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Abstract

In this study, conformal bi-slant Riemannian
maps from an almost Hermitian manifold to a
Riemannian manifold are defined. Integrability
conditions of certain distributions on total manifolds
are examined. Also, we studied that under which
conditions, the distributions can define a totally
geodesic foliation.
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1. Introduction

At first, the notion of submersion was introduced
by O’Neill (O’Neill 1966) and Gray (Gray 1967).
Submersions between almost Hermitian manifolds
were studied by Watson (Watson 1976). Then, this
notion was studied in various types and generalized to
Riemannian maps by Fischer (Fischer 1992).
Riemannian maps between Riemannian manifolds are
generalization of isometric immersions and
Riemannian submersions. Let ®: (M, g;) » (M,, g,)
be a smooth map between Riemannian manifolds
such that 0 < rank® < min {dim(M,), dim(M,)}.
Then, the tangent bundle of TM, of M; has the
following decomposition:

TM, = ker®, @ (ker®d,)*.

Since rank® < min {dim(M,), dim(M,)}, we have
(range®,)*. Therefore, tangent bundle of TM, of
M, has the following decomposition:
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TM, = range®, @ (ranged,)*.
A smooth map &:(M7*,g,) —» (MF,g,) is called
Riemannian map at p, € M; if the horizontal
restriction @7 : (keer*pl)l — (range®,) is a
linear isometry. Hence the Riemannian map satisfies
the equation

91X, Y) = g,(2.(0, .(1)
for X, Y eT((ker®,)). So that isometric
immersions and Riemannian submersions are
particular Riemannian maps, respectively, with
ker®, = {0} and (range®,)* = {0} (Fischer 1992).
Moreover, Sahin and Yanan searched conformal
Riemannian maps (Sahin and Yanan 2018), (Sahin
and Yanan 2019), (Yanan and Sahin 2022), see also
(Yanan 2021). We say that ®: (M™, gp) — (N®, gn)
is a conformal Riemannian map at p e M if 0 <

rank®,, < min{m,n} and ®, maps the horizontal

space (ker(CID*p)l) conformally onto range(®.,,),
i.e., there exist a number A%(p) # 0 such that

g (©., 00,0, (1) = X(p)gy (X, )
for X,Y € T((ker®,)*). Also, @ is called conformal
Riemannian if & is conformal Riemannian at each
p € M. Here, A is the dilation of & at a point p € M
and it is a continuous function as A: M — [0, )
(Sahin 2010), (Sahin 2017). If anyone wants to have
more knowledge on submersion theory and bi-slant
structure, the studies written by Aykurt Sepet could
be seen (Akyol and Sahin 2019, Aykurt Sepet 2020),
(Aykurt Sepet 2021).

An even-dimensional Riemannian manifold
(M, gy, J) is called an almost Hermitian manifold if
there exists a tensor field J of type (1,1) on M such
that J2=—I where I denotes the identity
transformation of TM and

InX.Y) = g, JX,JY),VX,Y € T(TM).
Let (M, gy, J) be an almost Hermitian manifold and
its Levi-Civita connection V with respect to g,,. If J is
parallel with respectto V, i.e.

(VX])Y =0,
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we say M is a Kaehler manifold (Yano and Kon
1984).

Therefore, we define conformal bi-slant
Riemannian maps from an almost Hermitian manifold
to a Riemannian manifold as a generalization of
conformal anti-invariant Riemannian maps (Sahin and
Yanan 2018), conformal semi-invariant Riemannian
maps (Sahin and Yanan 2019), conformal semi-slant
Riemannian maps (Yanan 2022b) and conformal
hemi-slant Riemannian maps (Yanan 2022a). Also, an
explicit example is given. Some geometric properties
of this type maps are examined.

2. Materials and Methods

In this section, we give several definitions and
results to be used along the study for conformal bi-
slant Riemannian maps. Let ®:(M, g,,) — (N, gn)
be a smooth map between Riemannian manifolds.
The second fundamental form of @ is defined by

Vo)X, Y) = VgD, (Y) — @, (V,Y)
for X,Y e I'(TM). The second fundamental form
(V®,) is symmetric. Note that @ is said to be totally
geodesic map if (VE)(X,Y)=0 for all X,Y €
I'(TM) (Nore 1986). Here, we define O'Neill's tensor
fields 77 and A as
AxY = WV, vY + vV, hY,
TeY = hV,yvY + vV, hY,

for X,Y € I'(TM) with the Levi-Civita connection V
of gy. Here, we denote by v and h the projections on
the vertical distribution ker®, and the horizontal
distribution (ker®,)*, respectively. For any X €
['(TM), T and A, are skew-symmetric operators on
(T(TM), g) reversing the horizontal and the vertical
distributions. Also, T is vertical, 7 = T, and A
is horizontal, A, = A,y . Note that the tensor field
T is symmetric on the vertical distribution (O’Neill
1966). In addition, by definitions of O’Neill’s tensor
fields, we have

VyV =T,V +vVy,V,

VyX = hVyX + T X,

ViV = AyV + vV, V,

VyY = hVyY + Ay Y
for X,Y € T'((ker®,)Y) and U,V € I'(ker®,)
(Falcitelli et al. 2004).

If a vector field X on M is related to a vector
field X' on N, we say X is a projectable vector field.
If X is both a horizontal and a projectable vector field,
we say X is a basic vector field on M (Baird and
Wood 2003). Throughout this study, when we
mention a horizontal vector field, we always consider
a basic vector field.

On the other hand, let ®: (M™, g,,) — (N™, gy)
be a conformal Riemannian map between Riemannian
manifolds. Then, we have

(VO )X, Y) lrangea.,
=X(n)P, (V) +Y(InA) D, (X)
—guX, Y)(b*(grad(ln 7\))
where X, Y € I'((ker®,)*) (Sahin 2010). Hence, we
obtain V§ @, (Y) as
Ved, (V) = &, (hV,Y) + X(In )P, (V)
+Y(nd)d,(X)
—gu(X, Y)tb*(grad(ln 7\))
+ (Vo) (X, Y)
where (V& ,)*(X,Y) is the component of
(Vo )(X,Y) on (range®,)* for X,Y €
['((ker®,)!) (Sahin and Yanan 2018).

3. Results

In this section, we define conformal bi-slant
Riemannian maps and give an example. In addition,
we present conditions to be integrable and to define
totally geodesic foliation for distributions.

Definition 3.1. Let (M, g,,,/) be an almost Hermitian
manifold and (N, gy) be a Riemannian manifold.
Then, a conformal Riemannian map ®: (M, g,J) —
(N, gy) is called a conformal bi-slant Riemannian
map if and only if D, and D, are slant distributions
with their slant angles 6, and 8,, respectively, such
that
ker®, =D; @ D,.

Here, if the slant angles satisfy that 6,,6, # O,E, D is
called a proper conformal bi-slant Riemannian map.

Therefore, suppose that the dimensions of D, and D,
are m; and m,, respectively. Then, we have the next
notions.
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i Ifm; =0and6, =", then ® is a conformal
anti-invariant Riemannian map (Sahin and
Yanan 2018),

ii.  Ifmy,m,#0,0,=0and6, =", then @ is
a conformal semi-invariant Riemannian map
(Sahin and Yanan 2019),

ii.  If my,m,#0, 6,=0and 0<86,<~,
then then & is a conformal semi-slant

Riemannian map (Yanan 2022b),
T

iv. If mym,#0, 6,=7and 0<6, <>,

then then & is a conformal hemi-slant
Riemannian map (Yanan 2022a).

After these cases, we give an explicit example for
proper conformal bi-slant Riemannian map.

Example 3.2. Let & be a map defined as
X1 — X Xg — X
®:R® — Rs:ez< LT, "2 x,, )
\/Z 4 \/Z 2 y
where y is the real number. The almost complex
structure /g on R® is

Jg = (cos B)J; + (sinB)],,0 < B Sg

where
J1 = (—ay,a,, —ay, a3, —aq, as, —ag, a;)
and

]2 = (_aBI _a7r _a6; _a5; a4,, a3, az, al).

Then, we have the horizontal distribution as

L. _erra 0 0
(kerCD*) = {Xl = \/_7<6_X1_6_X7)’X2 =e 6_x4'
_era 0 0
1 ot R

and the vertical distribution as

k(ID—U—1<a-I-a)U—a
er*_{l_\/f ox, o0x,)’ *T ’

1,0 d d

U3 = \/_7(6_)(5-}-6_)(6)’)(4 = a_Xg}
Here, we say @ is a conformal Riemannian map with
A = e? and rank®, = 4. Then, by some calculations
we obtain the slant distributions as D, = {U;, U, } and
D, = {U;, U, }. Hence, @ is a proper conformal bi-
slant Riemannian map with respect to the slant
distributions

D, ={U,,U,},D, ={Us, U, }

and the slant angles

1 . 1 .
cosB; = E(cos B+ sinB), cosH, = 7 Sin B.
Now, we explain decomposition of distributions for a
conformal bi-slant Riemannian map.

Assume that @ be a conformal bi-slant Riemannian
map from an almost Hermitian manifold (M, g,,,/) to
a Riemannian manifold (N,gy). For any UE€
I'(ker®,), we have

U = PU + QU,
where PU € T'(D;) and QU € T'(D,). On the other
hand, we have

JU =yU + ¢U,
for U € I'(ker®,) where ¢U € I'((kerd,)*) and
YU € I'(ker®,). Also, for any X € I'((ker®,)*t),
we write

JX = BX + CX,
where  BX € T'(ker®,) and CX € I'((ker®,)').
Therefore, the horizontal distribution (ker®,)* can
be decomposed as

(ker®,)* = ¢D; @ ¢D, @ p,

where p is the orthogonal complementary distribution
of D, B ¢D, in (kerd,)?t.

We have the following theorem same for conformal
bi-slant Riemannian maps (Aykurt Sepet 2021).

Theorem 3.3. Let & be a conformal bi-slant
Riemannian map from an almost Hermitian manifold
(M, gy,J) to a Riemannian manifold (N, gy) with
slant angles 8, and 6,. Then, we have

Y?U; = —(cos? 8)U;
forU;, eT(D)),i=1,2.

After then, we examine integrability conditions for
certain distributions.

Theorem 3.4. Let & be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,))
to a Riemannian manifold (N, g5) with slant angles
0, and 6,. Then, the distribution D, is integrable if
and only if

ax (V@)W Uy, 0. (6(U))
=22 cos? 0, gy (vVy, U, Uy)

—gu(VVy, Vi + vV, boU,, U,)
forU,,V, € T'(D,) and U, € T(D,).



4]

EAJS, Vol. VIII Issue |

Proof. Since the vertical distribution ker®, is always
integrable, we only examine 0 = g,,([U;,V;],U,) for
U,,V, eT(D,) and U, € T(D,). To get this equality,
we write
[U1,V1] = VU1V1 - VV1 Uy
=vVy, Vi = Vvllljz Uy + Yy, oy
+Vy, U,
= vVy, Vy — cos? 8,V U; + hVy, oYU,
+Ty, &WU; + hVy, ¢*U; + T, U,
+Ty, WU; + vV, YdU;.
Now, for U, € T'(D,), we get
gu (U, V1], U,) = gM(VVU1V1 — cos? 0.V, Uy, Uz)
+9u (T, dUUD + vy, bdU,, Uy).
Since T is an anti-symmetric tensor field with respect
to g, We have

Iu(Tr, ®UU),U;) = =g (T, Up, 6GUY)).
Then, since the map & is conformal by using
definition of second fundamental form of the map, we
get

i (T, Uz 60U UL))

= 9w (TR0, U), 0. (60U)).
At last, we obtain
gu([U,V1],U,)
= —c0s? 0,9y (vVV1 Uy, Uy)
+gu(vVy, V1 + vV, $U, U,)

+ ;%QN ((Vcb*)(Vl: Uz), CI)*((I)(]UJ))'

The proof is complete.

Theorem 3.5. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,])
to a Riemannian manifold (N, g) with slant angles
0, and 6,. Then, the distribution D, is integrable if
and only if

an (V) U, 0.(6G 1))
=22 cos? 0, gM(vVV2 Uy, Uy)
—9um (Uvuz Vo + vV, UdpU,, Ul)
for U,,V, € T(D,) and U; € T(D,).
Proof. The proof of the Theorem 3.5. can be done in
a similar way as Theorem 3.4.

Theorem 3.6. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,])
to a Riemannian manifold (N, gy) with slant angles

6, and 6,. Then, the distribution D, defines a totally
geodesic foliation on M if and only if
I gN((V‘b*)(qu’VJ»CD*((bUz)) -
gn (V2 Uy, V), @.(¢p9U,))
= —A%c0s%0, gM(vVU1 Uy, Vy)
_Ang(hvul ¢U,, ¢V1)
i gn((VO.) (U, BX), ®.($V))
= 2 g (hVy, dYVy,X)
+22 gy (hVy, dV;, CX)
for U,V,€er(D,), U,el'(D,) and XEe€
I'((ker®,)b).
Proof. If the distribution D, defines a totally geodesic
foliation on M, we have 0 = g,,(V,,V;,U,) and 0 =
u(Vy V4, X) for U,, v, € T(D,), U, € T(D,) and
X € T'((ker®,)?t). At first, we get
gM(VU1V1' Uz) = gM(VU1LIJ2U2t V1)
+ gu (Vy, dUU,, ;)
+9u (T, WV, $U)
~gu(hVy, oy, $V1)
for U,,V; € I'(D,) and U, € I'(D,). On the other
hand, we have from definition of the second
fundamental form of the map @ and T is an anti-
symmetric tensor field with respect to gy,

I (T, YU, V1)

=—9m (Tulvp eYU,)

= Z 9 ((VRIU,, 1), @, (L))
and
gM(TfulllJVp ¢U2)

= — S (VO W), @, (dUy)).

By using these equalities and from Theorem 3.3., we
obtain

gM(Vulvl, Uz) = — COSZ 92 gM(UVUll]z, Vl)
_gM(hvulq)szq)VJ
+ 5590 (VD) Uy, V), @. (VL))

— 5 gn (VO UL, 1), @, ($U)),
From last equation, we have the proof of i. Now, we
examine 0 = g,,(V,, V4, X) for U;,V, € T(D,) and
X € T'((ker®,)*). By some similar computations, we
have

Iu(Vy, V1, X) = cos? 0, gy (Vy, V1, X)
—9m (hV01 ¢¢V1:X)
+9um (Tulq)vp BX)
—9m (hvul‘bvp CX)



Conformal Bi-slant Riemannian Maps

EAJS, Vol. VIII Issue |

|5

sin? 0, gy (Vy, V1, X) = —gu(hVy, Yy, X)
—gu(hVy, oV, CX)
—gm (%, BX, &V1)
sin? 0, gy (Vy, V1, X) = —gu(hVy, oYy, X)
—gu(hVy, V1, CX)
+ 2 gn (V0. (U, BX), @, (¢V1)).
From the last equation, we obtain ii. Hence, the proof
of Theorem 3.6. is complete.

Theorem 3.7. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, gy,,J)
to a Riemannian manifold (N, g) with slant angles
0, and 6,. Then, the distribution D, defines a totally
geodesic foliation on M if and only if

i gn((VO) (U, WUy, @, (V) —
an (V) (U,, Uy), @.(¢yV3))
= A2 gy (hVy, V,, dU,)

i. gy ((VO.)(U,, BX), ®.($V,))
= A2gy (hVy, ¢V, CX)
~2 g (hVy, GPV;, X)
for U, er®,), U,V,erD,) and XE€
IF'((ker®,)b).
Proof. Here, we search 0 = g,,(V,V,,U,) and 0 =
gu(Vy,V,,X) to get conditions i. and ii. for U; €
r'(D,), Uy, V, €T(D,) and X € I'((ker®,)*). Firstly,
we have
QM(VUZVZ: U1) = cos? 6, gM(VUZVZ: U1)
—9m (Vuz oY, U1)
+gu (T, ®V2, WU;)
+9M(hVU2¢V2:¢U1)
for U, e T(D,) and U,,V, € T'(D,). By using anti-
symmetry property of 77 and from Theorem 3.3., we
get

sin® 0, gu(Vu,V, Ur) = gu (T, Ur, 40U, )
—9u (T, WU, V2)
+9mu (hvuz(bvz» ¢U1)-
Since the map @ is conformal, we obtain
sin® 8, gy (VUZVZ: U1) = gM(hVUzq)VZ' ¢U1)
— 5 9n (V) U, U, ©.($V,))

+ 55 gn (V) (U2, U), 0. (1)),
From the last equation, we have the proof of i. Now,
we examine 0= g, (V,,V5,X) for U, V, € T(D,)

and X € I'((ker®,)t). By similar calculations, we
have

Iu(Vu, Vo, X) = cos? 0, gy (Vy, Vs, X)

—9um (hvuz ¢"IJV2'X)
~gu (T, BX, dV,)
+9um (hvuz $V,,CX)

for U,,V, €T(D,) and X € I'((ker®,)t). At last,

from conformality of the map, we obtain

sin? 0, gM(VUZVZ,X)

= gu(hVy,dVs, CX) = gu(hVy,dWl3, X)
— 5 n ((V0.) (U, BX), @.($V3)).
Hence, we have the proof of ii. clearly.

Theorem 3.8. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, gy,J)
to a Riemannian manifold (N, g) with slant angles
0, and 0,. Then the vertical distribution ker®, is a
locally product as Mp x My, if and only if the
equations in Theorem 3.6. and Theorem 3.7. are hold
where M, and Mp, are integral manifolds of the
distributions D, and D,, respectively.

Theorem 3.9. Let & be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,))
to a Riemannian manifold (N, g) with slant angles
0, and 0,. Then, the distribution (ker®,)* defines a
totally geodesic foliation on M if and only if
X (InN)gy(CY,$U) + CY(In) gy (X, dU;)
— ¢U;(InN) gy (X, CY)
—X(In Mgy (Y, dYU))
—Y(In Mgy X, dU))
+ oYU (InN) gy (X, Y)}
= g (VOO BY) + V2. (CY), @.(4U)))

—gn (V2.1 2. (PUYVY),  i=12
forX,Y € I'((ker®,)t), U, € T(D,) and U, € T(D,).
Proof. Since & is a proper conformal bi-slant
Riemannian map, we have two orthogonal
complement distribution that D; and D, in kerd,,
respectively. So, we examine 0 = g,,(VyY,U;) and
0=gy(VyY,U,) for X,YeTl((ker®)t), U, €
r'(D,) and U, € T'(D,). Since we will use the same
calculations for these two cases, we examine just one
for U,. Then, it will be same for U,. Firstly, since M
is a Kaehler manifold, we get

9u(VxY,Uy) = gy (AxBY,$Uy)
+ gu(hVxCY, $U,)
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+c0s20; gy (VyY,U;)
—gu(hVxY, dYl,).
Since the map @ is conformal Riemannian map, we
obtain
sin® 8; gy (VxY, Up)

= Zgn((VO.)(X, BY), ®.($U)))
+3 {gn (V0. (C1), 0. (0Uy))
~X(In N gy (®.(CY), ®.(dpU)
—CY(In gy (@.00), @, ($pU,))
+9u (X, CV gy (.(grad(in D), ®.(4U,) )}

o (0.0, 0. (6u0y))

—X(InNgy(@.(1), @, (dYU,))
—Y (I gn (@.(X), @, (GYU,))

+9u (X, Y)gy (dD*(grad(ln n), d>*(<l>¢U1))}
sin® 0, gy (VxY, U;)
= 2 gn((VO)(X, BY), &.($V,))

+L (gw (V20.(C1), 0. (60))

—g (VE@.(1), @, (PUU,))

—X(In N gy (CY, dU,)

—CY(InN)gu X, $U,)

+gu(X,CY) U, (In2)

+X(In V) gu (Y, GU;)

+Y (In ) gy (X, U;)

—guX,Y) dYU; (In ).
It is clear that the distribution (ker®,)* defines a
totally geodesic foliation on M for X,Y €
I'((ker®,)*) and U, € T'(D,).

Theorem 3.10. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,])
to a Riemannian manifold (N, gy) with slant angles
0, and 6,. Then, the distribution kerd, defines a
totally geodesic foliation on M if and only if
gn((VR) (@YY, 1), @.(X))

=22 cos?0, g, (VyPV,X)

+ 22 cos? 0, gy (V,QV,X)

+ X gu(VydV,JX)
for X € T'((ker®,)*) and U,V € I'(kerd,).
Proof. Now, we examine 0 = g,,(V,V,X) to show
that the distribution ker®, defines a totally geodesic
foliation on M. Hence, we get

In(VyV,X) = —gyu(VyJYPV,X)

+g, (hV, dPV + T3,bPV,BX + CX)
—gu(VyJYQV,X)
+9, (hV,dQV + T3, dQV,BX + CX)
Iu(VyV, X) = —gu(VyW?PV + VydUPV, X)
— gu(VyU?QV + VydyQV, X)
+ gy (hVydPV + hV,;0QV, CX)
+ gy (T dPV + T,6QV, BX)
Iu(VyV,X) = cos? 0, g, (Vy PV, X)
— gu(hVy GYPY, X)
+ cos? 0, gy (V,QV,X)
— gu(hVy dYQV, X)
+ gy (hVydV,CX)
+ gu Ty oV, BX)
Iu(VyV,X) = cos? 0, g, (V, PV, X)
+c0s?2 0, g, (V,QV,X)
—gu(hVy dUV, X)
+9u(VydV,JX)
for X e I'((ker®,)*) and U,V € I'(ker®d,). By
using symmetry properties of second fundamental
form of the map and conformality of the map, we
obtain
Iu(VyV,X) = cos? 8, gy (Vy PV, X)
+ cos? 0, g, (V,QV, X)
—,%QN (‘D*(cﬂva)"D*(X))
+9u(VydV,JX)
Iu(VyV,X) = cos? 8; gy (Vy PV, X)
+ cos? 0, g, (V,QV, X)
—A2gny (VR (GUV, 1), @.(X))

+gu(VydV,JX).
From the last equation, we obtain the proof.

Theorem 3.11. Let & be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,))
to a Riemannian manifold (N, g) with slant angles
0, and 0,. Then the total space M is a locally product
manifold as M X Mp, X M e,y if and only if the
equations in Theorem 3.6., Theorem 3.7. and
Theorem 3.9. are hold where My, , Mp, and M ¢ )+
are integral manifolds of the distributions D,, D, and
(kerd,)*, respectively.

Theorem 3.12. Let @ be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,))
to a Riemannian manifold (N, gy) with slant angles
0, and 0,. Then the total space M is a locally product
manifold as M .,q )1 X Myero, if and only if the

equations in Theorem 3.9. and Theorem 3.10. are
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hold where M ,pq 1 and My, —are integral
manifolds of the distributions (ker®,)* and ker®,,
respectively.
Theorem 3.13. Let & be a proper conformal bi-slant
Riemannian map from a Kaehler manifold (M, g,,,J)
to a Riemannian manifold (N, g) with slant angles
0, and 6,. Then, the map & is a totally geodesic map
if and only if
9n (V3 ®.(hG) — V2. (hG), @.(F))
=A% co0s? 0, gy, (V,zPVG, F)
+ A% cos? 0, gy (V,zQVG, F)
+ XM gy (MY, dYv6 + OT,c dv6
+ ChV,;dvG — ApevG
— hV,zhG, F)
+ A2{hE(In)\) gy (hG, F)
+ hG(InA)gy(hE, F)
— F(InA) gy (hE, hG)}
for E,F,G € T(TM).
Proof. Now, recall that ® is said to be totally
geodesic map if (VE)(E,G) =0 for all E,G €
['(TM). By using this notion, we have
(VO,)(E, G) = VE . (hG)
— @, (V5 VG + ApvG + hV,zhG)
+ (V®,)(hE, hG) — V. ®, (hG)
= V§®.(hG)
—®, (Vg VG + ApcvG + hV,zhG)
+(V®D,)L(hE, hG) — VE, ®, (hG)
+hE(InN)®, (hG)
+hG(InN)®, (hE)
—gu(hE, hG)CD*(grad(ln ?\)).
On the other hand, we get
—®,(V,;vG) = cos? 0, ®,(V,;PvG)
+ c0s? 0, ©,(V,;QvG)
+ @, (WY, Y6 + GT, e pv6
+ ChV,; $pv6).
Hence, by putting this equation into (V®,)(E, G), we
obtain,
(VO)(E,G) = VP, (hG) — Vi, @, (hG)
+ cos? 0, @, (V,;PvG)
+ c0s?2 0, @, (V,;QvG)
+ @, (W, Y6 + GT, e pv6
+ ChV, ;dpvG) — O, (A VG
+ hV,;hG) + hE(In ) D, (hG)
+hG (In V) D, (hE)
—gu(hE, hG)CD*(grad(ln ?\)).

For F € T(TM), by applying @, (F) to last equation
and since the map is conformal Riemannian, we
obtain

gn((VO)(E, 6), @,(F)) =
v (VEP.(h6) — V@, (h6), @.(F))

+A2% cos? 0, gy (V,gPVG, F)
+A2% cos? 0, g, (V,zQVG, F)
+22g,, (AV ; dYVG + ¢T,cdV6G + ChV, dVG
— A VG — RV, hG, F)
+22{hE(In M) gy (hG,F) + hG(InN) gy (hE, F)
— F(InA) gy (hE, hG)}.
Therefore, the proof is clear.

4. Discussion

Since we have the definition of conformal
Riemannian map and bi-slant structure properties,
these notions are combined as conformal bi-slant
Riemannian map. In this study, we examine its some
geometric properties.
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