

Received on: 28.02.2016

Accepted on: 12.04.2016

 Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

1 blank line (12-point font with single spacing)

Shortest Path Algorithms For Petri Nets
1 blank line (12-point font with single spacing)

Hanife APAYDIN ÖZKAN

2 blank line (12-point font with single spacing)
Department of Electrical and Electronics Engineering, Anadolu University, Eskişehir, Turkey

hapaydin1@anadolu.edu.tr

1 blank line (12-point font with single spacing)

Abstract: Petri net is a mathematical and graphical tool for modeling and analysing discrete event systems. This paper
focuses on a driving Petri net system from a given initial state to a desired state via minimum number of operations,

that is, through the shortest transition sequence which is called as the shortest path problem. Thereby, two algorithms

are developed to obtain the shortest path for Petri nets. The first algorithm, namely Forward Algorithm, uses integer

programming approach and makes the process start from the initial state towards the desired state. The second

algorithm, namely Backward Algorithm, uses most promising state to generate the shortest path and makes the process

start from the desired state back to the initial state. Proposed algorithms do not deal with the reachability tree or graph

of the net under analysis and use memory only for storing the obtained paths unlike the approaches based on the

reachability tree. Moreover, the algorithms can be applied to general Petri nets without any restriction. Simulation

results demonstrate that the proposed algorithms reduces the computational time and complexity significantly.

Keywords: Petri net, Shortest path, Algorithms.

1 blank line using 12-point font with single spacing

1. Introduction
1 blank line (10-point font with single spacing)

Petri nets are frequently used for modeling and analysing

Discrete Event Systems such as communication

protocols, manufacturing systems, transport systems and

others [1,2,3,4].

 In most cases, it is interested in driving a system from
a given initial state to a desired state, and obtaining the

required operation sequence. For minimizing the cost, it

is aimed to reach the desired state by minimum number

of operations. This problem is called as shortest path

problem for Petri nets and aims to compute the shortest

transition sequence, i.e., transition sequence with the

minimum number of transitions, firing which from the

initial state drives the system to the desired state.

 Reachability analysis techniques and shortest path

problems are strictly connected, since the reachability

analysis techniques are utilized to solve shortest path

problems. The main reachability analysis technique of
Petri nets is the reachability tree (or reachability graph)

approach which is obtained by enumerating all reachable

states. But, constructing the reachability tree and

investigating the paths towards a desired state would be

rather difficult task. Many works have been presented on

this subject. The author in [7] deals the shortest path

problem directly and the length of the path is obtained for

some subclasses of Petri nets in that work. But the

transition sequence of the corresponding path is not

referred. In [5], Petri nets without transition invariants are

studied, while only strictly monotone Petri nets are
considered in [6]. In [3], reachability condition of some

subclasses of Petri nets is exhibited. The authors of [7]

propose a method to generate a reduced reachability tree

for a class of unbounded generalized Petri nets. The work

in [8] proposes a shortest path based on ant colony

algorithm, while in [9] a Petri net based shortest path

algorithm is presented. Although these works upgrade the

reachabiliy analysis techniques and propose new

perspectives for the solution of path problems for some

subclasses, their complexity and expansions are still

open.

 In this work, two algorithms are developed to obtain

the shortest path leading the system from the given initial
state to the desired state. The first algorithm, namely

Forward Algorithm, uses integer programming approach

and makes the process start from the initial state towards

the desired state. The second algorithm, namely

Backward Algorithm, which is the improved version of

the one presented in [10] by the author, uses the most

promising state to generate the shortest path and makes

the process start from the desired state back to the initial

state.

 The main contributions of this paper are as follows:

The proposed algorithms do not deal with the reachability

tree or reachability graph of the net under analysis and
use memory only for storing the obtained path as distinct

from the approaches based on reachability tree.

Moreover, developed algorithms can be applied to

general Petri nets without any restriction. Simulation

results demonstrate that the proposed algorithms reduces

the computational time and complexity, significantly.

1 blank

 line (10-point font with single spacing)

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2074

2. Petri Nets
1 blank line (10-point font with single spacing)

This section provides a background on Petri nets

related to the discussion of this work and presents an

introductory example. The readers are recommended to

see [2,3] for more detailed information.

Petri net is a tuple , , ,G P T N O= where P is the set

of places, T is the set of transitions, : P T Z N is the

input matrix that specifies the weights of arcs directed

from places to transitions, : P T Z O is the output

matrix that specifies the weights of arcs directed from

transitions to places. Here, Z  is the set of non-negative

integer numbers.

: P Zm is a state vector or marking vector

(shortly, state or marking, respectively), ()m p indicates

the number of tokens assigned by marking m to place

p P , and the initial state of the system is denoted by

0m . When an initial state is introduced to the net model

G , the model is called as Petri net system and noted by

0(,)G m

 A transition t T is enabled if and only if

11 blank line (10-point font with single spacing)

() ()m p N p,t p P   (1)

11 blank line (10-point font with single spacing)

which is called as enability condition. The set of

transitions which are enabled at a marking m is denoted

by (,)E G m .

A transition sequence g is defined as firing sequence

of enabled transitions
1 2 kt t tK where

1 2, , kt t t TK . A

marking m' is said to reachable from m if there exists a

transition sequence 1 2, , 1 ,k 1,2,i i kt t i T   K Kg

which can be fired starting from m (i.e., the first

transition of the sequence fires at m) and yielding 'm

(i.e., the final transition of the sequence yields 'm)

according to the following so-called state equation:

11 blank line (10-point font with single spacing)

' g  m m C  (2)

11 blank line (10-point font with single spacing)

where, C = O - N denotes the incidence matrix,

:g T Z  denotes the firing count vector whose jth

element (represented by [g]j) indicates how many times

tj is fired in the transition sequence g. Besides,

'gm m denotes that the marking m' is reachable

from a marking m by firing the transition sequence g.

The set denoted by R(,)G m is the set of all markings

reachable from m . The set of all reachable markings

from 0m is called reachability set of Petri net and

represented by 0R(,)G m .

 If 0 y such that 0 y C then, y is called as P-

semiflow of the net and every marking m reachable

from 0m satisfies:

11 blank line (10-point font with single spacing)

0  y m y m (3)

1 blank line (10-point font with single spacing)

This provides a token balance law which is necessary

for marking m to be reachable from
0m , thus for

satisfying
0R(,)Gm m .

 For a given Petri net system, as many new markings

as the number of the enabled transitions can be obtained
from the initial marking. From each new marking, more

new markings can be reached until repeated nodes are

encountered “old” or no transitions are enabled “dead-

end”. This process yields tree representation of the

evaluation of the system which is called as reachability

tree. In the reachability tree each node represents a

marking and the firing of a transition transforming one

marking to another is represented by arcs.

A reachability graph of a PN is a directed graph G =

(
0R(,)G m , E), where e E represents a directed arc

from a class of markings to the other class of markings.

The reachability graph demonstrates a better performance

than the reachability tree [11].
1 blank line (9-point font with single spacing)

Example 1:

t2

t4

t6

t1

t5

p5

p6

p7

p4

p1

p2

p3

t3

1 blank line (9-point font with single spacing)

Figure 1. A simple Petri net model

1 blank line (10-point font with single spacing)

For the Petri net system in Figure 1, the initial marking is

0m =[1 0 0 1 1 0 0]T .

The set of places is  1 2 3 4 5 6 7, , , , , ,P p p p p p p p and the set

of transitions is  1 2 3 4 5 6, , , , ,T t t t t t t ,respectively. Input and

output matrices of this Petri net model are as follows:

11 blank line (10-point font with single spacing)

11 blank line (10-point font with single spacing)

Note that, P-semiflows of this net are y1=[1 1 1 0 0 0 0] T,

y2 =[0 0 1 1 0 0 1]T and y3=[0 0 0 0 1 1 1]T. The reachability

graph of the net is given in Figure 2.

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2075

[1 0 0 1 1 0 0]
T

[0 1 0 1 1 0 0]
T
 [1 0 0 1 0 1 0]

T

[0 1 0 1 0 1 0]
T[0 0 1 0 1 0 0]

T
[1 0 0 0 0 0 1]

T

[0 0 1 0 0 1 0]
T

[0 1 0 0 0 0 1]
T

t2

t4

t6

t1

t5

t3

t1
t4

t3

t6

t4

t2 t5

t2

1

blank line (9-point font with single spacing)
Figure 2. Reachability graph of the Petri net in Figure 1.

1 blank line (10-point font with single spacing)

By using the reachability tree, it is possible to obtain

all reachable markings and to get corresponding

transition sequences to reach these markings. For

example, it is clear from the tree that firing the transition

sequence
4 5t tg from

0
m drives the system to the

marking [1 0 0 0 0 0 1]T.

Unfortunatelly, for Petri nets with great number of

reachable markings, using reachability graph to find the

paths driving the system from the initial marking to

desired marking is an exhausting way.

1 blank line (10-point font with single spacing)

3. Shortest Path Algorithms
1 blank line (10-point font with single spacing)

In this work, the main goal is to develop efficient

techniques to solve shortest path problem of general Petri

nets. Firstly, we give a formal shortest path definition for

Petri nets.

Definition 1: Let (G ,
0

m) be a Petri net system and

0R(,)d Gm m be a desired marking. The transition-

marking sequence leading
0

m to dm while including

minimum number of transition firing is called as shortest

path.

In order to obtain the shortest path for a Petri net

system, an exhausting approach may be composing

reachability tree as considered in many works in the

literature [9,10,11] . But this is time consuming method
especially for big sized Petri nets. In this work, two

algorithms, namely Forward Algorithm and Backward

Algorithm, will be introduced to determine the shortest

path driving the system from
0

m to dm without

constructing a reachability tree.
1 blank line (9-point font with single spacing)

3.1. Forward Algorithm
1 blank line (10-point font with single spacing)

In the Forward Algorithm, for a Petri net system

(G ,
0

m) the shortest transition sequence driving the

system from 0m to a desired marking 0R(,)d Gm m is

attained by obtaining the fired transitions one by one

starting from 0m towards dm .

Let g be firing count vector of transition sequence g

driving the system from the given initial marking to the

desired target marking, i..e. 0 dg
m m . This vector

can be calculated by solving the state equation

d g  
0

m m C  for g with given 0m and dm by using

an integer programming method.

Integer Linear Programming (ILP) deals with

problems that same as linear programming (LP) with the

one additional restriction that the variables must have
integer values. Compared to LP , ILP has additional

constraints. An ILP begins with an LP, and adds the

requirement that some or all of the variables take on

integer values. This addition increases the number of

problems that can be modeled, while making the models

more difficult to solve. For solving ILP, the first step is to

solve its LP relaxation, which is obtained by dropping the

requirement that all variables must be integers. If all

variables are integers in the solution of this relaxation,

the solution of ILP has been found. Otherwise, methods

like Branch and Bound (such as, Dakin’s and Dijkstra
etc,) can be used to find an integer solution (see [12] for

details) which may increase the computational time

slightly.

In the Forward algorithm the first step is to find firing

count vector g driving the system from
0

m to
dm by

the following ILP:

 

_

0

1,2, ,

g

d g

g

g gi

Minimize

Subject to

Z i

  



      K

m m C







 

 (4)

 After determining g which provides the information

of transitions and minimum number of times they should

be fired to drive the system from
0

m to dm , it is time to

find their firing order. Here, it is proposed to build up a

branch structure in order to find this order. Forward

Algorithm generates node couples (m ,
g

)m) which

consists of the marking m and
g

)m which is the set of

ordered transition sequence driving the system from
0

m

to m . This process starts with the root couple of

(
0

m ,) and labeling it as “new”. From each new node

couple (m , g

)m), more new node couples are obtained by

firing the enabled transitions which also belong to g but

not fired to reach the marking m of the considered node

couple as the same number of times as in g . The set of

these enabled transitions at m , i.e.
enT
)

m , is obtained by

((,))enT E G 
))m

g
m 

)m

g
 , where

)
g

 is the set of

transitions that includes the transitions as the same

number of times as in g . When, a node couple of dm is

obtained, the algorithm terminates. Note that if the

algorithm continues to process after obtaining dm , more

than one shortest path can be obtained.

Forward Algorithm

Input:  0, , dG m m

Solve

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2076

 

0

0

1,2, ,

d

i

Minimize

Z i

  



      K

g

g

g

g g

m m C







 

Label (m ,
)m

g
) as “new”

do-while  “new” node couple

 Select a “new” (m ,
)m

g
)

 Delete the label of (m ,
)m

g
)

 ((,))enT E G 
))m

g
m 

)m

g


 for i=1:
enT
)

m

 en
i

T     

)
m

m' m C

 en
i

T   

)))m' m m

g g
 

 Introduce (m' ,
)m'

g
) as a “new” node couple.

 if dm' m

 Return (m' ,
)m'

g
)

 Exit

 end-if

 end-for

end-while

Example 2: Let us apply Forward Algorithm to the Petri

net in Example 1. Let the initial and desired markings are

0m = [1 0 0 1 1 0 0]T and dm =[0 1 0 0 0 0 1]T ,

respectively. The solution of ILP (3) is obtained via its

LP relaxation as g
 =[1 0 0 1 0 1]T, thus each of

transitions 1t , 4t and 5t should be fired at once in order to

drive the system from 0m to dm . The first node couple

of the branch structure is (0m ,). The set of enabled

transitions which also belong to g
 but not fired to reach

the marking m of the considered node couple as the

same number of times as in g is

0

enT
)

m
=

1 4 1 4 5({ , } { , , })t t t t t 1 4{ , }t t  . From 0m , firing

the transition 1t yields 1m =[0 1 0 1 1 0 0]T, while firing

the transition 4t yields 2m =[1 0 0 1 0 1 0]T . Hence, the

new node couples are (1m , { 1t }) for which
enT
)

1m ={ 4t }

and (2m , { 4t }) for which
enT
)

2m ={ 5t } (see Figure 3).

Firing transition 4t from 1m of (1m , { 1t }) yields

3m =[0 1 0 1 1 0 0]T and firing transition 5t from 2m of

(2m , { 4t }) yields 4m =[1 0 0 0 0 0 1]T. Hence, the new

node couples are (3m , { 1t , 4t }) for which enT
)

m ={ 5t }

and (4m , { 4t , 5t }) for which enT
)

m ={ 1t } (see Figure 4).

By firing the transition 1t from 4m of (4m , { 4t , 5t }),

dm is reached. Finally, the last node couple of the

algorithm is obtained as ([0 1 0 0 0 0 1]T, { 4t , 5t , 1t })

(which represents the path
0

54 1
d

t t t
m m) and the

algorithm terminates, with the following shortest

path:
0m = [1 0 0 1 1 0 0]T 4t [1 0 0 1 0 1 0]T 5t [1 0 0

0 0 1]T 1t
dm = [0 1 0 0 0 0 1]T (see Figure 5).

 Note that if the algorithm continues to evaluate, after

dm is reached, an alternative shortest path would be

obtained (see Figure 6).

([1 0 0 1 1 0 0]
T
, 0)

t4t1

([0 1 0 1 1 0 0]
T
 , {t1}) [1 0 0 1 0 1 0]

T
, {t4 })(

new new

1 blank line (9-point font with single spacing)

Figure 3. The first step of the Forward Algorithm

1 blank line (10-point font with single spacing

([0 1 0 1 0 1 0]
T
 , {t1,t4 })

t5t4

([1 0 0 1 1 0 0]
T
, 0)

t4t1

([0 1 0 1 1 0 0]
T
 , {t1}) [1 0 0 1 0 1 0]

T
, {t4})(

([1 0 0 0 0 0 1]
T

, {t4,t5})
new new

 1 blank line (9-point font with single spacing)
Figure 4. The second step of the Forward Algorithm

1 blank line (10-point font with single spacing)

([0 1 0 1 0 1 0]
T
 , {t1,t4 })

t5t4

([1 0 0 1 1 0 0]
T
, 0)

t4t1

([0 1 0 1 1 0 0]
T
 , {t1 }) [1 0 0 1 0 1 0]

T
, {t4})(

([1 0 0 0 0 0 1]
T

 , {t4,t5})
new

([0 1 0 0 0 0 1]
T

,{t4,t5,t1})

t1

1 blank line (9-point font with single spacing)

Figure 5. The final step of the Forward Algorithm

1 blank line (10-point font with single spacing)

([0 1 0 1 0 1 0]
T
 , {t1,t4 })

t5t4

([1 0 0 1 1 0 0]
T
, 0)

t4t1

([0 1 0 1 1 0 0]
T
 , {t1}) [1 0 0 1 0 1 0]

T
, {t4})(

([1 0 0 0 0 0 1]
T

 , {t4,t5})

([0 1 0 0 0 0 1]
T
 ,{t1,t4,t5 })

t5

1 blank line (9-point font with single spacing)

Figure 6. An alternative shortest path for Example 2

1 blank line (10-point font with single spacing)

3.2. Backward Algorithm
1 blank line (10-point font with single spacing)

In the Backward Algorithm, for a Petri net system

(G ,
0

m) the transition sequence driving the system from

0m to 0R(,)d Gm m is attained by obtaining the fired

transitions one by one starting from
dm back to 0m .

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2077

If a transition jt T is fired at a marking m yielding

m' , element-wise representation of the state equation

can be written as

11 blank line (10-point font with single spacing)

       , ,i i i j i jp p p t p t  m' m O N ip P  (5)

11 blank line (10-point font with single spacing)

yielding

11 blank line (10-point font with single spacing)

       , ,i i j i i jp p t p p t  m' O m N
ip P  (6)

11 blank line (10-point font with single spacing

Necessary condition for transition jt to be enabled at a

marking m yielding m' can be reformulated in terms of

m' by combining equation (5) and enabling condition

(1) together:

11 blank line (10-point font with single spacing)

   , 0i i jp p t m' O i jp t  (7)

11 blank line (10-point font with single spacing)
where jt denotes the set of all places from which there

exists a directed arc to jt , i.e.,  (p,) 1j jt p N t   .

 From a marking 0R(,)Gm m , firing any transition

jt T which satisfies the condition (6) may yield m' .

Corresponding m is obtained by solving the following

equation system:

11 blank line (10-point font with single spacing)

   :, :, (a)

' (b)

j j

T T

t t 



m m' - O N

y m y m
 (8)

11 blank line (10-point font with single spacing)

where equation (7)(a) is the state equation and equation

(7)(b) corresponds to reachability of m from
0

m , i.e.

0R(,)Gm m [2].

 Backward Algorithm is based on generating couples

(,)g

)m
m  which consists of a marking m and

g

)m which

is the set of ordered transition sequence driving the

system from m to dm . The marking of each node

couple (,)g

)m
m  is definitely obtained by firing

transitions
m

t T
)

 from preceding marking 'm , such

that tm' m . Transitions of
m

T
)

are obtained

according to the condition (7) and the preceding
markings are obtained by equation system in (8). Each

node couple obtained by this way is introduced as new.

The most promising new node couple, thus including

closest marking to 0m , is introduced as path, while the

other new node couples are deleted. The algorithm starts

with the node couple of (,d m) and introducing it as

path. If the path includes 0m the algorithm terminates,

otherwise preceding new node couples are obtained.
1 blank line (9-point font with single spacing)

Backward Algorithmblank line (9-point font with single

Input:  0, , dG m m

Label (,d m) as path

do-while 0m m

 New=

 Take the node couple path (m' ,
g

)m)

      , 0m

i i it p p t p t   
)
T = m' O

 for i=1: m
)
T

 Solve the following equation system for m

   :, :,

'

m m

i i

T T

       



))
m m' - O T N T

y m y m

 m

g
i

    

)))m m'

g
T

 Introduce (,)g

)m
m  as a new node couple.

 end-for

 Select the most promising node couple (m ,
g

)m)

 through the new node couples via:

 st.  0 0min
New

  
m

m m m m

 Introduce (m ,
g

)m) as path

 Delete new nodes

 if 0m m

 Return (0m , 0

g

)m )

 Exit

 end-if

end-while

Example 3: Let us consider the PN system given in

Example 2, again with the same initial and desired

markings, i.e., 0m = [1 0 0 1 1 0 0]T and dm =[0 1 0 0 0 0

1]T. Backward algorithm starts with the node couple (dm

, ) and introducing it as path. Transitions firing which

may yield dm are 1t and 5t and the corresponding

preceding markings are m1= [1 0 0 1 0 1 0]T (i.e.,

1m 1t dm) and 2m =[0 1 0 1 0 1 0]T (i.e., 2m 5t

dm), respectively. Hence, new node couples are (1m , 1t)

and (2m , 5t) (see Figure 7). Through these new node

couples the most promising one is (2m , 5t) which is

introduced as path and the other new node couple is

deleted. Transitions firing which may yield 2m of (2m ,

5t) are 4t and 2t with the corresponding preceding

markings are 3m =[0 1 0 1 1 0 0]T and 4m = [1 0 0 1 0 1 0]T ,

respectively. Hence the new node couples are obtained as

(3m , 4 5t t) and (4m , 2 5t t) (see Figure 8). Among them,

(4m , 2 5t t) is the most promising one through these new

node couples and introduced as path while the other one

is deleted (see Figure 9). The transition, firing which

yields 4m of (4m , 2 5t t) is
4t with the preceding marking

0m =[0 1 0 1 1 0 0]T. Hence the last node couple is

(0m , 4 2 5t t t) presenting the following shortest path: 0m = [0

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2078

1 0 1 1 0 0]T 4t [1 0 0 1 0 1 0]T 2t [0 1 0 1 0 1

0]T 5t
dm = [0 1 0 0 0 0 1]T (See Figure 10)

([0 1 0 0 0 0 1]
T
 ,)

t1t5

path



([0 1 0 1 0 1 0]
T
 , t5) ([1 0 0 0 0 0 1]

T
 , t1)

new new

1 blank line (9-point font with single spacing)

Figure 7. The second step of the Backward Algorithm

1 blank line (10-poi

nt font with single spacing)

t4 t2

([0 1 0 1 0 1 0]
T
 , {t5}) ([1 0 0 0 0 0 1]

T
 , {t1})

path

([0 1 0 0 0 0 1]
T
 ,)

t5

path



t1

([0 1 0 1 1 0 0]
T
 , {t4,t5}) [1 0 0 1 0 1 0]

T
, {t2,t5})(

new new

 1 blank line (9-point font with single spacing)
Figure 8. The fourth step of the Backward Algorithm
1 blank line (10-point font with single spacing)

path

t4 t2

([0 1 0 1 0 1 0]
T
 , {t5}) ([1 0 0 0 0 0 1]

T
 , {t1})

path

([0 1 0 0 0 0 1]
T
 ,)

t5

path



t1

([0 1 0 1 1 0 0]
T
 , {t4,t5}) [1 0 0 1 0 1 0]

T
, {t2,t5})(

 1 blank line (9-point font with single spacing)
Figure 9. The third step of the Backward Algorithm

1 blank line (10-point font with single spacing)

t4 t2

path

([0 1 0 0 0 0 1]
T
 ,)

t5

path



t1

([0 1 0 1 1 0 0]
T
 , {t4,t5}) [1 0 0 1 0 1 0]

T
, {t2,t5})(

path

([1 0 0 1 1 0 0]
T
,{t4,t2,t5)

t4

([0 1 0 1 1 0 0]
T
 , {t5}) [1 0 0 1 0 1 0]

T
, {t1})(

path

1 blank line (9-point font with single spacing)

Figure 10. The final step of the Backward Algorithm

4. Case Study
1 blank line (10-point font with single spacing)

p4
t4

2

p6

p1

p2

p3

p5

p7

t5

t1

t2

t3

t6

2

4

2

3

1 blank line (9-point font with single spacing)

Figure 11. A Petri net model of a table factory system

1 blank line (10-point font with single spacing)

Let us consider the Petri net system sketched in Figure

11 (taken from [13]) which models a table factory

system.This system, consists of two different machines to

make table-legs, a new one which produces two legs at a

time, and the old one, which makes legs one by one (1t

and 2t), a machine to produce the table boards (3t), a

machine to assemble four legs and a board (5t), a big

painting line which paints two tables at once (6t). More

unpainted tables are sent (4t) from another factory. The

places 31 2 ,,p p p and
4

p are work orders; while 5p , 6p

and 7p are devoted to the storage of table-legs, boards

and unpainted tables, respectively (see [17] for details).

Suppose in the initial marking 0 1 0 4() () 2m p m p  ,

0 2 0 3 0 5() () () 1m p m p m p   and
0 6 0 7(p) (p) 0m m  . For

the final state, work orders are desired

as 1 2 3 4() () () () 1d d d dm p m p m p m p    ; while the

number of stored table legs is 6, i.e. 5() 6dm p  . It is

also desired to keep the number of stored boards

7() 1dm p  and store 1 unpainted table, i.e., 6() 1dm p  .

For this net 0R(,)G m has 294 marking vectors and

constructing the reachability tree of the net takes 33.2

sec. by using the Matlab toolbox “pntool” (on a PC with

Intel(R) Core(TM) i7 2640M CPU @ 2.8GHz).Searching

the shortest path from 0m to dm through this tree takes

4.1 sec. additionally. For the same shortest path, LP

relaxation of ILP results in integer solution and the
proposed Forward Algorithm terminates with the node

couple ([1 1 1 1 6 1 0]T,{ 4t , 2t , 4t , 4t , 6t , 1t , 3t }) in 3.4

sec; while the Backward Algorithm terminates with ([1 1

1 1 6 1 0]T,{ 4t , 3t , 4t , 4t , 6t , 1t , 2t }) in 3.5 sec. (see Figure

12). The proposed algorithms reduce the computational

time about 5% of the time consumed by conventional

reachability tree methods.

Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079

2079

[2 1 1 2 1 0 0]
T

[0 1 1 2 3 0 0]
T

[0 0 1 2 4 0 0]
T

[0 0 1 1 4 0 1]
T

[0 0 1 0 4 0 2]
T

[3 1 2 1 4 0 2]
T

[1 1 2 1 6 0 0]
T

[1 1 1 1 6 1 0]
T

t1

t2

t4

t4

t6

t1

t3

[2 1 1 2 1 0 0]
T

[0 1 1 2 3 0 0]
T

[0 1 0 2 3 1 0]
T

[0 1 0 1 3 1 1]
T

[0 1 0 0 3 1 2]
T

[3 2 1 1 3 1 0]
T

[1 2 1 1 5 1 0]
T

[1 1 1 1 6 1 0]
T

t1

t3

t4

t4

t6

t1

t2

(a) (b)

1 blank line (9-point font with single spacing)
Figure 12. Shortest paths obtaind by (a) Forward

 Algorithm and (b) Backward Algorithm

5. Conclusions

1 blank line (10-point font with single spacing)

In this work, shortest path problem is considered from the

view of Petri nets and two algorithms are developed to

obtain the shortest path leading the system from the given

initial state to the desired state with the minimum number

of transition firing (operation). The first algorithm,

namely Forward Algorithm, uses ILP approach and
makes the process start from the initial marking towards

the desired marking. The second algorithm, namely

Backward Algorithm uses most promising marking

vector to generate the shortest path and makes the process

start from the desired marking back to the initial

marking. In the case that LP relaxation of the ILP results

in integer solution without applying other methods (such

as Daikin’s and Dijkstra) Forward Algorithm finds the

shortest path in minimum time. Otherwise, Backward

Algorithm obtains the shortest path in a little less time

compared to Forward Algorithm. The proposed
algorithms do not deal with the reachability tree or

reachability graph of the net under analysis and use

memory only for storing the obtained path as distinct

from the approaches based on reachability tree.

Moreover, developed algorithms can be applied to

general Petri nets without any restriction. Simulation

results demonstrate that the proposed algorithms reduces

the computational time and complexity significantly.

6. Acknowledgement
1 blank line (10-point font with single spacing)

This work was supported by Anadolu University through

Research Project 1501F019.

7. References

1 blank line (10-point font with single spacing)
[1] Desel, J., "Shortest paths in reachability graphs". Journal
 of Computer and System Sciences, 51:314–323,1995.
[2] Desrochers, A. A. and Al-Jaar, R. Y. , "Applications of Petri
 nets in Manufacturing Systems", The Institute of Electrical

 Electrical and Electronics Engineers Inc., New York, 1995.
[3] Kostin, A., "Reachability analysis in t-invariant- less Petri
 nets. IEEE Transactions on Automatic Control, 48, Issue:
 6:10-19 1024, 2003.
[4] Murata, T., "Petri nets: properties, analysis and applications"
 Proceedings of the IEEE, 77 No:4:541– 580, 1989.
 [5] Proth, J. and Xie, X. , "Petri Nets: A Tool for Design and
 Management of Manufacturing Systems. John Wiley &

 Sons, West Sussex, 1996.
 [6] Ru, Y. and C.N.Hadjicostis, "Reachability analysis for a
 class of petri nets , In Proceedings of IEEE Conference
 on Decision and Control, 2009, pp. 1261–1266, Shanghai.
[7] S. Wang; M. Gan; M. Zhou; D. You, "A reduced

reachability tree for a class of unbounded petri nets," in
IEEE/CAA Journal of Automatica, 2, 4:345-352, 2015.

[8] Y. Haoxiong and H. Yang, "Congested traffic based on ant

colony algorithm for shortest path algorithm," in
International Conference on Logistics, Informatics and

Service Sciences (LISS),2015 , pp.1-3, July.
[9] Y. Zheng; K. Hou; W. Liao and L.Yang., "The Shortest Path
 Algorithm Based on Petri Net," in 19th International
 Conference on Industrial Engineering and Engineering
 Management, 2013 , pp.221-229, April.
[10] Apaydin-Özkan, H., “On Achieving Reachability Paths of
 Petri nets,” in 9th International Conference on Electrical
 and Electronics Engineering (ELECO), 2015, pp.724-728,
 November.
[11] X. Ye, J. Z. and Song, X., “On reachability graphs of

 Petri nets”, Computers and Electrical Engineering, 29,
 2:263-272, 2003.
[12] M.Conforti, G.Cornuejols, G. Zambelli and Giacomo.,
 "Integer Programming", Springer International Publishing,
 2014.
[13] E. Teruel, J. M. Colom, M. Silva, “Choice-free Petri
 nets: A model for deterministic concurrent systems with
 bulk services and arrivals”, IEEE Transactions on
 Systems, Man, and Cybernetics, 1(27): 73–83, 1997

Hanife Apaydın Özkan received

the B.S. degree in electrical and

electronics engineering from the

Osmangazi University, in 2002, the

M.S.and the Ph.D. degree in

automatic control from Anadolu

University, in 2005 and 2010,

respectively and all in Eskişehir, Turkey. She was a

researcher with the Department of Computer Science and

Systems Engineering of the University of Zaragoza,

Spain, from Sep. 2008 to Jan 2010. She is currently an

Assistant Professor at the Department of Electrical and
Electronics Engineering of the Anadolu University,

Turkey. Her current research interests include control of

discrete event systems, Petri net theory and application,

control and scheduling of home appliances, smart home

energy management.

http://link.springer.com/book/10.1007/978-3-642-37270-4
http://link.springer.com/book/10.1007/978-3-642-37270-4
http://link.springer.com/book/10.1007/978-3-642-37270-4
http://diis.unizar.es/
http://diis.unizar.es/

IU-JEEE Vol. Year and Pages

Page number

