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Abstract 

 

        In this study, conformal bi-slant Riemannian 

maps from an almost Hermitian manifold to a 

Riemannian manifold are defined. Integrability 

conditions of certain distributions on total manifolds 

are examined. Also, we studied that under which 

conditions, the distributions can define a totally 

geodesic foliation. 
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1. Introduction 

 

        At first, the notion of submersion was introduced 
by O’Neill (O’Neill 1966) and Gray (Gray 1967). 

Submersions between almost Hermitian manifolds 

were studied by Watson (Watson 1976). Then, this 

notion was studied in various types and generalized to 

Riemannian maps by Fischer (Fischer 1992). 

Riemannian maps between Riemannian manifolds are 

generalization of isometric immersions and 

Riemannian submersions. Let Φ: (M1, g1) → (M2, g2) 

be a smooth map between Riemannian manifolds 

such that 0 < 𝑟𝑎𝑛𝑘Φ < 𝑚𝑖𝑛 {𝑑𝑖𝑚(𝑀1), 𝑑𝑖𝑚(𝑀2)}. 

Then, the tangent bundle of 𝑇𝑀1 of 𝑀1 has the 

following decomposition: 

𝑇𝑀1 = 𝑘𝑒𝑟Φ∗ ⊕ (𝑘𝑒𝑟Φ∗)⊥. 

Since 𝑟𝑎𝑛𝑘Φ < 𝑚𝑖𝑛 {𝑑𝑖𝑚(𝑀1), 𝑑𝑖𝑚(𝑀2)}, we have 
(𝑟𝑎𝑛𝑔𝑒Φ∗)⊥. Therefore, tangent bundle of 𝑇𝑀2 of 

𝑀2 has the following decomposition: 

 

 
Received:17.02.2022 

Accepted:12.04.2022 

Published:30.06.2022 
*Corresponding author: Şener YANAN, PhD 

Adıyaman University, Faculty of Arts and  Science, Department of  

Mathematics, Adıyaman Turkey  

E-mail: syanan@adiyaman.edu.tr   

Cite this article as: Ş. Yanan, Conformal Bi-slant Riemannian 

Maps, Eastern Anatolian Journal of Science, Vol. 8, Issue 1, 1-8, 

2022. 

 

 

 

𝑇𝑀2 = 𝑟𝑎𝑛𝑔𝑒Φ∗ ⊕ (𝑟𝑎𝑛𝑔𝑒Φ∗)⊥. 
A smooth map Φ: (M1

𝑚 , g1) → (M2
𝑚 , g2) is called 

Riemannian map at 𝑝1 ∈ 𝑀1 if the horizontal 

restriction Φ∗𝑝1
ℎ : (𝑘𝑒𝑟Φ∗𝑝1

)
⊥

⟶ (𝑟𝑎𝑛𝑔𝑒Φ∗) is a 

linear isometry. Hence the Riemannian map satisfies 

the equation 

𝑔1(𝑋, 𝑌) = 𝑔2(Φ∗(𝑋), Φ∗(𝑌))         

for 𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). So that isometric 

immersions and Riemannian submersions are 

particular Riemannian maps, respectively, with 

kerΦ∗ = {0} and (rangeΦ∗)⊥ = {0} (Fischer 1992). 

Moreover, Şahin and Yanan searched conformal 

Riemannian maps (Şahin and Yanan 2018), (Şahin 

and Yanan 2019), (Yanan and Şahin 2022), see also 

(Yanan 2021). We say that Φ: (Mm, gM) ⟶ (Nn, gN) 

is a conformal Riemannian map at 𝑝 ∈ 𝑀 if 0 <

𝑟𝑎𝑛𝑘Φ∗𝑝 ≤ 𝑚𝑖𝑛{𝑚, 𝑛} and Φ∗ maps the horizontal 

space (ker(Φ∗p)
⊥

) conformally onto 𝑟𝑎𝑛𝑔𝑒(Φ∗𝑝), 

i.e., there exist a number λ2(p) ≠ 0 such that  

𝑔𝑁 (Φ∗𝑝(𝑋), Φ∗𝑝(𝑌)) = λ2(𝑝)𝑔𝑀(𝑋, 𝑌) 

for 𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). Also, Φ is called conformal 

Riemannian if Φ is conformal Riemannian at each 

𝑝 ∈ 𝑀. Here, λ is the dilation of Φ at a point 𝑝 ∈ 𝑀 

and it is a continuous function as λ: 𝑀 → [0, ∞) 

(Şahin 2010), (Şahin 2017). If anyone wants to have 

more knowledge on submersion theory and bi-slant 

structure, the studies written by Aykurt Sepet could 

be seen (Akyol and Şahin 2019, Aykurt Sepet 2020), 

(Aykurt Sepet 2021). 

         An even-dimensional Riemannian manifold 

(𝑀, 𝑔𝑀, 𝐽) is called an almost Hermitian manifold if 

there exists a tensor field 𝐽 of type (1,1) on 𝑀 such 

that 𝐽2 = −𝐼 where 𝐼 denotes the identity 

transformation of 𝑇𝑀 and 

𝑔𝑀(𝑋, 𝑌) = 𝑔𝑀(𝐽𝑋, 𝐽𝑌), ∀𝑋, 𝑌 ∈ Γ(𝑇𝑀). 

Let (𝑀, 𝑔𝑀, 𝐽) be an almost Hermitian manifold and 

its Levi-Civita connection ∇ with respect to 𝑔𝑀. If 𝐽 is 

parallel with respect to ∇, i.e. 

(∇𝑋𝐽)𝑌 = 0, 
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we say 𝑀 is a Kaehler manifold (Yano and Kon 

1984).  

          

          Therefore, we define conformal bi-slant 

Riemannian maps from an almost Hermitian manifold 

to a Riemannian manifold as a generalization of 

conformal anti-invariant Riemannian maps (Şahin and 

Yanan 2018), conformal semi-invariant Riemannian 

maps (Şahin and Yanan 2019), conformal semi-slant 

Riemannian maps (Yanan 2022b) and conformal 

hemi-slant Riemannian maps (Yanan 2022a). Also, an 

explicit example is given. Some geometric properties 

of this type maps are examined. 

   

         

2. Materials and Methods 

 

        In this section, we give several definitions and 

results to be used along the study for conformal bi-

slant Riemannian maps. Let Φ: (𝑀, 𝑔𝑀) ⟶ (𝑁, 𝑔𝑁) 

be a smooth map between Riemannian manifolds. 

The second fundamental form of Φ is defined by 

(∇Φ∗)(𝑋, 𝑌) = ∇𝑋
ΦΦ∗(𝑌) − Φ∗(∇𝑋𝑌) 

for 𝑋, 𝑌 ∈ Γ(𝑇𝑀). The second fundamental form 

(∇Φ∗) is symmetric. Note that Φ is said to be totally 

geodesic map if (∇𝐹∗)(𝑋, 𝑌) = 0 for all 𝑋, 𝑌 ∈

Γ(𝑇𝑀) (Nore 1986). Here, we define O'Neill's tensor 

fields 𝒯 and 𝒜 as 

𝒜𝒳𝑌 = ℎ∇ℎ𝑋𝑣𝑌 + 𝑣∇ℎ𝑋ℎ𝑌, 

𝒯𝒳 𝑌 = ℎ∇𝑣𝑋𝑣𝑌 + 𝑣∇𝑣𝑋ℎ𝑌, 

for 𝑋, 𝑌 ∈ Γ(𝑇𝑀) with the Levi-Civita connection ∇ 

of 𝑔𝑀.  Here, we denote by 𝑣 and ℎ the projections on 

the vertical distribution 𝑘𝑒𝑟Φ∗ and the horizontal 

distribution (𝑘𝑒𝑟Φ∗)⊥, respectively. For any 𝑋 ∈

Γ(𝑇𝑀), 𝒯𝒳  and 𝒜𝒳  are skew-symmetric operators on 

(Γ(𝑇𝑀), 𝑔) reversing the horizontal and the vertical 

distributions. Also, 𝒯 is vertical,  𝒯𝒳 = 𝒯𝓋𝒳  and 𝒜 

is horizontal, 𝒜𝒳 = 𝒜𝒽𝒳 . Note that the tensor field 

𝒯 is symmetric on the vertical distribution (O’Neill 

1966). In addition, by definitions of O’Neill’s tensor 

fields, we have 

∇𝑈𝑉 = 𝒯𝒰𝑉 + 𝑣∇U𝑉, 

∇𝑈𝑋 = ℎ∇𝑈𝑋 + 𝒯𝒰𝑋, 

∇𝑋𝑉 = 𝒜𝒳𝑉 + 𝑣∇𝑋𝑉, 

∇𝑋𝑌 = ℎ∇𝑋𝑌 + 𝒜𝒳𝑌 

for 𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥) and 𝑈, 𝑉 ∈ Γ(𝑘𝑒𝑟Φ∗) 

(Falcitelli et al. 2004).  

        If a vector field 𝑋 on 𝑀 is related to a vector 

field 𝑋′ on 𝑁, we say 𝑋 is a projectable vector field. 

If 𝑋 is both a horizontal and a projectable vector field, 

we say 𝑋 is a basic vector field on 𝑀 (Baird and 

Wood 2003). Throughout this study, when we 

mention a horizontal vector field, we always consider 

a basic vector field. 

       On the other hand, let Φ: (𝑀𝑚 , 𝑔𝑀) ⟶ (𝑁𝑛 , 𝑔𝑁) 

be a conformal Riemannian map between Riemannian 

manifolds. Then, we have 

(∇Φ∗)(𝑋, 𝑌) ∣𝑟𝑎𝑛𝑔𝑒Φ∗

= 𝑋(ln λ)Φ∗(𝑌) + 𝑌(ln λ)Φ∗(𝑋)

− 𝑔𝑀(𝑋, 𝑌)Φ∗(𝑔𝑟𝑎𝑑(ln λ)) 

where 𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥) (Şahin 2010). Hence, we 

obtain ∇𝑋
ΦΦ∗(𝑌) as  

∇𝑋
ΦΦ∗(𝑌) = Φ∗(ℎ∇𝑋𝑌) + 𝑋(ln λ)Φ∗(𝑌)

+ 𝑌(ln λ)Φ∗(𝑋)

− 𝑔𝑀(𝑋, 𝑌)Φ∗(𝑔𝑟𝑎𝑑(ln λ))

+ (∇Φ∗)⊥(𝑋, 𝑌) 

where (∇Φ∗)⊥(𝑋, 𝑌) is the component of 

(∇Φ∗)(𝑋, 𝑌) on (𝑟𝑎𝑛𝑔𝑒Φ∗)⊥ for 𝑋, 𝑌 ∈

Γ((𝑘𝑒𝑟Φ∗)⊥)  (Şahin and Yanan 2018).  

           

 

3. Results 

 

       In this section, we define conformal bi-slant 

Riemannian maps and give an example. In addition, 

we present conditions to be integrable and to define 

totally geodesic foliation for distributions. 

 

Definition 3.1. Let (𝑀, 𝑔𝑀, 𝐽) be an almost Hermitian 

manifold and (𝑁, 𝑔𝑁) be a Riemannian manifold. 

Then, a conformal Riemannian map Φ: (𝑀, 𝑔𝑀, 𝐽) ⟶

(𝑁, 𝑔𝑁) is called a conformal bi-slant Riemannian 

map if and only if  𝐷1 and 𝐷2 are slant distributions 

with their slant angles θ1 and θ2, respectively, such 

that 

𝑘𝑒𝑟Φ∗ = 𝐷1 ⊕ 𝐷2. 

Here, if the slant angles satisfy that θ1, θ2 ≠ 0,
π

2
, Φ is 

called a proper conformal bi-slant Riemannian map. 

 

Therefore, suppose that the dimensions of  𝐷1 and 𝐷2 

are 𝑚1 and 𝑚2, respectively. Then, we have the next 

notions. 
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i. If 𝑚1 = 0 and 𝜃2 =
𝜋

2
, then Φ is a conformal 

anti-invariant Riemannian map (Şahin and 

Yanan 2018), 

ii. If 𝑚1, 𝑚2 ≠ 0, 𝜃1 = 0 and 𝜃2 =
𝜋

2
, then Φ is 

a conformal semi-invariant Riemannian map 

(Şahin and Yanan 2019), 

iii. If 𝑚1, 𝑚2 ≠ 0,  𝜃1 = 0 and 0 < θ2 <
π

2
 , 

then then Φ is a conformal semi-slant 

Riemannian map (Yanan 2022b), 

iv. If 𝑚1, 𝑚2 ≠ 0,  𝜃1 =
π

2
 and 0 < 𝜃2 <

𝜋

2
 , 

then then Φ is a conformal hemi-slant 

Riemannian map (Yanan 2022a). 

 

After these cases, we give an explicit example for 

proper conformal bi-slant Riemannian map.  

 

Example 3.2.  Let Φ be a map defined as 

Φ: 𝑅8 ⟶ 𝑅5: 𝑒2 (
𝑥1 − 𝑥7

√2
, 𝑥4,

𝑥5 − 𝑥6

√2
, 𝑥2, 𝛾) 

where 𝛾 is the real number. The almost complex 

structure 𝐽β on 𝑅8 is 

𝐽β = (𝑐𝑜𝑠 β)𝐽1 + (𝑠𝑖𝑛 β)𝐽2, 0 < β ≤
π

2
 

where  

𝐽1 = (−𝑎2, 𝑎1, −𝑎4, 𝑎3, −𝑎6, 𝑎5, −𝑎8, 𝑎7) 

and 

𝐽2 = (−𝑎8, −𝑎7, −𝑎6, −𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1). 

 

Then, we have the horizontal distribution as 

(𝑘𝑒𝑟Φ∗)⊥ = {𝑋1 =
𝑒2

√2
(

∂

∂x1

−
∂

∂x7

) , X2 = 𝑒2
∂

∂x4

, 

𝑋3 =
𝑒2

√2
(

∂

∂x5

−
∂

∂x6

) , X4 = 𝑒2
∂

∂x2

} 

and the vertical distribution as 

𝑘𝑒𝑟Φ∗ = {𝑈1 =
1

√2
(

∂

∂x1

+
∂

∂x7

) , U2 =
∂

∂x3

, 

 

𝑈3 =
1

√2
(

∂

∂x5

+
∂

∂x6

) , X4 =
∂

∂x8

}. 

Here, we say Φ is a conformal Riemannian map with 

λ = 𝑒2 𝑎𝑛𝑑 𝑟𝑎𝑛𝑘Φ∗ = 4. Then, by some calculations 

we obtain the slant distributions as 𝐷1 = {𝑈1, 𝑈2 } and 

𝐷2 = {𝑈3, 𝑈4 }. Hence, Φ is a proper conformal bi-

slant Riemannian map with respect to the slant 

distributions 

𝐷1 = {𝑈1, 𝑈2 } , 𝐷2 = {𝑈3, 𝑈4 } 

and the slant angles 

𝑐𝑜𝑠 θ1 =
1

√2
(𝑐𝑜𝑠 β + 𝑠𝑖𝑛 β) ,  𝑐𝑜𝑠 θ2 =

1

√2
𝑠𝑖𝑛 β. 

    

Now, we explain decomposition of distributions for a 

conformal bi-slant Riemannian map. 

 

Assume that Φ be a conformal bi-slant Riemannian 

map from an almost Hermitian manifold (𝑀, 𝑔𝑀, 𝐽) to 

a Riemannian manifold (𝑁, 𝑔𝑁). For any 𝑈 ∈

Γ(𝑘𝑒𝑟Φ∗), we have 

𝑈 = 𝑃𝑈 + 𝑄𝑈, 

where 𝑃𝑈 ∈ Γ(𝐷1) and 𝑄𝑈 ∈ Γ(𝐷2). On the other 

hand, we have 

𝐽𝑈 = ψ𝑈 +  ϕ𝑈, 

for 𝑈 ∈ Γ(𝑘𝑒𝑟Φ∗) where ϕ𝑈 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥) and 

ψ𝑈 ∈ Γ(𝑘𝑒𝑟Φ∗).  Also, for any 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥), 

we write 

𝐽𝑋 = 𝐵𝑋 + 𝐶𝑋, 

where  𝐵𝑋 ∈ Γ(𝑘𝑒𝑟Φ∗) and 𝐶𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). 

Therefore, the horizontal distribution (𝑘𝑒𝑟Φ∗)⊥ can 

be decomposed as 

(𝑘𝑒𝑟Φ∗)⊥ = ϕ𝐷1 ⊕ ϕ𝐷2 ⊕  μ, 

where μ is the orthogonal complementary distribution 

of ϕ𝐷1 ⊕ ϕ𝐷2 in (𝑘𝑒𝑟Φ∗)⊥. 

 

We have the following theorem same for conformal 

bi-slant Riemannian maps (Aykurt Sepet 2021). 

 

Theorem 3.3.  Let Φ be a conformal bi-slant 

Riemannian map from an almost Hermitian manifold 

(𝑀, 𝑔𝑀, 𝐽) to a Riemannian manifold (𝑁, 𝑔𝑁) with 

slant angles θ1 and θ2. Then, we have 

ψ2𝑈𝑖 = −(𝑐𝑜𝑠2 θ𝑖)𝑈𝑖  

for 𝑈𝑖 ∈ Γ(𝐷𝑖), 𝑖 = 1,2. 

 

 After then, we examine integrability conditions for 

certain distributions. 

 

Theorem 3.4.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution 𝐷1 is integrable if 

and only if  

𝑔𝑁 ((∇Φ∗)(𝑉1, 𝑈2), Φ∗(ϕ(𝐽𝑈1))) 

= λ2 𝑐𝑜𝑠2 θ1 𝑔𝑀(𝑣∇𝑉1
𝑈1, 𝑈2) 

−𝑔𝑀(𝑣∇𝑈1
𝑉1 + 𝑣∇𝑉1

ψϕ𝑈1, 𝑈2) 

for 𝑈1, 𝑉1 ∈ Γ(𝐷1) and 𝑈2 ∈ Γ(𝐷2). 
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Proof. Since the vertical distribution 𝑘𝑒𝑟Φ∗ is always 

integrable, we only examine 0 = 𝑔𝑀([𝑈1, 𝑉1], 𝑈2) for 

𝑈1, 𝑉1 ∈ Γ(𝐷1) and 𝑈2 ∈ Γ(𝐷2). To get this equality, 

we write 

[𝑈1, 𝑉1] = ∇𝑈1
𝑉1 − ∇𝑉1

𝑈1 

             = 𝑣∇𝑈1
𝑉1 − ∇𝑉1

ψ2𝑈1 + ∇𝑉1
ϕψ𝑈1 

                +∇𝑉1
ψϕ𝑈1 

             = 𝑣∇𝑈1
𝑉1 − 𝑐𝑜𝑠2 θ1∇𝑉1

𝑈1 + ℎ∇𝑉1
ϕψ𝑈1 

                +𝒯𝒱1
ϕψ𝑈1 + ℎ∇𝑉1

ϕ2𝑈1 + 𝒯𝒱1
ϕ2𝑈1 

                +𝒯𝒱1
ψϕ𝑈1 + 𝑣∇𝑉1

ψϕ𝑈1. 

Now, for 𝑈2 ∈ Γ(𝐷2), we get 

𝑔𝑀([𝑈1, 𝑉1], 𝑈2) = 𝑔𝑀(𝑣∇𝑈1
𝑉1 − 𝑐𝑜𝑠2 θ1∇𝑉1

𝑈1 , 𝑈2) 

                             +𝑔𝑀(𝒯𝒱1
ϕ(𝐽𝑈1) + 𝑣∇𝑉1

ψϕ𝑈1, 𝑈2). 

Since 𝒯 is an anti-symmetric tensor field with respect 

to 𝑔𝑀, we have 

𝑔𝑀(𝒯𝒱1
ϕ(𝐽𝑈1), 𝑈2) = −𝑔𝑀 (𝒯𝒱1

𝑈2, ϕ(𝐽𝑈1)). 

Then, since the map Φ is conformal by using 

definition of second fundamental form of the map, we 

get 

     −𝑔𝑀 (𝒯𝒱1
𝑈2, ϕ(𝐽𝑈1)) 

 =
1

λ2 𝑔𝑁 ((∇Φ∗)(𝑉1, 𝑈2), Φ∗(ϕ(𝐽𝑈1))). 

At last, we obtain 

𝑔𝑀([𝑈1, 𝑉1], 𝑈2) 

= − 𝑐𝑜𝑠2 θ1𝑔𝑀(𝑣∇𝑉1
𝑈1, 𝑈2) 

                        +𝑔𝑀(𝑣∇𝑈1
𝑉1 + 𝑣∇𝑉1

ψϕ𝑈1, 𝑈2) 

                        +
1

λ2 𝑔𝑁 ((∇Φ∗)(𝑉1, 𝑈2), Φ∗(ϕ(𝐽𝑈1))). 

The proof is complete. 

 

Theorem 3.5.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution 𝐷2 is integrable if 

and only if  

𝑔𝑁 ((∇Φ∗)(𝑉2, 𝑈1), Φ∗(ϕ(𝐽𝑈2))) 

= λ2 𝑐𝑜𝑠2 θ2 𝑔𝑀(𝑣∇𝑉2
𝑈2, 𝑈1) 

                       −𝑔𝑀(𝑣∇𝑈2
𝑉2 + 𝑣∇𝑉2

ψϕ𝑈2, 𝑈1) 

for 𝑈2, 𝑉2 ∈ Γ(𝐷2) and 𝑈1 ∈ Γ(𝐷1). 

Proof. The proof of the Theorem 3.5. can be done in 

a similar way as Theorem 3.4. 

 

Theorem 3.6.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution 𝐷1 defines a totally 

geodesic foliation on 𝑀 if and only if  

i. 𝑔𝑁((∇Φ∗)(𝑈1, ψ𝑉1), Φ∗(ϕ𝑈2)) −

𝑔𝑁((∇Φ∗)(𝑈1, 𝑉1), Φ∗(𝜙𝜓𝑈2)) 

                                 = −λ2 𝑐𝑜𝑠2 θ2 𝑔𝑀(𝑣∇𝑈1
𝑈2, 𝑉1) 

                                     −λ2𝑔𝑀(ℎ∇𝑈1
ϕ𝑈2, ϕ𝑉1) 

ii. 𝑔𝑁((∇Φ∗)(𝑈1, 𝐵𝑋), Φ∗(ϕ𝑉1))     

                                             = λ2𝑔𝑀(ℎ∇𝑈1
ϕψ𝑉1, 𝑋) 

                                                +λ2𝑔𝑀(ℎ∇𝑈1
ϕ𝑉1, 𝐶𝑋) 

for 𝑈1, 𝑉1 ∈ Γ(𝐷1), 𝑈2 ∈ Γ(𝐷2) and 𝑋 ∈

Γ((𝑘𝑒𝑟Φ∗)⊥). 

Proof. If the distribution 𝐷1 defines a totally geodesic 

foliation on 𝑀, we have 0 = 𝑔𝑀(∇𝑈1
𝑉1, 𝑈2) and 0 =

𝑔𝑀(∇𝑈1
𝑉1, 𝑋) for 𝑈1, 𝑉1 ∈ Γ(𝐷1), 𝑈2 ∈ Γ(𝐷2) and 

𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). At first, we get 

𝑔𝑀(∇𝑈1
𝑉1, 𝑈2) = 𝑔𝑀(∇𝑈1

ψ2𝑈2, 𝑉1)

+ 𝑔𝑀(∇𝑈1
ϕψ𝑈2, 𝑉1) 

                                         +𝑔𝑀(𝒯𝒰1
ψ𝑉1, ϕ𝑈2) 

                                         −𝑔𝑀(ℎ∇𝑈1
ϕ𝑈2, ϕ𝑉1) 

for 𝑈1, 𝑉1 ∈ Γ(𝐷1) and 𝑈2 ∈ Γ(𝐷2). On the other 

hand, we have from definition of the second 

fundamental form of the map Φ and 𝒯 is an anti-

symmetric tensor field with respect to 𝑔𝑀 

𝑔𝑀(𝒯𝒰1
ϕψ𝑈2, 𝑉1) 

= −𝑔𝑀(𝒯𝒰1
𝒱1, ϕψ𝒰2) 

                         =
1

λ2 𝑔𝑁((∇Φ∗)(𝑈1, 𝑉1), Φ∗(ϕψ𝒰2)) 

and  

𝑔𝑀(𝒯𝒰1
ψ𝑉1, ϕ𝑈2) 

                      = −
1

λ2 𝑔𝑁((∇Φ∗)(𝑈1, ψ𝑉1), Φ∗(ϕ𝒰2)). 

By using these equalities and from Theorem 3.3., we 

obtain  

𝑔𝑀(∇𝑈1
𝑉1, 𝑈2) = − 𝑐𝑜𝑠2 θ2 𝑔𝑀(𝑣∇𝑈1

𝑈2, 𝑉1) 

                                     −𝑔𝑀(ℎ∇𝑈1
ϕ𝑈2, ϕ𝑉1) 

                            +
1

λ2 𝑔𝑁((∇Φ∗)(𝑈1, 𝑉1), Φ∗(ϕψ𝒰2)) 

                           −
1

λ2 𝑔𝑁((∇Φ∗)(𝑈1, ψ𝑉1), Φ∗(ϕ𝒰2)). 

From last equation, we have the proof of i. Now, we 

examine 0 = 𝑔𝑀(∇𝑈1
𝑉1, 𝑋) for 𝑈1, 𝑉1 ∈ Γ(𝐷1) and 

𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). By some similar computations, we 

have 

𝑔𝑀(∇𝑈1
𝑉1, 𝑋) = 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈1

𝑉1, 𝑋) 

                           −𝑔𝑀(ℎ∇𝑈1
ϕψ𝑉1, 𝑋) 

                           +𝑔𝑀(𝒯𝒰1
ϕ𝑉1, 𝐵𝑋) 

                           −𝑔𝑀(ℎ∇𝑈1
ϕ𝑉1, 𝐶𝑋) 
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𝑠𝑖𝑛2 θ1 𝑔𝑀(∇𝑈1
𝑉1, 𝑋) = −𝑔𝑀(ℎ∇𝑈1

ϕψ𝑉1, 𝑋) 

                                        −𝑔𝑀(ℎ∇𝑈1
ϕ𝑉1, 𝐶𝑋) 

                                        −𝑔𝑀(𝒯𝒰1
𝐵𝑋, ϕ𝑉1) 

𝑠𝑖𝑛2 θ1 𝑔𝑀(∇𝑈1
𝑉1, 𝑋) = −𝑔𝑀(ℎ∇𝑈1

ϕψ𝑉1, 𝑋) 

                                        −𝑔𝑀(ℎ∇𝑈1
ϕ𝑉1, 𝐶𝑋) 

                             +
1

λ2 𝑔𝑁((∇Φ∗)(𝑈1, 𝐵𝑋), Φ∗(ϕ𝑉1)). 

From the last equation, we obtain ii. Hence, the proof 

of Theorem 3.6. is complete. 

 

Theorem 3.7.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution 𝐷2 defines a totally 

geodesic foliation on 𝑀 if and only if  

 

i. 𝑔𝑁((∇Φ∗)(𝑈2, ψ𝑈1), Φ∗(ϕ𝑉2)) −

𝑔𝑁((∇Φ∗)(𝑈2, 𝑈1), Φ∗(𝜙𝜓𝑉2)) 

                               = λ2𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, ϕ𝑈1) 

 

ii. 𝑔𝑁((∇Φ∗)(𝑈2, 𝐵𝑋), Φ∗(ϕ𝑉2)) 

                                = λ2𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, 𝐶𝑋) 

                                 −λ2𝑔𝑀(ℎ∇𝑈2
ϕ𝜓𝑉2, 𝑋) 

for 𝑈1 ∈ Γ(𝐷1), 𝑈2, 𝑉2 ∈ Γ(𝐷2) and 𝑋 ∈

Γ((𝑘𝑒𝑟Φ∗)⊥).  

Proof. Here, we search 0 = 𝑔𝑀(∇𝑈2
𝑉2, 𝑈1) and 0 =

𝑔𝑀(∇𝑈2
𝑉2, 𝑋) to get conditions i. and ii. for 𝑈1 ∈

Γ(𝐷1), 𝑈2, 𝑉2 ∈ Γ(𝐷2) and 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). Firstly, 

we have 

𝑔𝑀(∇𝑈2
𝑉2, 𝑈1) = 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈2

𝑉2, 𝑈1) 

                                      −𝑔𝑀(∇𝑈2
ϕψ𝑉2, 𝑈1) 

                                       +𝑔𝑀(𝒯𝒰2
ϕ𝑉2, ψ𝑈1) 

                                       +𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, ϕ𝑈1) 

for 𝑈1 ∈ Γ(𝐷1) and 𝑈2, 𝑉2 ∈ Γ(𝐷2). By using anti-

symmetry property of 𝒯 and from Theorem 3.3., we 

get 

𝑠𝑖𝑛2 θ2 𝑔𝑀(∇𝑈2
𝑉2, 𝑈1) = 𝑔𝑀(𝒯𝒰2

𝑈1, ϕψ𝑈1) 

                                                −𝑔𝑀(𝒯𝒰2
ψ𝑈1, ϕ𝑉2) 

                                                +𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, ϕ𝑈1). 

Since the map Φ is conformal, we obtain 

𝑠𝑖𝑛2 θ2 𝑔𝑀(∇𝑈2
𝑉2, 𝑈1) = 𝑔𝑀(ℎ∇𝑈2

ϕ𝑉2, ϕ𝑈1) 

                            −
1

λ2 𝑔𝑁((∇Φ∗)(𝑈2, ψ𝑈1), Φ∗(ϕ𝑉2)) 

                           +
1

λ2 𝑔𝑁((∇Φ∗)(𝑈2, 𝑈1), Φ∗(𝜙𝜓𝑉2)). 

From the last equation, we have the proof of i. Now, 

we examine 0 = 𝑔𝑀(∇𝑈2
𝑉2, 𝑋) for 𝑈2, 𝑉2 ∈ Γ(𝐷2) 

and 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). By similar calculations, we 

have 

𝑔𝑀(∇𝑈2
𝑉2, 𝑋) = 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈2

𝑉2, 𝑋) 

                                       −𝑔𝑀(ℎ∇𝑈2
ϕψ𝑉2, 𝑋) 

                                       −𝑔𝑀(𝒯𝒰2
𝐵𝑋, ϕ𝑉2) 

                                       +𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, 𝐶𝑋) 

for 𝑈2, 𝑉2 ∈ Γ(𝐷2) and 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥). At last, 

from conformality of the map, we obtain 

𝑠𝑖𝑛2 θ2 𝑔𝑀(∇𝑈2
𝑉2, 𝑋) 

= 𝑔𝑀(ℎ∇𝑈2
ϕ𝑉2, 𝐶𝑋) − 𝑔𝑀(ℎ∇𝑈2

ϕψ𝑉2, 𝑋) 

      −
1

𝜆2 𝑔𝑁((∇Φ∗)(𝑈2, 𝐵𝑋), Φ∗(ϕ𝑉2)). 

Hence, we have the proof of ii. clearly. 

 

Theorem 3.8.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2.  Then the vertical distribution 𝑘𝑒𝑟Φ∗ is a 

locally product as 𝑀𝐷1
× 𝑀𝐷2

 if and only if the 

equations in Theorem 3.6. and Theorem 3.7. are hold 

where 𝑀𝐷1
 and 𝑀𝐷2

 are integral manifolds of the 

distributions 𝐷1 and 𝐷2, respectively. 

 

Theorem 3.9.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution (𝑘𝑒𝑟Φ∗)⊥ defines a 

totally geodesic foliation on 𝑀 if and only if  

λ2{𝑋(𝑙𝑛 λ)𝑔𝑀(𝐶𝑌, ϕ𝑈𝑖) + 𝐶𝑌(𝑙𝑛 λ)𝑔𝑀(𝑋, ϕ𝑈𝑖)

− ϕ𝑈𝑖(𝑙𝑛 λ)𝑔𝑀(𝑋, 𝐶𝑌)

− 𝑋(𝑙𝑛 λ)𝑔𝑀(𝑌, ϕψ𝑈𝑖)

− 𝑌(𝑙𝑛 λ)𝑔𝑀(𝑋, ϕψ𝑈𝑖)

+ ϕψ𝑈𝑖(𝑙𝑛 λ)𝑔𝑀(𝑋, 𝑌)} 

= 𝑔𝑁 ((∇Φ∗)(𝑋, 𝐵𝑌) + ∇𝑋
ΦΦ∗(𝐶𝑌), Φ∗(ϕ𝑈𝑖)) 

−𝑔𝑁 (∇𝑋
ΦΦ∗(𝑌), Φ∗(ϕψ𝑈𝑖)) , 𝑖 = 1,2 

for 𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥), 𝑈1 ∈ Γ(𝐷1) and 𝑈2 ∈ Γ(𝐷2). 

Proof. Since Φ is a proper conformal bi-slant 

Riemannian map, we have two orthogonal 

complement distribution that 𝐷1 and 𝐷2 in 𝑘𝑒𝑟Φ∗, 

respectively. So, we examine 0 = 𝑔𝑀(∇𝑋𝑌, 𝑈1) and 

0 = 𝑔𝑀(∇𝑋𝑌, 𝑈2) for  𝑋, 𝑌 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥), 𝑈1 ∈

Γ(𝐷1) and 𝑈2 ∈ Γ(𝐷2). Since we will use the same 

calculations for these two cases, we examine just one 

for 𝑈1.  Then, it will be same for  𝑈2. Firstly, since 𝑀 

is a Kaehler manifold, we get 

𝑔𝑀(∇𝑋𝑌, 𝑈1) = 𝑔𝑀(𝒜𝒳𝐵𝑌, ϕ𝑈1)

+ 𝑔𝑀(ℎ∇𝑋𝐶𝑌, ϕ𝑈1) 
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                                          + 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑋𝑌, 𝑈1) 

                                          −𝑔𝑀(ℎ∇𝑋𝑌, ϕψ𝑈1). 

Since the map Φ is conformal Riemannian map, we 

obtain 

𝑠𝑖𝑛2 θ1 𝑔𝑀(∇𝑋𝑌, 𝑈1) 

=
1

λ2 𝑔𝑁((∇Φ∗)(𝑋, 𝐵𝑌), Φ∗(ϕ𝑈1))                                                

+
1

λ2 {𝑔𝑁 (∇𝑋
ΦΦ∗(𝐶𝑌), Φ∗(ϕ𝑈1)) 

−𝑋(𝑙𝑛 λ)𝑔𝑁(Φ∗(𝐶𝑌), Φ∗(ϕ𝑈1)) 

−𝐶𝑌(𝑙𝑛 λ)𝑔𝑁(Φ∗(𝑋), Φ∗(ϕ𝑈1)) 

            +𝑔𝑀(𝑋, 𝐶𝑌)𝑔𝑁 (Φ∗(𝑔𝑟𝑎𝑑(𝑙𝑛 λ)), Φ∗(ϕ𝑈1))} 

−
1

λ2
{𝑔𝑁 (∇𝑋

ΦΦ∗(𝑌), Φ∗(ϕψ𝑈1)) 

−𝑋(𝑙𝑛 λ)𝑔𝑁(Φ∗(𝑌), Φ∗(ϕψ𝑈1)) 

−𝑌(𝑙𝑛 λ)𝑔𝑁(Φ∗(𝑋), Φ∗(ϕψ𝑈1)) 

            

+𝑔𝑀(𝑋, 𝑌)𝑔𝑁 (Φ∗(𝑔𝑟𝑎𝑑(𝑙𝑛 λ)), Φ∗(ϕψ𝑈1))} 

𝑠𝑖𝑛2 θ1 𝑔𝑀(∇𝑋𝑌, 𝑈1) 

=
1

λ2 𝑔𝑁((∇Φ∗)(𝑋, 𝐵𝑌), Φ∗(ϕ𝑈1))                                                

+
1

λ2 {𝑔𝑁 (∇𝑋
ΦΦ∗(𝐶𝑌), Φ∗(ϕ𝑈1)) 

                  −𝑔𝑁 (∇𝑋
ΦΦ∗(𝑌), Φ∗(ϕψ𝑈1)) 

                  −𝑋(𝑙𝑛 λ)𝑔𝑀(𝐶𝑌, ϕ𝑈1) 

                  −𝐶𝑌(𝑙𝑛 λ)𝑔𝑀(𝑋, ϕ𝑈1) 

                 +𝑔𝑀(𝑋, 𝐶𝑌) ϕ𝑈1(𝑙𝑛 λ) 

                 +𝑋(𝑙𝑛 λ)𝑔𝑀(𝑌, ϕψ𝑈1) 

                 +𝑌(𝑙𝑛 λ)𝑔𝑀(𝑋, ϕψ𝑈1) 

                  −𝑔𝑀(𝑋, 𝑌) ϕψ𝑈1(𝑙𝑛 λ). 

It is clear that the distribution (𝑘𝑒𝑟Φ∗)⊥ defines a 

totally geodesic foliation on 𝑀 for 𝑋, 𝑌 ∈

Γ((𝑘𝑒𝑟Φ∗)⊥)  and 𝑈1 ∈ Γ(𝐷1).  

 

Theorem 3.10.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the distribution 𝑘𝑒𝑟Φ∗ defines a 

totally geodesic foliation on 𝑀 if and only if  

𝑔𝑁((∇Φ∗)(ϕψ𝑉, 𝑈), Φ∗(𝑋))

= λ2 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈𝑃𝑉, 𝑋)

+ λ2 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈𝑄𝑉, 𝑋)

+ λ2𝑔𝑀(∇𝑈ϕ𝑉, 𝐽𝑋) 

for 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥)  and 𝑈, 𝑉 ∈ Γ(𝑘𝑒𝑟Φ∗).  

Proof. Now, we examine 0 = 𝑔𝑀(∇𝑈𝑉, 𝑋) to show 

that the distribution 𝑘𝑒𝑟Φ∗ defines a totally geodesic 

foliation on 𝑀. Hence, we get 

𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(∇𝑈𝐽𝜓𝑃𝑉, 𝑋) 

                      +𝑔𝑀(ℎ∇𝑈ϕ𝑃𝑉 + 𝒯𝒰ϕ𝑃𝑉, 𝐵𝑋 + 𝐶𝑋)     

                      −𝑔𝑀(∇𝑈𝐽ψ𝑄𝑉, 𝑋) 

                      +𝑔𝑀(ℎ∇𝑈ϕ𝑄𝑉 + 𝒯𝒰ϕ𝑄𝑉, 𝐵𝑋 + 𝐶𝑋) 

𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(∇𝑈ψ2𝑃𝑉 + ∇𝑈ϕψ𝑃𝑉, 𝑋)

− 𝑔𝑀(∇𝑈ψ2𝑄𝑉 + ∇𝑈ϕψ𝑄𝑉, 𝑋)

+ 𝑔𝑀(ℎ∇𝑈ϕ𝑃𝑉 + ℎ∇𝑈ϕ𝑄𝑉, 𝐶𝑋)

+ 𝑔𝑀(𝒯𝒰ϕ𝑃𝑉 + 𝒯𝒰ϕ𝑄𝑉, 𝐵𝑋) 

𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈𝑃𝑉, 𝑋)

− 𝑔𝑀(ℎ∇𝑈ϕψ𝑃𝑉, 𝑋)

+ 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈𝑄𝑉, 𝑋)

− 𝑔𝑀(ℎ∇𝑈ϕψ𝑄𝑉, 𝑋)

+ 𝑔𝑀(ℎ∇𝑈ϕ𝑉, 𝐶𝑋)

+ 𝑔𝑀(𝒯𝒰ϕ𝑉, 𝐵𝑋) 

𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈𝑃𝑉, 𝑋) 

                                      + 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈𝑄𝑉, 𝑋) 

                                      −𝑔𝑀(ℎ∇𝑈ϕψ𝑉, 𝑋) 

                                      +𝑔𝑀(∇𝑈ϕ𝑉, 𝐽𝑋) 

for 𝑋 ∈ Γ((𝑘𝑒𝑟Φ∗)⊥)  and 𝑈, 𝑉 ∈ Γ(𝑘𝑒𝑟Φ∗). By 

using symmetry properties of second fundamental 

form of the map and conformality of the map, we 

obtain 

𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈𝑃𝑉, 𝑋) 

                                    + 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈𝑄𝑉, 𝑋)                                                                                        

                                         −
1

λ2 𝑔𝑁 (Φ∗(𝒜ϕψ𝒱𝑈), Φ∗(𝑋)) 

                                    +𝑔𝑀(∇𝑈ϕ𝑉, 𝐽𝑋)                          

𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑈𝑃𝑉, 𝑋) 

                                    + 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑈𝑄𝑉, 𝑋)                                                                                        

                                         −λ−2𝑔𝑁((∇Φ∗)(ϕψ𝑉, 𝑈), Φ∗(𝑋)) 

                                    +𝑔𝑀(∇𝑈ϕ𝑉, 𝐽𝑋).                          

From the last equation, we obtain the proof. 

 

Theorem 3.11.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2.  Then the total space 𝑀 is a locally product 

manifold as 𝑀𝐷1
× 𝑀𝐷2

× 𝑀(𝑘𝑒𝑟Φ∗)⊥ if and only if the 

equations in Theorem 3.6., Theorem 3.7. and 

Theorem 3.9. are hold where 𝑀𝐷1
, 𝑀𝐷2

 and 𝑀(𝑘𝑒𝑟Φ∗)⊥ 

are integral manifolds of the distributions 𝐷1, 𝐷2 and 

(𝑘𝑒𝑟Φ∗)⊥, respectively. 

 

Theorem 3.12.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2.  Then the total space 𝑀 is a locally product 

manifold as 𝑀(𝑘𝑒𝑟Φ∗)⊥ × 𝑀𝑘𝑒𝑟Φ∗
 if and only if the 

equations in Theorem 3.9. and Theorem 3.10. are 
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hold where 𝑀(𝑘𝑒𝑟Φ∗)⊥ and 𝑀𝑘𝑒𝑟Φ∗
 are integral 

manifolds of the distributions (𝑘𝑒𝑟Φ∗)⊥ and 𝑘𝑒𝑟Φ∗, 

respectively. 

Theorem 3.13.  Let Φ be a proper conformal bi-slant 

Riemannian map from a Kaehler manifold (𝑀, 𝑔𝑀, 𝐽) 

to a Riemannian manifold (𝑁, 𝑔𝑁) with slant angles 

θ1 and θ2. Then, the map Φ is a totally geodesic map 

if and only if  

𝑔𝑁 (∇ℎ𝐸
Φ Φ∗(ℎ𝐺) − ∇𝐸

ΦΦ∗(ℎ𝐺), Φ∗(𝐹))

= λ2 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑣𝐸𝑃𝑣𝐺, 𝐹)

+ λ2 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑣𝐸𝑄𝑣𝐺, 𝐹)

+ λ2𝑔𝑀(ℎ∇𝑣𝐸ϕψ𝑣𝐺 + ϕ𝒯𝓋ℰϕ𝑣𝐺

+ 𝐶ℎ∇𝑣𝐸ϕ𝑣𝐺 − 𝒜𝒽ℰ𝑣𝐺

− ℎ∇𝑣𝐸ℎ𝐺, 𝐹)

+ λ2{ℎ𝐸(𝑙𝑛 λ)𝑔𝑀(ℎ𝐺, 𝐹)

+ ℎ𝐺(𝑙𝑛 λ)𝑔𝑀(ℎ𝐸, 𝐹)

− 𝐹(𝑙𝑛 λ)𝑔𝑀(ℎ𝐸, ℎ𝐺)} 

for 𝐸, 𝐹, 𝐺 ∈ Γ(𝑇𝑀). 

Proof.  Now, recall that Φ is said to be totally 

geodesic map if (∇𝐹∗)(𝐸, 𝐺) = 0 for all 𝐸, 𝐺 ∈

Γ(𝑇𝑀). By using this notion, we have 

(∇Φ∗)(𝐸, 𝐺) = ∇𝐸
ΦΦ∗(ℎ𝐺)

− Φ∗(∇𝑣𝐸𝑣𝐺 + 𝒜𝒽ℰ𝑣𝐺 + ℎ∇𝑣𝐸ℎ𝐺)

+ (∇Φ∗)(ℎ𝐸, ℎ𝐺) − ∇ℎ𝐸
Φ Φ∗(ℎ𝐺) 

                      = ∇𝐸
ΦΦ∗(ℎ𝐺) 

                             −Φ∗(∇𝑣𝐸𝑣𝐺 + 𝒜𝒽ℰ𝑣𝐺 + ℎ∇𝑣𝐸ℎ𝐺) 

                             +(∇Φ∗)⊥(ℎ𝐸, ℎ𝐺) − ∇ℎ𝐸
Φ Φ∗(ℎ𝐺) 

                             +ℎ𝐸(𝑙𝑛 λ)Φ∗(ℎ𝐺) 

                             +ℎ𝐺(𝑙𝑛 λ)Φ∗(ℎ𝐸) 

                             −𝑔𝑀(ℎ𝐸, ℎ𝐺)Φ∗(𝑔𝑟𝑎𝑑(𝑙𝑛 λ)). 

On the other hand, we get 

−Φ∗(∇𝑣𝐸𝑣𝐺) = 𝑐𝑜𝑠2 θ1 Φ∗(∇𝑣𝐸𝑃𝑣𝐺)

+ 𝑐𝑜𝑠2 θ2 Φ∗(∇𝑣𝐸𝑄𝑣𝐺)

+ Φ∗(ℎ∇𝑣𝐸ϕψ𝑣𝐺 + ϕ𝒯𝓋ℰϕ𝑣𝐺

+ 𝐶ℎ∇𝑣𝐸ϕ𝑣𝐺). 

Hence, by putting this equation into (∇Φ∗)(𝐸, 𝐺), we 

obtain, 

(∇Φ∗)(𝐸, 𝐺) = ∇𝐸
ΦΦ∗(ℎ𝐺) − ∇ℎ𝐸

Φ Φ∗(ℎ𝐺)

+ 𝑐𝑜𝑠2 θ1 Φ∗(∇𝑣𝐸𝑃𝑣𝐺)

+ 𝑐𝑜𝑠2 θ2 Φ∗(∇𝑣𝐸𝑄𝑣𝐺)

+ Φ∗(ℎ∇𝑣𝐸ϕψ𝑣𝐺 + ϕ𝒯𝓋ℰϕ𝑣𝐺

+ 𝐶ℎ∇𝑣𝐸ϕ𝑣𝐺) − Φ∗(𝒜𝒽ℰ𝑣𝐺

+ ℎ∇𝑣𝐸ℎ𝐺) + ℎ𝐸(𝑙𝑛 λ)Φ∗(ℎ𝐺) 

                                +ℎ𝐺(𝑙𝑛 λ)Φ∗(ℎ𝐸) 

                                −𝑔𝑀(ℎ𝐸, ℎ𝐺)Φ∗(𝑔𝑟𝑎𝑑(𝑙𝑛 λ)). 

For 𝐹 ∈ Γ(𝑇𝑀), by applying Φ∗(𝐹) to last equation 

and since the map is conformal Riemannian, we 

obtain  

𝑔𝑁((∇Φ∗)(𝐸, 𝐺), Φ∗(𝐹)) = 

      𝑔𝑁 (∇𝐸
ΦΦ∗(ℎ𝐺) − ∇ℎ𝐸

Φ Φ∗(ℎ𝐺), Φ∗(𝐹)) 

     +λ2 𝑐𝑜𝑠2 θ1 𝑔𝑀(∇𝑣𝐸𝑃𝑣𝐺, 𝐹)               

      +λ2 𝑐𝑜𝑠2 θ2 𝑔𝑀(∇𝑣𝐸𝑄𝑣𝐺, 𝐹) 

+𝜆2𝑔𝑀(ℎ∇𝑣𝐸ϕψ𝑣𝐺 + ϕ𝒯𝓋ℰϕ𝑣𝐺 + 𝐶ℎ∇𝑣𝐸ϕ𝑣𝐺

− 𝒜𝒽ℰ𝑣𝐺 − ℎ∇𝑣𝐸ℎ𝐺, 𝐹) 

+λ2{ℎ𝐸(𝑙𝑛 λ)𝑔𝑀(ℎ𝐺, 𝐹) + ℎ𝐺(𝑙𝑛 λ)𝑔𝑀(ℎ𝐸, 𝐹)

− 𝐹(𝑙𝑛 λ)𝑔𝑀(ℎ𝐸, ℎ𝐺)}. 

Therefore, the proof is clear. 

 

4. Discussion 

 

        Since we have the definition of conformal 

Riemannian map and bi-slant structure properties, 

these notions are combined as conformal bi-slant 

Riemannian map. In this study, we examine its some 

geometric properties. 
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