o-mannosidaz GH38, GH31, GH92
3.2.1.78 mannan endo-1,4-f mannosidaz ~ GHS5, GH26, GH45, GH113, GH134
MANNAN
3.2.1.113 mannosyl-oligosaccharide 1,2-a- GH38, GH47, GH92

mannosidase

1.4. Rumen Fungi and Carbohydrate Active Enzyme Activity

Herbal substrates, which are the main nutrition source of herbivores, have an average of 65%
carbohydrates in their structure, and these organic compounds are mainly cellulose,
hemicellulose, and pectin(Pettersen ef al., 1984).A large number of species and genus levels
continue to be added to the Neocallimastimycota phylum, which includes rumen fungi
discovered by Orpin (1975) in the middle of the 20th century (Hanafy et al., 2020). The fact
that rumen fungi have a morphologically filamentous structure positively affects the surface of
attachment to the plant material contained in the habitat of these microorganisms. It is also
known that these microorganisms have a high degree of enzyme activity, such as lignocellulosic
(Meng et al., 2021; Liang et al., 2020). Complex carbohydrates which rumen fungi use both as
a habitat and as a substrate increase the activity of carbohydrate-active enzymes (CAZy) of
these microorganisms (Solden ef al., 2018; Haitijema et al., 2017; Cantarel et al., 2009). Due
to this property of rumen fungi, it has a symbiotic positive effect on the rumen ecosystem by
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completely hydrolyzing the plant material in the rumen (Terry et al., 2019). The complete
genome sequencing of some of the microorganisms belonging to the Neocallimastimycota
phylum has been performed and is given in Table 2 (Wilken ef al., 2021; Haitijema et al., 2017).
As a result of the sequencing process, a JGI based database (fungal genomic database) is used
in relation to the CAZy enzyme system belonging to these microorganisms (Barrett & Lange,
2019).

Table 2.The identified rumen fungi, registered in the MycoCosm database:microorganism name;
summation of nucleotide length; number of genes; and authors who published them

Microorganism Name Nucleotide Lenght Number of Genes Published by Author
Anaeromyces robustus 71.685.009 12.832 Haitijema et al.,2017
Caecomyces churravis 165.495.782 15.009 Brown et al.,2021
Neocallimasix california 193.032.485 20.219 Haitijema et al.,2017
Neocallimastix lanati 200.974.851 27.677 Wilken et al.,2021
Orpinomyces sp. 100.954.185 18.936 Yussef et al.,2013
Piromyces finnis 56.455.805 10.992 Haitijema et al.,2017
Piromyces sp. 71.019.055 14.648 Haitijema et al.,2017

(https://mycocosm.jgi.doe.gov/neocallimastigomycetes/neocallimastigomycetes.info.html)

Figure 1. Enzyme group and corresponding substrates of rumen fungi according to Cazyme system
(http://cazy.org) (http://mycocosm.jgi.doe.gov) (https://biorender.com/)
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The CAZy system is classified into glycoside hydrolases (GH), glycosyltransferases (GT),

polysaccharide lyases (PL), carbohydrate esterases (CE), auxiliary activity enzymes (AA), and
carbohydrate-binding modules (CBM) (Lombard, 2013). Although the CAZy system is studied
under different groups, they are generally named according to the substrate they act on. The
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genome information belonging to other microorganisms, especially rumen fungi, is provided
by Interpro (Blum et al., 2021; Richardson et al., 2019) and is also registered in different
databases such as dbCAN (Ausland et al.,2021;Huang et al.,2018). In this study, research was
carried out on the CAZy system of rumen fungi registered in current databases. The preferred
web  databases for analysis are cazy.org (http:/cazy.org) and mycocosm
(http://mycocosm.jgi.doe.gov).Data on different CAZy enzymes belonging to rumen fungi are
shown in Figure 1. Accordingly, it is observed that Neocallimastix sp. and Piromyces sp. have
activity in all groups belonging to the CAZy enzyme system (AA: Except Auxiliary Activity)
in six different rumen fungi registered in the cazy database with mycocosm. It was determined
that no rumen fungi were registered for the enzyme activity known as auxiliary activity (AA).

1.4.1. Carbohydrate active enzymes system in Neocallimastix sp.

Endo-1,4-B-D-glucanase (EC3.2.1.4) registered to the glycoside hydrolase (GH) enzyme family
of Neocallimastix sp. or CAZy enzyme activity related to the cellulase family has a higher rate
than that of microorganisms with high activity such as aerobic Trichoderma reesei. known to
have a secretoma (Wood ef al., 1986). Currently, glucanase enzymes from Trichoderma sp. are
used commercially and the mechanism of action of this enzyme is shown in Figure 2.

Figure 2. Mechanism of action (glucosidase) of Trichoderma sp. enzymes registered in Sigmaaldrich
database (https://www.sigmaaldrich.com/TR/en/product/sigma/g4423)
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Chen et al. (2012) determined that the optimum pH range of B-glucosidase, which is defined
with the number EC3.2.1.21 related to the CAZy enzyme family in the literature, is in the range
of 5-6 and its molecular weight is 85.1 kDa. Mountfort et al. (1989) reported that the optimum
pH for its activity is 5 and the optimum temperature is 55°C for the xylanase enzyme (EC
3.2.1.8), a member of the GH family.After the commercial use of the xylanase enzyme (Hemi-
Cellulase) became widespread, Huang et al. (2021) conducted immobilization studies on the
gene region related to the xylanase enzyme belonging to Neocallimastix sp. Zhang et al. (2019)
reported the optimum in vitro working conditions of acetyl xylan esterase (CE - EC3.1.1.72)
enzyme, a member of the CAZy enzyme family (Figure 3), which hydrolyzes the ester bonds
of acetyl groups in the xylose parts of naturally acidified xylan substrates. Kwon et al. (2016)
also reported that this enzyme has a molecular weight of 36.5kDa.
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Figure 3.The mechanism of action of the enzyme acetyl xylan esterase (Krastanova et al., 2005).
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1.4.2. Carbohydrate active enzymes system in Orpinomyces sp.

The activity of endo-1,4-B-D-glucanase has a very important place in terms of microorganisms.
It is known that the activity of this enzyme in the species Trichoderma reesei is significantly
higher and endo-1,4-B-D-glucanase is used in the textile industry. Because of this, it has been
observed that the effectiveness of this enzyme of Orpinomyces sp. is also significantly
important in studies conducted for living beings alternative to this microorganism (Jin & Xia,
2011). In studies on the characterization of Orpinomyces sp, its properties such as acetyl xylan
esterase enzyme, optimum pH, temperature and molecular weight were determined (Blumm et
al., 1999; Razeq et al.,2011).The enzyme xylanase is actively used in the production of biofuels
and different industrial fields, and Orpinomyces sp. studies on the production of thermo-stable
form have been reported (Passarinho et a/.,2019; Ventorim et al., 2018).

1.4.3. Carbohydrate active enzymes system in Caecomyces sp.

Breton et al. (1995) reported that Caecomyces sp. has the enzyme activity of B-glucosidase (EC
3.2.1.21), while B-galactosidase ( EC 3.2.1.23 related to the GH family) has no activity.Brown
etal. (2021) preferred Caecomyces sp. in co-culture studies with methanogenic microorganisms
because CAZy enzyme activity and the effect of carbohydrate-binding module (CBM) are
significantly increased.

1.4.4. Carbohydrate active enzymes system in Piromyces sp.

Ali et al. (1995) reported that the molecular weights of xylanase, endoglucanase, and aviselase
enzymes, which are members of the cellulase and hemicellulase enzyme family, are in the range
of 50kDA to 190kDa.Thanks to its CAZy activities,Piromyces sp. can be used among the
microorganisms used in silage production (Wang et al., 2019).Characterization and
immobilization studies of the enzyme B-glucosidase, which is involved in the hydrolysis of
cellulose, a renewable polysaccharide, have been reported (Chu ef al.,2011; Tseng et al.,2015).

1.4.5. Carbohydrate active enzymes system in Anaeromyces sp.

The presence of enzymes such as endoglucanase, xylanase, and B-glucosidase, which are
members of the Anaeromyces sp. enzyme family, and whose patterns range from 26 kDa to 130
kDa, has been reported (Wen et al.,2021; Novotna et al., 2010).Qi ef al. (2011) reported that
cloning and purification of the enzyme was achieved as a result of isolation and characterization
of the enzyme ferulic acid esterase (EC 3.1.1.73), which belongs to the carbohydrate esterase
(CE) enzyme group, from Anaeromyces sp.

2. CONCLUSION

In the CAZy family of enzymes, there are such groups of enzymes as Cellulase, Hemi-
Cellulase, Pectin (galactosidase, pectinesterase, etc.), and Chitin (Chitinase) (Lange et
al.,2019).Most of these enzymes are involved in the hydrolysis of substrates found in the plant
cell wall (Dally ef al.,2017).The rumen fungi living in the digestive tract of herbivores are a
group with an important role in the hydrolysis of the plant cell wall and have a high ligninolytic
enzyme activity (Kar et al., 2021; Henske et al., 2018; Zahang et al., 2016). In previous studies,
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it was reported that microorganisms with CAZy enzyme activity can hydrolyze plant biomass
at a high rate (Dally et al., 2017; Min et al., 2017).

Research studies show that rumen fungi have a high degree of lignocellulolytic enzyme
activity, these enzymes are present in studies such as isolation or cloning of rumen fungi, and
there are also numerous enzyme groups in the cazy and mycocosm databases that belong to the
CAZy enzyme family.

Futhermore, based on our review of the related research, the rumen fungi can be reported to
have CAZy activity, Neocallimaxsp can be used for the xylanase enzyme, which is industrially
important, and Orpinomyces sp. can be considered as candidate microorganisms.
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