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Abstract: Artificial Bee Colony algorithm inspired by the foraging behavior of real honey bees is one of the most 
popular swarm intelligence based optimization techniques. Like other population based evolutionary computation 

approaches, Artificial Bee Colony algorithm is intrinsically suitable for distributed architectures. However, 

determining which food source should be chosen to distribute between subcolonies and communication topology 

applied still remain as an important problem for parallel implementations. In this study, a new schema for increasing 

the quality of the distributed source by changing best solution is presented. The proposed model is adapted to ring 

migration topology and its effectivenes is compared with conventional ring based topology in which best food sources 

in each subpopulation are distributed and the original sequential counterpart. Comparative results show that the 

proposed model increased the quality of the solutions and early convergence speed while protecting the speedup gain. 

Keywords: Artificial Bee Colony algorithm, parallelization, emigrant creation. 
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1. Introduction 
1 blank line (10-point font with single spacing) 

In recent years, heuristic approaches have been 

developed as an alternative to the traditional methods 

for complex numerical and combinatorial optimization 

problems needed to be solved in a predetermined or 
reasonable amount of time with acceptable quality. 

Swarm intelligence based algorithms that is a branch of 

natural inpired heuristic mainly focus on the collective 

behaviors of insect colonies especially their problem 

solving abilities and they have been applied to the 

many real-world problems [1-6]. Artificial Bee Colony 

(ABC) algorithm proposed by Karaboga to solve 

numerical optimization problems in 2005 is one of 

these swarm intelligence based algorithms and tries to 

mimic natural behavior of real honey bees in food 

foraging [1-6]. 
 Due to its robust structure and less control 

parameters which are important to being determined 

before starting search progress like crossover and 

mutation rate used by Genetic Algorithm (GA), ABC 

algorithm has been successfully applied a wide variety 

of numerical or combinatorial problems ranging from 

the neural network training [7, 8], routing packages 

within a wireless sensor networks [9, 10], aligning 

protein sequences [11, 12] and predicting secondary 

structures of them [13] to image quantization [14, 15] 

and so on [2, 6]. In spite of all those advantages, some 

modifications made in order to improve the 
performance of the ABC algorithm and raise the speed 

of convergence to globally optimal solution add extra 

burden to the standard implementation of the ABC 

algorithm and it still requires a long execution time to find 

optimal or neal optimal solutions of problems that have 

many parameters to be optimized and need large colony 

size [16-21].   

It can be observed that many parts of the ABC 

algorithm can be run in parallel. However, some 

dependencies on the asynchronous workflow of the 

sequential ABC algorithm should be changed by 

considering the quality of the final solutions, convergence 
speed and efficiency of the used parallel architectures. 

Driven by these mentioned large computational demands 

and variations of parallelizable part of the ABC algorithm, 

many researchers have developed parallel ABC algorithms 

in order to increase the speedup on both shared and 

distributed memory concepts. Parallelization approaches of 

the ABC algorithm was roughly classified into two 

categories based on the number of colonies. In the first 

category, multiple colonies able to communicate each other 

are used on the same search space. Rather than utilizing 

multiple colonies, using a single colony divided into 
subcolonies and then distributed to the processors to work 

simultaneously is evaluated in the second category.  

Narasimhan presented a parallel version of the ABC 

algorithm in which the entire colony of bees is divided 

equally then distributed among selected processors so that 

each processor tries to improve the local set of solutions 

and obtained satisfying results for both quality of final 

solutions and running performance [22]. In that study, each 

subcolony is placed in the local memories of the related 
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processors and the entire colony is stored in the global 

shared memory [22]. At the end of each cycle, 

improved solutions on each processor are copied into 

the corresponding locations in the global shared 
memory in order to maintain the relationship between 

bees in the sequential ABC algorithm [22]. 

Banharnsakun et al. designed a parallel ABC algorithm 

for distributed memory systems and improved the 

scalability problems on the hardware [23]. After 

completing a predetermined number of cycles, local 

best solution exchanging between two different 

subgroups which are randomly determined is carried 

out [23]. Luo et al. proposed a food source sharing 

approach between compute nodes called ripple-

communication strategy and showed that ripple-

communication strategy increases the accuracy of the 
ABC algorithm on finding near best solutions [24]. 

Subotic et al. used multiple bee colony in a 

communication manner that each bee colony shares 

their best-so-far solutions with all other colonies after 

predetermined number of cycle was completed [25, 

26]. Parpinelli et al. investigated parallel performance 

of the ABC algorithm by adapting it for master-slave, 

multi-hive with migration and hybrid hierarchical 

models [27]. A more detailed examination of the 

parallel ABC algorithm has been conducted by Basturk 

and Akay. They first introduced a synchronous ABC 
algorithm and compared its performance with the 

asynchronous sequential counterpart on large-scale 

benchmark functions [28]. Secondly, a coarse-grained 

parallel model of the ABC algorithm has been 

presented [29]. While their parallel implementation of 

the ABC algorithm has been tested using high 

dimensional numeric compute expensive problems 

with different number of subpopulations, migration 

intervals and migration topologies in the first part of 

the experimental studies, the second part was devoted 

to the studies on training artificial neural network by 
utilizing the proposed parallel model [29]. 

 Changing local best food source with a food source 

in the topological neighbor subpopulation is the 

common part of the parallel ABC algorithms. This type 

of changing process is as important as the established 

neighbrohood relationship between subcolonies to 

maintain the population diversity. However, changing 

process stops the parallel execution and increases the 

total running time by adding the communication 

overhead. Because of this reason deciding which food 

source should be chosen as an emigrant rather than the 

local best solution is substantial for both maintaining 
variety of the subpopulations and performance gain 

compared to the sequential counterpart. In the proposed 

parallel ABC algorithm, food sources that will be 

swapped based on the used neighborhood topology is 

determined by combining the local best food source 

with a randomly determined food source. The rest of 

the paper is organized as follows. Section 2 provides a 

detailed description of the original sequential ABC 

algorithm. The proposed approach for determining the 

distributed food sources in each subpopulation is 

explained in Section 3. Experimental studies are 

reported in Section 4. Finally, conclusing and future 

research lines are provided in Section 5.  

 

2. Artificial Bee Colony Algorithm 
1 blank line (10-point font with single spacing) 

Foraging behaviors, memorizing and information sharing 

characteristics of the real honey bees are the main 

motivations used by the ABC algorithm [1]. ABC 

algorithms classifies the bees in the colony by their role 

played in the minimal foraging model as employed, 

onlooker and scout [30-35]. Employed bees exploit food 
sources, carry information back to the hive and then share 

the information about the sources with onlooker bees. 

Onloker bees wait in the hive and try to choose a food 

source by means of the information shared by employed 

bees. The tendency of the choosing a food source by 

onlookers is directly proportional to the quality of the food 

sources [30-35]. If a food source is exploited or abandoned, 

and employed bee associated with this source becomes a 

scout bee and searches environment randomly to find a new 

food source.  

When using ABC algorithm to solve an optimization 
problem, food sources in the search space correspond to the 

possible solution of the problem and the nectar amount of 

the food source represents the fitness value of the solution 

[30-35]. The main steps of the ABC algorithm which 

reflects the cyclical relationship between employed bees, 

onlooker bees and scout bees can be summirized in the Fig.  

(1) below. 
1 blank line (9-point font with single spacing) 

 
1 blank line (9-point font with single spacing) 

Figure 1. Fundamental steps of the ABC algorithm 
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2.1. Generating Initial Food Sources 
1 blank line (10-point font with single spacing) 

ABC algorithm start its optimization progres by 

randomly generating an initial set of food sources which 

corresponds to the possible solutions. In the ABC 

algorithm, for a numerical problem that needs to 

optimize D different parameters identified by lower 

bound xj
min and upper bound xj

max, xij parameter of a 

solution vector xi, where j ∈ {1, 2, …, D} and i ∈ {1, 2, 

…, SN},  in the initial food source population consists of 

SN solution vectors is formulated as given in Eq. (1) 

[30-35]. 
11 blank line (10-point font with single spacing) 

 min max min(0,1)ij j j jx x rand x x                      (1) 

1 blank line (10-point font with single spacing) 

2.2. Sending Employed and Onlooker Bees to 

Food Sources 
1 blank line (10-point font with single spacing) 

In ABC algorithm, each food source is associated 

with only one artificial bee and this bee attempts to 

produce a new food source depending on the location 

infomration in its memory [30-35]. If the nectar quality 

of the new food source is better than the known source, 

the bee will decide to forget the previous food source 

information in its mind, which is considered as a 

greedy selection mechanism, to utilize it for the next 

search cycle. The mathematial expression used both the 

employed and onlooker bees to produce a candidate 
food source in the neighborhood of the memorized 

food source is given in Eq. (2). 

11 blank line (10-point font with single spacing) 

 ij ij ij ij kjv x x x                         (2) 

1 blank line (10-point font with single spacing) 

ϕij is a random number between -1 and 1, k ∈ {1, 2, 

…, SN} and j ∈ {1, 2, …, D} where SN and D denote 

number of food sources and dimensions of the solution 

vectors, respectively, are randomly chosen indexes [30, 

31]. Although, the value of k is randomly determined, 

it should be noticed that identical values are not 

assigned to k and i indices. vij is the newly created jth 

parameter for the solution vector vi whose parameters 

have the same with the solution vector xi except the 

randomly selected jth parameter value [30-35].  
ABC algorithm accommodates the preference of a 

food source by an onlooker bee with the nectar amount 

of that food source. After employed bees have shared 

the information kept in ther minds on the dance area, 

an onlooker bee chooses a food source depending on 

the probability value associated with that food source. 

The probability of a food source which increases with 

the nectar quality of the sources is calculated as below; 

11 blank line (10-point font with single spacing) 

i
i SN

jj

fitness
p

fitness



                      (3) 

1 blank line (10-point font with single spacing) 

where fitnessi is the fitness value of the solution 
presented by the food source in the position i and SN is 

the number of food sources [30-35]. 

1 blank line (10-point font with single spacing) 

2.3. Abandoning Food Sources 
1 blank line (10-point font with single spacing) 

In a robust search, exploitation and exploration progress 

should be maintained in a balanced manner. If a food 

source cannot be improved through a predetermined 

number of iterations or cycles, the employed bee associated 

with this food source will become a scout bee and leave the 

food source to start a random search operation. The number 

of cycle used to abandon a source is an improtant control 

parameter of the ABC algorithm called as limit value. As in 

basic ABC algorithm, one food source for which the limit 

value is exceed at most when compared to the other sources 

is abandoned and one employed bee becomes scout bee for 
each cycle [30-35].  

1 blank line (10-point font with single spacing) 

3. Determining Distributed Food Source 
1 blank line (10-point font with single spacing) 

In distributed architectures, dividing the whole 

population into subpopulations and then assigning these 

subpopuations to different compute nodes are probably the 
most preferred parallel computing model due to its 

suitability to implement and less communication overhead. 

Each subpopulation in different compute nodes is evaluated 

independently and exchanges the information about the 

selected individual with other subpopulations based on the 

neighborhood topology [29, 36]. Neighborhood topologies 

commonly used when determining the direction of the 

information exchange are given in the Fig. (2) [28, 29, 36]. 

However, when a population based metaheuristic is 

parallelized using this type of computation model, the 

speedup performance of the algorithm change with the 
selected neighborhood topology, number of subcolonies, 

communication interval between subcolonies and types of 

information being distributed between compute nodes [29]. 
1 blank line (9-point font with single spacing) 

 
1 blank line (9-point font with single spacing) 

Figure 2. Ring (a), ring 1+2 (b), torus (c) and lattice (d) 

1 blank line (9-point font with single spacing) 

 Although all of these topologies have some advantages, 

deciding which solution to be exchanged shoud be main 

concern for increasing performance of the algorithm 
without deteriorating speedup and efficiency. In the vast 
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majority of these topologies, the worst solution or 

solutions found in a subpopulation is replaced with the 

best solution or solutions of the topological neighbor 

subpopulation or neighbor subpopulations based on the 

used communication schema [23, 29]. The best solutions 

found in each subpopulation might be seen as a convenient 

migrants. But 

 

Table 1. Benchmark functions used in the experiments 

1 blank line (9-point font with single spacing) 

Function Range Formulation Global Min. 

Sphere [ 100,100]     2

1 1

D

ii
f x x




r
  1 0f x 

r
 

Griewank [ 600,600]      2

2 1 1

1
cos 1

4000

DD i
ii i

x
f x x

i 

  
    

  
 

r   2 0f x 
r

 

Rosenbrock [ 30,30]        21 22

3 11
100 1

D

i i ii
f x x x x




   

r   3 0f x 
r

 

Rastrigin [ 5.12,5.12]      2

4 1
10cos 2 10

D

i ii
f x x x


  

r
  4 0f x 

r
 

Dixon-Price [ 10,10]       
22 2

5 1 12
1 2

D

i ii
f x x i x x 

   
r

  5 0f x 
r

 

Penalized [ 50,50]  

  2 2 2 2

6 1 1

1 1

10sin ( ) ( ( 1) (1 10sin ( ))) ( 1) ( ,10,100,4)

( ) ,
1

( , , , ) 0, 1 ( 1)
4

( ) ,

D D

i i D i

i i

m

i i

i i i

m

i i

f x y y y y u x
D

k x a x a

u xi a k m a x a and y x

k x a x a


  

 

 
       

 

  


      
    

 
r

 

 6 0f x 
r

 

1 blank line (10-point font with single spacing) 

some situations, getting the best food source from the 

neighbor can not be enough to reflect the properties of 

other solutions found in the same population. Another 

limitation stemmed from the utilization of the best food 

source is that if the local best food source replaced with 

the worst food source of the neighbor subgroup in the 

previous migration time can not be improved until the 

next migration and then the same local best food source 

is sent more than once to the neighbor subgroup, 
population diversity is deteriorated. In other words, 

occurance of multiple copies of the same local best 

food source in the neighbor subgroup decreases the 

selection probability of the other food sources due to 

their relatively high fitness values [36]. 

In the proposed model, the food source chosen as 

an emigrant between neighbor compute nodes is 

determined in a different manner that the best food 

source in the subpopulation is combined with randomly 

chosen food source by changing the parameters of the 

best food source with the more efficient parameters 
taken from the randomly chosen food source [36]. By 

utilizing this kind of cooperative schema, food sources 

to be exchanged between neighbor subcolonies carry 

more information about the situations of their colonies. 

Another important aspect of the proposed model is that 

population diversity in each compute node is protected 

more when compared with the local worst and local 

best changing approach [36]. If a population or colony 

consist of a set of solution in which some of them are 

the same or close to each other, probability of a major 

change that helps avoiding a local minima decreases. 

The working schema of the cooperative generation 
method and its integration in the parallel ABC 

algorithm is given in the Fig. (3) [36]. 

1 blank line (10-point font with single spacing) 

4. Experimental Studies 
1 blank line (10-point font with single spacing) 

Benchmark functions that we used in order to test the 

performance of the standard, ring based parallel and ring 

based cooperative ABC algorithms are given in the Table 1. 

The Sphere function, f1, is a convex, unimodal function 

which has no local minimum excep the global one. 

Griewank function, f2, has a product term and number of 

local optimas increase with the dimensionality. 

Rosenbrock’s Valley function, f3, is one of the most 

difficult optimization problem. Its global optimum is inside 
a long, narrow, parabolic shaped flat valley. Rastrigin 

function, f4, is constructed from the Sphere function by 

adding a cosine modulator term to produce many local 

minimas. Finally,  f5 and f6 are Dixon-Price and Penalized 

functions, respectively. 
blank line (9-point font with single spacing) 

 
1 blank line (9-point font with single spacing) 

Figure 3. Cooperative model based parallel ABC algorithm 
1 blank line (9-point font with single spacing) 
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The size of the bee colony is chosen as 160 for the 

experiments. The dimension on each function is set to 

400 and the value of limit is taken equal to the number 

of parameters. The proposed method is implemented in 
C programming language using Open Message Passing 

Interface (OpenMPI) library [37, 38]. All of our tests 

have been performed on the cluster that consist of compute 

nodes powered by Intel® i5 4670 processors with 2 

gigabytes (GB) of random access memories (RAM). In all 

experiments, the maximum number of iterations is set 2000. 
Migration topology used in the parallel implementations is 

ring and migration interval that controls the frequency of
Table 2. Comparison results of ABC and its parallel implementations (Mig.Per.=20) on two processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC 

Mean Std. Mean Std. Mean Std. 

 1f x
r

 3.229954e+03  2.473820e+03 3.266018e+04 6.084122e+03 1.034880e-01 1.150681e-01 

 2f x
r

 3.535124e+01  2.409915e+01 2.897337e+02 7.884458e+01 3.432151e-02 3.217872e-02 

 3f x
r

 1.807207e+05  1.491821e+05 4.000289e+07 2.388123e+07 1.313634e+03 5.630211e+02 

 4f x
r

 8.502711e+02  3.983880e+01 1.216464e+03 5.327817e+01 2.335463e+01 1.294404e+01 

 5f x
r

 1.044298e+04  1.038023e+04 3.446708e+06 2.190490e+06 5.391258e+02 9.035605e+01 

 6f x
r

 2.381271e-01 1.640537e-01 4.363432e-01 3.346655e-01 3.299542e-05 4.592101e-05 

1 blank line (10-point font with single spacing) 
Table 3. Comparison results of ABC and its parallel implementations (Mig.Per.=20) on four processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC 

Mean Std. Mean Std. Mean Std. 

 1f x
r

 3.229954e+03  2.473820e+03 4.598622e+04 9.963033e+03 8.648452e-01 8.373927e-01 

 2f x
r

 3.535124e+01  2.409915e+01 3.766516e+02 6.249915e+01 2.378765e-01 2.254262e-01 

 3f x
r

 1.807207e+05  1.491821e+05 9.187267e+07 4.842134e+07 1.398775e+03 2.151771e+02 

 4f x
r

 8.502711e+02  3.983880e+01 1.297987e+03 6.566077e+01 4.375327e+01 6.205766e+00 

 5f x
r

 1.044298e+04  1.038023e+04 1.250928e+07 7.023127e+06 5.350509e+02 7.779291e+01 

 6f x
r

 2.381271e-01 1.640537e-01 1.078099e+01 7.494439e+01 1.020629e-03 3.468314e-03 

1 blank line (10-point font with single spacing) 
Table 4. Comparison results of ABC and its parallel implementations (Mig.Per.=40) on two processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC 

Mean Std. Mean Std. Mean Std. 

 1f x
r

 3.229954e+03  2.473820e+03 2.175066e+04 6.982652e+03 1.484573e-02 5.649759e-03 

 2f x
r

 3.535124e+01  2.409915e+01 2.203342e+02 5.419798e+01 1.658796e-02 8.670992e-03 

 3f x
r

 1.807207e+05  1.491821e+05 3.515014e+06 3.988365e+06 1.706111e+03 8.543510e+02 

 4f x
r

 8.502711e+02  3.983880e+01 1.184284e+03 4.751689e+01 7.706627e+00 1.945536e+00 

 5f x
r

 1.044298e+04  1.038023e+04 2.735696e+05 2.314094e+05 5.939535e+02 5.321407e+01 

 6f x
r

 2.381271e-01 1.640537e-01 1.991814e-01 1.137070e-01 1.114830e-05 3.730155e-06 

1 blank line (10-point font with single spacing) 
Table 5. Comparison results of ABC and its parallel implementations (Mig.Per.=40) on four processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-RingABC 

Mean Std. Mean Std. Mean Std. 

 1f x
r

 3.229954e+03  2.473820e+03 2.939110e+04 5.203470e+03 1.263425e-02 1.730070e-02 

 2f x
r

 3.535124e+01  2.409915e+01 2.784435e+02 4.413102e+01 1.195933e-02 1.630222e-02 

 3f x
r

 1.807207e+05  1.491821e+05 2.733728e+07 2.000934e+07 1.287916e+03 5.716947e+02 

 4f x
r

 8.502711e+02  3.983880e+01 1.246378e+03 5.017284e+01 1.101184e+01 3.146331e+00 

 5f x
r

 1.044298e+04  1.038023e+04 3.063510e+06 1.357753e+06 4.872473e+02 7.290517e+01 

 6f x
r

 2.381271e-01 1.640537e-01 1.003665e-01 1.058251e-01 5.533145e-06 4.258351e-06 
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1 blank line (10-point font with single spacing)

the food source exchanging between subpopulations is 

set two different values; 20 and 40. Each of the 

experiments is repeated 20 times with different random 
seeds and the mean best values and standard deviations 

have been recorded. From the simulation results given 

in Tables 2-5 for different number of compute nodes and 

migration periods, it is clear that the mean best objective 

function values obtained by the proposed cooperative 
model outperform the standard ABC algorithm and ring 

schema based parallel ABC algorithm. By distributing 
 

Table 6. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=40) on two processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency 

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring 

 1f x
r

 0.335517 0.190797 0.207589 1.7585 1.6163 0.8793 0.8081 

 2f x
r

 9.541212 4.780286 4.865502 1.9960 1.9610 0.9980 0.9805 

 3f x
r

 0.742329 0.375454 0.412685 1.9772 1.7988 0.9886 0.8994 

 4f x
r

 4.167828 2.092572 2.111593 1.9917 1.9738 0.9959 0.9869 

 5f x
r

 2.708567 1.364566 1.415034 1.9849 0.9925 1.9141 0.9571 

 6f x
r

 8.117327 4.396277 4.510353 1.8464 0.9232 1.7997 0.8999 

1 blank line (10-point font with single spacing) 
Table 7. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=40) on four processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency 

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring 

 1f x
r

 0.335517 0.103096 0.119990 3.2544 2.7962 0.8136 0.6991 

 2f x
r

 9.541212 2.399108 2.501098 3.9770 3.8148 0.9942 0.9537 

 3f x
r

 0.742329 0.203075 0.246921 3.6554 3.0063 0.9139 0.7516 

 4f x
r

 4.167828 1.056093 1.097356 3.9465 3.7981 0.9866 0.9495 

 5f x
r

 2.708567 0.691373 0.858954 3.9177 3.1533 0.9794 0.7883 

 6f x
r

 8.117327 2.107239 2.240383 3.8521 3.6232 0.9630 0.9058 

1 blank line (10-point font with single spacing) 
Table 8. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=20) on two processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency 

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring 

 1f x
r

 0.335517 0.206929 0.230228 1.6214 1.4573 0,8107 0,7286 

 2f x
r

 9.541212 4.791809 4.951232 1.9912 1.9270 0,9956 0,9628 

 3f x
r

 0.742329 0.406193 0.456462 1.8275 1.6263 0,9137 0,8131 

 4f x
r

 4.167828 2.098474 2.137868 1.9861 1.9495 0,9930 0,9747 

 5f x
r

 2.708567 1.390291 1.566196 1.9482 1.7294 0,9741 0,8647 

 6f x
r

 8.117327 4.433858 4.550353 1.8308 1.7839 0.9154 0.8919 

1 blank line (10-point font with single spacing) 
Table 9. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=20) on four processors 

1 blank line (9-point font with single spacing) 

Functions 
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency 

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring 

 1f x
r

 0.335517 0.106680 0.141885 3.1451 2.3647 0,7862 0,5911 

 2f x
r

 9.541212 2.399059 2.501293 3.9771 3.8145 0,9942 0,9536 

 3f x
r

 0.742329 0.204072 0.290406 3.6376 2.5562 0,9094 0,6390 

 4f x
r

 4.167828 1.073781 1.124635 3.8815 3.7059 0,9703 0,9264 

 5f x
r

 2.708567 0.693667 0.926330 3.9047 2.9240 0,9761 0,7310 

 6f x
r

 8.117327 2.190383 2.251761 3.7059 3.6049 0.9265 0.9012 
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1 blank line (10-point font with single spacig) 

cooperative best food source between ring based 

neighbor subcolonies, the chance of getting different 

best food source which is more qualified than the 
previously swapped has been increased. Another 

important contribution with this approach is that 

diversity in the subcolonies has been maintained with the 

emigrant food sources that reflects the important properties 

of the randomly chosen food source in its subcolony.  
Another comparison has been made on the speedup and 

efficiency values for the parallel ABC algorithms. Speedup

 
1 blank line (9-point font with single spacing) 

Figure 3. Convergence charactertics of the serial ABC algorithm and its ring schema based parallel implementations on two compute 
nodes for f1 (a), f2 (b), f3 (c), f4 (d), f5 (e) and f6 (f)  functions 

1 blank line (9-point font with single spacing) 

and efficiency are commonly used metrics to measure 
the performance of the parallel algorithms. Speedup 

value is the ratio of sequential execution time to the 

parallel execution time and efficiency value is the ratio 

of speedup and the number of processors used. 

Optimum value of the speedup metric is equal to the 

number of processors and the optimum value of the 

efficiency is equal to 1. In Tables 6-9, average total 

running times over 20 different runs, speedup and 

efficiency value are given for different number of 

nodes and periods. In the calculation of the average 

running time for parallel ABC algorithms, total elapsed 

time for the slowest processor has been used. Since the 
generation of the cooperative food source require a 

comparison between all parameters of the local best 

food source and a randomly determined food source for 
each subcolony, the speedup and efficiency values of the 

Coop-Ring ABC algorithm lag slighlty behind the Ring-

ABC algorithm especially for the functions that are less 

compute expensive. The effect of the proposed schema on 

the convergence speed of the algorithm can bee seen in the 

Figure 3 and Figure 4. When these figures are examined, all 

of them present a remarkable difference between Coop-

Ring ABC and other implementations. Qualities of the best 

solutions are significantly increased with the start of the 

distribution of the cooperative food sources, that also leads 

to a fast convergence to the global minima of the problem, 

and continues to be improved with respect to the early 
migrations. While the effect of the proposed model is 

causing a gradual and fast convergence to the global 
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minima within the first quarter of the total cycles for 

the f1, f2 and f4 functions,  solution quality is more 

quickly improved within the early cycles and then 

convergence to the minima is stabilized as the number 
of cylces increases for the f3, f5 and f6 functions. From 

the graphics given in Figure 2 and Figure 3, it is also 

clear that low values of the migration interval increases the 

convergence speed of Coop-Ring ABC algorithm by adding 

furher computation overhead. However, this type of quick 

convergence provided by the high frequency of migration 
does not contribute to the improvement of the best solutions 

in the other subpopulations. 

 
1 blank line (9-point font with single spacing) 

Figure 1. Convergence characteristics of the serial ABC algorithm and its ring schema based parallel implementations on four 
compute nodes for f1 (a), f2 (b), f3 (c), f4 (d), f5 (e) and f6 (f) functions 

1 blank line (9-point font with single spacing) 

 

5. Conclusions 
1 blank line (10-point font with single spacing) 

In this paper, a new creation schema for the emigrant 

food source between neighbor subcolonies is presented 

and performance effect of the proposed approach in 

terms of solution quality, convergence speed and 

running time has been investigated. Experimental 
studies showed that the new definition significantly 

improved the quality of the final solutions and 

convergence performance of parallel ABC algorithm 

with the ring migration topology when compared to the 

standard sequential ABC algorithm and ring based 

parallel ABC algorithm in which local best food 

sources for each subcolony are chosen to being exchanged 

with the local worst food sources. A future development of 

this work can focus on adapting the proposed schema to 

other migration topologies with different number of 

compute nodes and migration periods and its 

implementation on combinatorial optimization problems 
that require more computational time due to the necessity of 

the constraints. 
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