

Received on: 15.02.2016

Accepted on: 25.03.2016

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

1 blank line (12-

point font with single spacing)

Best Supported Emigrant Creation For Parallel Implementation Of Artificial

Bee Colony Algorithm
1 blank line (12-point font with single spacing)

Dervis KARABOGA1 and Selcuk ASLAN2

2 blank line (12-point font with single spacing)

1Department of Computer Engineering, Erciyes University, Kayeri, Turkey

2Department of Computer Engineering, Ondokuz Mayis University, Samsun, Turkey

karaboga@erciyes.edu.tr, selcuk.aslan@bil.omu.edu.tr

1 blank line (12-point font with single spacing)

Abstract: Artificial Bee Colony algorithm inspired by the foraging behavior of real honey bees is one of the most
popular swarm intelligence based optimization techniques. Like other population based evolutionary computation

approaches, Artificial Bee Colony algorithm is intrinsically suitable for distributed architectures. However,

determining which food source should be chosen to distribute between subcolonies and communication topology

applied still remain as an important problem for parallel implementations. In this study, a new schema for increasing

the quality of the distributed source by changing best solution is presented. The proposed model is adapted to ring

migration topology and its effectivenes is compared with conventional ring based topology in which best food sources

in each subpopulation are distributed and the original sequential counterpart. Comparative results show that the

proposed model increased the quality of the solutions and early convergence speed while protecting the speedup gain.

Keywords: Artificial Bee Colony algorithm, parallelization, emigrant creation.

1 blank line using 12-point font with single spacing

1. Introduction
1 blank line (10-point font with single spacing)

In recent years, heuristic approaches have been

developed as an alternative to the traditional methods

for complex numerical and combinatorial optimization

problems needed to be solved in a predetermined or
reasonable amount of time with acceptable quality.

Swarm intelligence based algorithms that is a branch of

natural inpired heuristic mainly focus on the collective

behaviors of insect colonies especially their problem

solving abilities and they have been applied to the

many real-world problems [1-6]. Artificial Bee Colony

(ABC) algorithm proposed by Karaboga to solve

numerical optimization problems in 2005 is one of

these swarm intelligence based algorithms and tries to

mimic natural behavior of real honey bees in food

foraging [1-6].
 Due to its robust structure and less control

parameters which are important to being determined

before starting search progress like crossover and

mutation rate used by Genetic Algorithm (GA), ABC

algorithm has been successfully applied a wide variety

of numerical or combinatorial problems ranging from

the neural network training [7, 8], routing packages

within a wireless sensor networks [9, 10], aligning

protein sequences [11, 12] and predicting secondary

structures of them [13] to image quantization [14, 15]

and so on [2, 6]. In spite of all those advantages, some

modifications made in order to improve the
performance of the ABC algorithm and raise the speed

of convergence to globally optimal solution add extra

burden to the standard implementation of the ABC

algorithm and it still requires a long execution time to find

optimal or neal optimal solutions of problems that have

many parameters to be optimized and need large colony

size [16-21].

It can be observed that many parts of the ABC

algorithm can be run in parallel. However, some

dependencies on the asynchronous workflow of the

sequential ABC algorithm should be changed by

considering the quality of the final solutions, convergence
speed and efficiency of the used parallel architectures.

Driven by these mentioned large computational demands

and variations of parallelizable part of the ABC algorithm,

many researchers have developed parallel ABC algorithms

in order to increase the speedup on both shared and

distributed memory concepts. Parallelization approaches of

the ABC algorithm was roughly classified into two

categories based on the number of colonies. In the first

category, multiple colonies able to communicate each other

are used on the same search space. Rather than utilizing

multiple colonies, using a single colony divided into
subcolonies and then distributed to the processors to work

simultaneously is evaluated in the second category.

Narasimhan presented a parallel version of the ABC

algorithm in which the entire colony of bees is divided

equally then distributed among selected processors so that

each processor tries to improve the local set of solutions

and obtained satisfying results for both quality of final

solutions and running performance [22]. In that study, each

subcolony is placed in the local memories of the related

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2056

processors and the entire colony is stored in the global

shared memory [22]. At the end of each cycle,

improved solutions on each processor are copied into

the corresponding locations in the global shared
memory in order to maintain the relationship between

bees in the sequential ABC algorithm [22].

Banharnsakun et al. designed a parallel ABC algorithm

for distributed memory systems and improved the

scalability problems on the hardware [23]. After

completing a predetermined number of cycles, local

best solution exchanging between two different

subgroups which are randomly determined is carried

out [23]. Luo et al. proposed a food source sharing

approach between compute nodes called ripple-

communication strategy and showed that ripple-

communication strategy increases the accuracy of the
ABC algorithm on finding near best solutions [24].

Subotic et al. used multiple bee colony in a

communication manner that each bee colony shares

their best-so-far solutions with all other colonies after

predetermined number of cycle was completed [25,

26]. Parpinelli et al. investigated parallel performance

of the ABC algorithm by adapting it for master-slave,

multi-hive with migration and hybrid hierarchical

models [27]. A more detailed examination of the

parallel ABC algorithm has been conducted by Basturk

and Akay. They first introduced a synchronous ABC
algorithm and compared its performance with the

asynchronous sequential counterpart on large-scale

benchmark functions [28]. Secondly, a coarse-grained

parallel model of the ABC algorithm has been

presented [29]. While their parallel implementation of

the ABC algorithm has been tested using high

dimensional numeric compute expensive problems

with different number of subpopulations, migration

intervals and migration topologies in the first part of

the experimental studies, the second part was devoted

to the studies on training artificial neural network by
utilizing the proposed parallel model [29].

 Changing local best food source with a food source

in the topological neighbor subpopulation is the

common part of the parallel ABC algorithms. This type

of changing process is as important as the established

neighbrohood relationship between subcolonies to

maintain the population diversity. However, changing

process stops the parallel execution and increases the

total running time by adding the communication

overhead. Because of this reason deciding which food

source should be chosen as an emigrant rather than the

local best solution is substantial for both maintaining
variety of the subpopulations and performance gain

compared to the sequential counterpart. In the proposed

parallel ABC algorithm, food sources that will be

swapped based on the used neighborhood topology is

determined by combining the local best food source

with a randomly determined food source. The rest of

the paper is organized as follows. Section 2 provides a

detailed description of the original sequential ABC

algorithm. The proposed approach for determining the

distributed food sources in each subpopulation is

explained in Section 3. Experimental studies are

reported in Section 4. Finally, conclusing and future

research lines are provided in Section 5.

2. Artificial Bee Colony Algorithm
1 blank line (10-point font with single spacing)

Foraging behaviors, memorizing and information sharing

characteristics of the real honey bees are the main

motivations used by the ABC algorithm [1]. ABC

algorithms classifies the bees in the colony by their role

played in the minimal foraging model as employed,

onlooker and scout [30-35]. Employed bees exploit food
sources, carry information back to the hive and then share

the information about the sources with onlooker bees.

Onloker bees wait in the hive and try to choose a food

source by means of the information shared by employed

bees. The tendency of the choosing a food source by

onlookers is directly proportional to the quality of the food

sources [30-35]. If a food source is exploited or abandoned,

and employed bee associated with this source becomes a

scout bee and searches environment randomly to find a new

food source.

When using ABC algorithm to solve an optimization
problem, food sources in the search space correspond to the

possible solution of the problem and the nectar amount of

the food source represents the fitness value of the solution

[30-35]. The main steps of the ABC algorithm which

reflects the cyclical relationship between employed bees,

onlooker bees and scout bees can be summirized in the Fig.

(1) below.
1 blank line (9-point font with single spacing)

1 blank line (9-point font with single spacing)

Figure 1. Fundamental steps of the ABC algorithm

1 blank line (9-point font with single spacing)

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2057

2.1. Generating Initial Food Sources
1 blank line (10-point font with single spacing)

ABC algorithm start its optimization progres by

randomly generating an initial set of food sources which

corresponds to the possible solutions. In the ABC

algorithm, for a numerical problem that needs to

optimize D different parameters identified by lower

bound xj
min and upper bound xj

max, xij parameter of a

solution vector xi, where j ∈ {1, 2, …, D} and i ∈ {1, 2,

…, SN}, in the initial food source population consists of

SN solution vectors is formulated as given in Eq. (1)

[30-35].
11 blank line (10-point font with single spacing)

 min max min(0,1)ij j j jx x rand x x   (1)

1 blank line (10-point font with single spacing)

2.2. Sending Employed and Onlooker Bees to

Food Sources
1 blank line (10-point font with single spacing)

In ABC algorithm, each food source is associated

with only one artificial bee and this bee attempts to

produce a new food source depending on the location

infomration in its memory [30-35]. If the nectar quality

of the new food source is better than the known source,

the bee will decide to forget the previous food source

information in its mind, which is considered as a

greedy selection mechanism, to utilize it for the next

search cycle. The mathematial expression used both the

employed and onlooker bees to produce a candidate
food source in the neighborhood of the memorized

food source is given in Eq. (2).

11 blank line (10-point font with single spacing)

 ij ij ij ij kjv x x x   (2)

1 blank line (10-point font with single spacing)

ϕij is a random number between -1 and 1, k ∈ {1, 2,

…, SN} and j ∈ {1, 2, …, D} where SN and D denote

number of food sources and dimensions of the solution

vectors, respectively, are randomly chosen indexes [30,

31]. Although, the value of k is randomly determined,

it should be noticed that identical values are not

assigned to k and i indices. vij is the newly created jth

parameter for the solution vector vi whose parameters

have the same with the solution vector xi except the

randomly selected jth parameter value [30-35].
ABC algorithm accommodates the preference of a

food source by an onlooker bee with the nectar amount

of that food source. After employed bees have shared

the information kept in ther minds on the dance area,

an onlooker bee chooses a food source depending on

the probability value associated with that food source.

The probability of a food source which increases with

the nectar quality of the sources is calculated as below;

11 blank line (10-point font with single spacing)

i
i SN

jj

fitness
p

fitness



 (3)

1 blank line (10-point font with single spacing)

where fitnessi is the fitness value of the solution
presented by the food source in the position i and SN is

the number of food sources [30-35].

1 blank line (10-point font with single spacing)

2.3. Abandoning Food Sources
1 blank line (10-point font with single spacing)

In a robust search, exploitation and exploration progress

should be maintained in a balanced manner. If a food

source cannot be improved through a predetermined

number of iterations or cycles, the employed bee associated

with this food source will become a scout bee and leave the

food source to start a random search operation. The number

of cycle used to abandon a source is an improtant control

parameter of the ABC algorithm called as limit value. As in

basic ABC algorithm, one food source for which the limit

value is exceed at most when compared to the other sources

is abandoned and one employed bee becomes scout bee for
each cycle [30-35].

1 blank line (10-point font with single spacing)

3. Determining Distributed Food Source
1 blank line (10-point font with single spacing)

In distributed architectures, dividing the whole

population into subpopulations and then assigning these

subpopuations to different compute nodes are probably the
most preferred parallel computing model due to its

suitability to implement and less communication overhead.

Each subpopulation in different compute nodes is evaluated

independently and exchanges the information about the

selected individual with other subpopulations based on the

neighborhood topology [29, 36]. Neighborhood topologies

commonly used when determining the direction of the

information exchange are given in the Fig. (2) [28, 29, 36].

However, when a population based metaheuristic is

parallelized using this type of computation model, the

speedup performance of the algorithm change with the
selected neighborhood topology, number of subcolonies,

communication interval between subcolonies and types of

information being distributed between compute nodes [29].
1 blank line (9-point font with single spacing)

1 blank line (9-point font with single spacing)

Figure 2. Ring (a), ring 1+2 (b), torus (c) and lattice (d)

1 blank line (9-point font with single spacing)

 Although all of these topologies have some advantages,

deciding which solution to be exchanged shoud be main

concern for increasing performance of the algorithm
without deteriorating speedup and efficiency. In the vast

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2058

majority of these topologies, the worst solution or

solutions found in a subpopulation is replaced with the

best solution or solutions of the topological neighbor

subpopulation or neighbor subpopulations based on the

used communication schema [23, 29]. The best solutions

found in each subpopulation might be seen as a convenient

migrants. But

Table 1. Benchmark functions used in the experiments

1 blank line (9-point font with single spacing)

Function Range Formulation Global Min.

Sphere [100,100]    2

1 1

D

ii
f x x




r
  1 0f x 

r

Griewank [600,600]     2

2 1 1

1
cos 1

4000

DD i
ii i

x
f x x

i 

  
    

  
 

r  2 0f x 
r

Rosenbrock [30,30]       21 22

3 11
100 1

D

i i ii
f x x x x




   

r  3 0f x 
r

Rastrigin [5.12,5.12]     2

4 1
10cos 2 10

D

i ii
f x x x


  

r
  4 0f x 

r

Dixon-Price [10,10]      
22 2

5 1 12
1 2

D

i ii
f x x i x x 

   
r

  5 0f x 
r

Penalized [50,50]

  2 2 2 2

6 1 1

1 1

10sin () ((1) (1 10sin ())) (1) (,10,100,4)

() ,
1

(, , ,) 0, 1 (1)
4

() ,

D D

i i D i

i i

m

i i

i i i

m

i i

f x y y y y u x
D

k x a x a

u xi a k m a x a and y x

k x a x a


  

 

 
       

 

  


      
    

 
r

 6 0f x 
r

1 blank line (10-point font with single spacing)

some situations, getting the best food source from the

neighbor can not be enough to reflect the properties of

other solutions found in the same population. Another

limitation stemmed from the utilization of the best food

source is that if the local best food source replaced with

the worst food source of the neighbor subgroup in the

previous migration time can not be improved until the

next migration and then the same local best food source

is sent more than once to the neighbor subgroup,
population diversity is deteriorated. In other words,

occurance of multiple copies of the same local best

food source in the neighbor subgroup decreases the

selection probability of the other food sources due to

their relatively high fitness values [36].

In the proposed model, the food source chosen as

an emigrant between neighbor compute nodes is

determined in a different manner that the best food

source in the subpopulation is combined with randomly

chosen food source by changing the parameters of the

best food source with the more efficient parameters
taken from the randomly chosen food source [36]. By

utilizing this kind of cooperative schema, food sources

to be exchanged between neighbor subcolonies carry

more information about the situations of their colonies.

Another important aspect of the proposed model is that

population diversity in each compute node is protected

more when compared with the local worst and local

best changing approach [36]. If a population or colony

consist of a set of solution in which some of them are

the same or close to each other, probability of a major

change that helps avoiding a local minima decreases.

The working schema of the cooperative generation
method and its integration in the parallel ABC

algorithm is given in the Fig. (3) [36].

1 blank line (10-point font with single spacing)

4. Experimental Studies
1 blank line (10-point font with single spacing)

Benchmark functions that we used in order to test the

performance of the standard, ring based parallel and ring

based cooperative ABC algorithms are given in the Table 1.

The Sphere function, f1, is a convex, unimodal function

which has no local minimum excep the global one.

Griewank function, f2, has a product term and number of

local optimas increase with the dimensionality.

Rosenbrock’s Valley function, f3, is one of the most

difficult optimization problem. Its global optimum is inside
a long, narrow, parabolic shaped flat valley. Rastrigin

function, f4, is constructed from the Sphere function by

adding a cosine modulator term to produce many local

minimas. Finally, f5 and f6 are Dixon-Price and Penalized

functions, respectively.
blank line (9-point font with single spacing)

1 blank line (9-point font with single spacing)

Figure 3. Cooperative model based parallel ABC algorithm
1 blank line (9-point font with single spacing)

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2059

The size of the bee colony is chosen as 160 for the

experiments. The dimension on each function is set to

400 and the value of limit is taken equal to the number

of parameters. The proposed method is implemented in
C programming language using Open Message Passing

Interface (OpenMPI) library [37, 38]. All of our tests

have been performed on the cluster that consist of compute

nodes powered by Intel® i5 4670 processors with 2

gigabytes (GB) of random access memories (RAM). In all

experiments, the maximum number of iterations is set 2000.
Migration topology used in the parallel implementations is

ring and migration interval that controls the frequency of
Table 2. Comparison results of ABC and its parallel implementations (Mig.Per.=20) on two processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC

Mean Std. Mean Std. Mean Std.

 1f x
r

 3.229954e+03 2.473820e+03 3.266018e+04 6.084122e+03 1.034880e-01 1.150681e-01

 2f x
r

 3.535124e+01 2.409915e+01 2.897337e+02 7.884458e+01 3.432151e-02 3.217872e-02

 3f x
r

 1.807207e+05 1.491821e+05 4.000289e+07 2.388123e+07 1.313634e+03 5.630211e+02

 4f x
r

 8.502711e+02 3.983880e+01 1.216464e+03 5.327817e+01 2.335463e+01 1.294404e+01

 5f x
r

 1.044298e+04 1.038023e+04 3.446708e+06 2.190490e+06 5.391258e+02 9.035605e+01

 6f x
r

 2.381271e-01 1.640537e-01 4.363432e-01 3.346655e-01 3.299542e-05 4.592101e-05

1 blank line (10-point font with single spacing)
Table 3. Comparison results of ABC and its parallel implementations (Mig.Per.=20) on four processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC

Mean Std. Mean Std. Mean Std.

 1f x
r

 3.229954e+03 2.473820e+03 4.598622e+04 9.963033e+03 8.648452e-01 8.373927e-01

 2f x
r

 3.535124e+01 2.409915e+01 3.766516e+02 6.249915e+01 2.378765e-01 2.254262e-01

 3f x
r

 1.807207e+05 1.491821e+05 9.187267e+07 4.842134e+07 1.398775e+03 2.151771e+02

 4f x
r

 8.502711e+02 3.983880e+01 1.297987e+03 6.566077e+01 4.375327e+01 6.205766e+00

 5f x
r

 1.044298e+04 1.038023e+04 1.250928e+07 7.023127e+06 5.350509e+02 7.779291e+01

 6f x
r

 2.381271e-01 1.640537e-01 1.078099e+01 7.494439e+01 1.020629e-03 3.468314e-03

1 blank line (10-point font with single spacing)
Table 4. Comparison results of ABC and its parallel implementations (Mig.Per.=40) on two processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC

Mean Std. Mean Std. Mean Std.

 1f x
r

 3.229954e+03 2.473820e+03 2.175066e+04 6.982652e+03 1.484573e-02 5.649759e-03

 2f x
r

 3.535124e+01 2.409915e+01 2.203342e+02 5.419798e+01 1.658796e-02 8.670992e-03

 3f x
r

 1.807207e+05 1.491821e+05 3.515014e+06 3.988365e+06 1.706111e+03 8.543510e+02

 4f x
r

 8.502711e+02 3.983880e+01 1.184284e+03 4.751689e+01 7.706627e+00 1.945536e+00

 5f x
r

 1.044298e+04 1.038023e+04 2.735696e+05 2.314094e+05 5.939535e+02 5.321407e+01

 6f x
r

 2.381271e-01 1.640537e-01 1.991814e-01 1.137070e-01 1.114830e-05 3.730155e-06

1 blank line (10-point font with single spacing)
Table 5. Comparison results of ABC and its parallel implementations (Mig.Per.=40) on four processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-RingABC

Mean Std. Mean Std. Mean Std.

 1f x
r

 3.229954e+03 2.473820e+03 2.939110e+04 5.203470e+03 1.263425e-02 1.730070e-02

 2f x
r

 3.535124e+01 2.409915e+01 2.784435e+02 4.413102e+01 1.195933e-02 1.630222e-02

 3f x
r

 1.807207e+05 1.491821e+05 2.733728e+07 2.000934e+07 1.287916e+03 5.716947e+02

 4f x
r

 8.502711e+02 3.983880e+01 1.246378e+03 5.017284e+01 1.101184e+01 3.146331e+00

 5f x
r

 1.044298e+04 1.038023e+04 3.063510e+06 1.357753e+06 4.872473e+02 7.290517e+01

 6f x
r

 2.381271e-01 1.640537e-01 1.003665e-01 1.058251e-01 5.533145e-06 4.258351e-06

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2060

1 blank line (10-point font with single spacing)

the food source exchanging between subpopulations is

set two different values; 20 and 40. Each of the

experiments is repeated 20 times with different random
seeds and the mean best values and standard deviations

have been recorded. From the simulation results given

in Tables 2-5 for different number of compute nodes and

migration periods, it is clear that the mean best objective

function values obtained by the proposed cooperative
model outperform the standard ABC algorithm and ring

schema based parallel ABC algorithm. By distributing

Table 6. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=40) on two processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring

 1f x
r

 0.335517 0.190797 0.207589 1.7585 1.6163 0.8793 0.8081

 2f x
r

 9.541212 4.780286 4.865502 1.9960 1.9610 0.9980 0.9805

 3f x
r

 0.742329 0.375454 0.412685 1.9772 1.7988 0.9886 0.8994

 4f x
r

 4.167828 2.092572 2.111593 1.9917 1.9738 0.9959 0.9869

 5f x
r

 2.708567 1.364566 1.415034 1.9849 0.9925 1.9141 0.9571

 6f x
r

 8.117327 4.396277 4.510353 1.8464 0.9232 1.7997 0.8999

1 blank line (10-point font with single spacing)
Table 7. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=40) on four processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring

 1f x
r

 0.335517 0.103096 0.119990 3.2544 2.7962 0.8136 0.6991

 2f x
r

 9.541212 2.399108 2.501098 3.9770 3.8148 0.9942 0.9537

 3f x
r

 0.742329 0.203075 0.246921 3.6554 3.0063 0.9139 0.7516

 4f x
r

 4.167828 1.056093 1.097356 3.9465 3.7981 0.9866 0.9495

 5f x
r

 2.708567 0.691373 0.858954 3.9177 3.1533 0.9794 0.7883

 6f x
r

 8.117327 2.107239 2.240383 3.8521 3.6232 0.9630 0.9058

1 blank line (10-point font with single spacing)
Table 8. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=20) on two processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring

 1f x
r

 0.335517 0.206929 0.230228 1.6214 1.4573 0,8107 0,7286

 2f x
r

 9.541212 4.791809 4.951232 1.9912 1.9270 0,9956 0,9628

 3f x
r

 0.742329 0.406193 0.456462 1.8275 1.6263 0,9137 0,8131

 4f x
r

 4.167828 2.098474 2.137868 1.9861 1.9495 0,9930 0,9747

 5f x
r

 2.708567 1.390291 1.566196 1.9482 1.7294 0,9741 0,8647

 6f x
r

 8.117327 4.433858 4.550353 1.8308 1.7839 0.9154 0.8919

1 blank line (10-point font with single spacing)
Table 9. Speedup and efficiency values for Ring and Coop-Ring ABC algorithms (Mig.Per.=20) on four processors

1 blank line (9-point font with single spacing)

Functions
ABC Ring-ABC Coop-Ring ABC Speedup Efficiency

Time(s) Time(s) Time(s) ABC/Ring ABC/Coop Ring ABC Coop-Ring

 1f x
r

 0.335517 0.106680 0.141885 3.1451 2.3647 0,7862 0,5911

 2f x
r

 9.541212 2.399059 2.501293 3.9771 3.8145 0,9942 0,9536

 3f x
r

 0.742329 0.204072 0.290406 3.6376 2.5562 0,9094 0,6390

 4f x
r

 4.167828 1.073781 1.124635 3.8815 3.7059 0,9703 0,9264

 5f x
r

 2.708567 0.693667 0.926330 3.9047 2.9240 0,9761 0,7310

 6f x
r

 8.117327 2.190383 2.251761 3.7059 3.6049 0.9265 0.9012

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2061

1 blank line (10-point font with single spacig)

cooperative best food source between ring based

neighbor subcolonies, the chance of getting different

best food source which is more qualified than the
previously swapped has been increased. Another

important contribution with this approach is that

diversity in the subcolonies has been maintained with the

emigrant food sources that reflects the important properties

of the randomly chosen food source in its subcolony.
Another comparison has been made on the speedup and

efficiency values for the parallel ABC algorithms. Speedup

1 blank line (9-point font with single spacing)

Figure 3. Convergence charactertics of the serial ABC algorithm and its ring schema based parallel implementations on two compute
nodes for f1 (a), f2 (b), f3 (c), f4 (d), f5 (e) and f6 (f) functions

1 blank line (9-point font with single spacing)

and efficiency are commonly used metrics to measure
the performance of the parallel algorithms. Speedup

value is the ratio of sequential execution time to the

parallel execution time and efficiency value is the ratio

of speedup and the number of processors used.

Optimum value of the speedup metric is equal to the

number of processors and the optimum value of the

efficiency is equal to 1. In Tables 6-9, average total

running times over 20 different runs, speedup and

efficiency value are given for different number of

nodes and periods. In the calculation of the average

running time for parallel ABC algorithms, total elapsed

time for the slowest processor has been used. Since the
generation of the cooperative food source require a

comparison between all parameters of the local best

food source and a randomly determined food source for
each subcolony, the speedup and efficiency values of the

Coop-Ring ABC algorithm lag slighlty behind the Ring-

ABC algorithm especially for the functions that are less

compute expensive. The effect of the proposed schema on

the convergence speed of the algorithm can bee seen in the

Figure 3 and Figure 4. When these figures are examined, all

of them present a remarkable difference between Coop-

Ring ABC and other implementations. Qualities of the best

solutions are significantly increased with the start of the

distribution of the cooperative food sources, that also leads

to a fast convergence to the global minima of the problem,

and continues to be improved with respect to the early
migrations. While the effect of the proposed model is

causing a gradual and fast convergence to the global

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2062

minima within the first quarter of the total cycles for

the f1, f2 and f4 functions, solution quality is more

quickly improved within the early cycles and then

convergence to the minima is stabilized as the number
of cylces increases for the f3, f5 and f6 functions. From

the graphics given in Figure 2 and Figure 3, it is also

clear that low values of the migration interval increases the

convergence speed of Coop-Ring ABC algorithm by adding

furher computation overhead. However, this type of quick

convergence provided by the high frequency of migration
does not contribute to the improvement of the best solutions

in the other subpopulations.

1 blank line (9-point font with single spacing)

Figure 1. Convergence characteristics of the serial ABC algorithm and its ring schema based parallel implementations on four
compute nodes for f1 (a), f2 (b), f3 (c), f4 (d), f5 (e) and f6 (f) functions

1 blank line (9-point font with single spacing)

5. Conclusions
1 blank line (10-point font with single spacing)

In this paper, a new creation schema for the emigrant

food source between neighbor subcolonies is presented

and performance effect of the proposed approach in

terms of solution quality, convergence speed and

running time has been investigated. Experimental
studies showed that the new definition significantly

improved the quality of the final solutions and

convergence performance of parallel ABC algorithm

with the ring migration topology when compared to the

standard sequential ABC algorithm and ring based

parallel ABC algorithm in which local best food

sources for each subcolony are chosen to being exchanged

with the local worst food sources. A future development of

this work can focus on adapting the proposed schema to

other migration topologies with different number of

compute nodes and migration periods and its

implementation on combinatorial optimization problems
that require more computational time due to the necessity of

the constraints.

6. References
1 blank line (10-point font with single spacing)
[1] D. Karaboga, "An idea based on bee swarm for numerical

optimization", Tech. Rep., Turkiye, 2006.

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2063

[2] D. Karaboga, B. Akay, "A survey: algorithms simulating
bee swarm intelligence", Artif Intell Rev, vol. 31, no. 1,
pp. 68-85, 2009.

[3] J. C. Bansal, H. Sharma, S.S. Jadon "Artificial bee
colony algorithm: a survey", Int J Advanced Intelligence,
vol. 5, pp. 123-159, 2013.

[4] A. L. Bolaji, A. T. Khader, M. A. Al-betar, M. A.
Awadallah, "Artificial bee colony algorithm, its variants

and applications: a survey", Journal of Theorical and
Applied Information Technology, vol. 47, no. 2, pp. 434-
459, 2013.

[5] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, "A
comprehensive survey: artificial bee colony algorithm
and application", Artif Intell Rev, vol. 42, no. 1, pp. 21-
57, 2014.

[6] B. Akay, D. Karaboga, "A survey on the applications of

the artificial bee colony in signal, image and video
processing", Signal, Image and Video P, vol. 9, pp. 967-
990, 2015.

[7] D. Karaboga, B. Akay, "Artificial bee colony algorithm
for training feed forward neural networks" in IEEE 15th
Signal Processing and Communication Applications
Conference, Eskişehir, 2007, pp. 1-4.

[8] D. Karaboga, C. Ozturk, "Neural network training by

artificial bee colony algorithm on pattern classification",
Neural Network World, vol. 19, pp. 687-697, 2009.

[9] D. Karaboga, S. Okdem, C. Ozturk, "Cluster based
wireless sensor network routing using artificial bee
colony algorithm", Wirel Netw, vol. 18, pp. 847-860,
2011.

[10] D. Karaboga, C. Ozturk, B. Gorkemli, "Probabilistic
dynamic deployment of wireless sensor networks by

artificial bee colony algorithm", Sensors, vol. 11, no. 6,
pp. 6056-6066, 2011.

[11] X. Lei, J. Sun, X. Xu, L. Guo, "Artificial bee colony
algorithm for solving multiple sequence alignment", in
IEEE 5th International Conference on Bio-Inspired
Computing: Theories and Applications, Changsha, 2010,
pp. 337-342.

[12] S. Aslan, C. Ozturk, "Alignment of biological sequences
by discrete artificial bee colony algorithm" in IEEE 23th

Signal Processing and Communications Applications
Conference, Malatya, 2015, pp. 678-681.

[13] C. M. V. Benitez, H.S. Lopes, "Parallel artificial bee
colony approaches for protein structure prediction using
3dhp-sc model", Intelligent Distributed Computing IV,
Springer-Berlin-Heidelber, pp. 255-264, 2010.

[14] E. Hancer, C. Ozturk, D. Karaboga, "Extraction of brain
tumors from mri images with artificial bee colony

algorithm based segmentation methodology", in IEEE 8th
International Conferece on Electrical and Electronics
Engineering, Bursa, 2013, pp. 516-520.

[15] E. Hancer, C. Ozturk, D. Karaboga, "Color image
quantization: a short review and an application with
artificial bee colony algorithm", Informatica, vol. 25, no.
3, pp. 483-503, 2014.

[16] D. Karaboga, B. Akay, "A comparative study of artificial

bee colony algorithm", Appl Math Comput, vol. 214, pp.
108-132, 2009.

[17] C. Zhang, D. Ouyang, J. Ning, "An artificial bee colony
approach for clustering", Expert Syst Appl, vol. 37, pp.
4761-4767, 2010.

[18] G. Zhu, S. Kwong, "Gbest-guided artificial bee colony
algorithm for numerical function optimization", Appl
Math Comput, vol. 217, no. 7, pp. 3166-3173, 2010.

[19] D. Karaboga, B. Akay, "A modified artificial bee colony
algorithm for constrained optimization problems", Appl
Soft Comput, vol. 11, pp. 431-441, 2011.

[20] W. Gao, S. Liu, L. Huang, "A global best artificial bee colony
algorithm for global optimization", J Comput Appl Math, vol.
236, pp. 2741-2753, 2012.

[21] D. Karaboga, B. Gorkemli, "A quick artificial bee colony
algorithm and its performance on optimization problems",
Appl Soft Comput, vol. 23, pp. 227-238, 2014.

[22] H. Narasimhan, "Parallel artificial bee colony algorithm", in
World Congress on Nature & Biologically Inspired
Computing, Coimbatore, 2009, pp. 306-311.

[23] A. Banharnsakun, T. Achalakul, B. Sirinaovakul, "Artificial
bee colony algorithm on distributed environments", in Second
World Congress on Nature & Biologically Inspired
Computing, 2010, Fukuoka, pp. 13-18.

[24] R. Luo, T. Pan, P. Tsai, J. Pan, "Parallelized artificial bee

colony algorithm with ripple-communication strategy", in 4th
International Conference on Genetic and Evolutionary
Computing, 2010, Shenzen, pp. 350-353.

[25] M. Subotic, M. Tuba, N. Stanarevic, "Parallelization of the
artificial bee colony algorithm", in Proceedings of the 11th
WSEAS Internation Conference on Neural Networks and 11th
WSEAS International Conference on Evolutionary
Computing, 2010, Wisconsin, pp. 191-196.

[26] M. Subotic, M. Tuba, N. Stanarevic, "Difference approaches

in parallelization of the artificial bee colony algorithm",
International Journal of Mathematical Models and Methods in
Applied Sciences, vol. 5, pp. 755-762, 2011.

[27] R. S. Parpinelli, C. M. V. Benitez, H.S. Lopes, "Parallel
approaches for the artificial bee colony algorithm", in
Handbook of Swarm Intelligence, Springer Berlin Heidelberg,
2011, pp. 329-345.

[28] A. Basturk, R. Akay, "Parallel Implementation of

synchronous type artificial bee colony algorithm for global
optimization", J Optim Theory Appl, vol. 155, pp. 1095-
1104, 2012.

[29] A. Basturk, R. Akay, "Performance analysis of the coarse-
grained parallel model of the artificial bee colony algorithm",
Inform Sciences, vol. 253, pp. 34-55, 2013.

[30] D. Karaboga, B. Akay, "A Powerful and efficient algorithm
for numerical function optimization: artificial bee colony

algorithm", Journal of Global Optimization, vol. 39, pp. 459-
471, 2007.

[31] D. Karaboga, B. Akay, "On the performance of artificial bee
colony algorithm", Applied Soft Computing Journal, vol. 8,
pp. 687-697, 2008.

[32] B. Akay, D. Karaboga, "Artificial bee colony algorithm for
large-scale problems and engineering design optimization",
Journal of Intelligent Manufacturing, vol. 23, no. 4, pp. 1001-

1014, 2012.
[33] B. Akay, "Synchronous and asynchronous Pareto-based

multi-objective artificial bee colony algorithms", Journal of
Global Optimization, vol. 57, no. 2, pp. 415-445, 2013.

[34] F. Koylu, M. Celik, D. Karaboga, "Performance analysis of
ABCMiner algorithm with different objective functions", in
IEEE 21th Signal Processing and Communication
Applications Conference, Haspolat, 2013, pp. 1-5.

[35] M. Celik, F. Koylu, D. Karaboga, "CoABCMiner: An

algorithm for cooperative fule classification system based on
artificial bee colony algorithm", International Journal on
Artificial Intelligence Tools, vol. 24, pp. 1-40, 2015.

[36] D. Karaboga, S. Aslan, "A new emigrant creation strategy for
parallel artificial bee colony algorithm", in IEEE 9th
International Conference on Electrical and Electronics,
Bursa, 2015, pp. 689-694.

[37] A Grama, G. Karypis, V. Kumar, A. Gupda, "Introduction to

parallel computing", Addison Wesley, Harlow, England,
2003.

[38] P. Pacheco, "An introduction to parallel programming",
Morgan Kaufmann, Burlington, USA, 2011.

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2064

Dervis Karaboga received M.Sc. degree in 1988 from the
Department of Electronics and Communication Engineering,
Istanbul Technical University, Turkey and the Ph.D. degree in
1994 from Systems Engineering Department, University of
Wales, College of Cardiff, United Kingdom. He is currently
professor at the Department of Computer Engineering,

Erciyes University, Kayseri, Turkey. His research areas
include optimization, fuzzy systems, neural networks and
engineering applications of intelligent methods.

Selcuk Aslan received B.Sc. and M.Sc. degree in the Computer
Engineering from Erciyes University, Department of Computer
Engineering, Kayseri, Turkey in 2011 and 2013, respectively. He
is currently Ph.D. candidate in Erciyes University, Department of
Computer Engineering, Kayseri, Turkey. His research interests
include combinatorial optimization in bioinformatics, parallel and

distributed computation.

Dervis KARABOGA and Selcuk ASLAN / IU-JEEE Vol. 16(2), (2016), 2055-2064

2065

