
 

Received on: 28.02.2016 

Accepted on: 12.04.2016 

        
 Hanife APAYDIN ÖZKAN / IU-JEEE Vol. 16(2), (2016), 2073-2079 

  

1 blank line (12-point font with single spacing) 

Shortest Path Algorithms For Petri Nets  
1 blank line (12-point font with single spacing) 

Hanife APAYDIN ÖZKAN 

2 blank line (12-point font with single spacing) 
Department of Electrical and Electronics Engineering, Anadolu University, Eskişehir, Turkey 

hapaydin1@anadolu.edu.tr 

1 blank line (12-point font with single spacing) 

Abstract: Petri net is a mathematical and graphical tool for modeling and analysing discrete event systems. This paper  
focuses on a driving Petri net system from a given initial state to a desired state via minimum number of operations, 

that is, through the shortest transition sequence which is called as the shortest path problem. Thereby, two algorithms 

are developed to obtain the shortest path for Petri nets. The first algorithm, namely Forward Algorithm, uses integer 

programming approach and makes the process start from the initial state towards the desired state. The second 

algorithm, namely Backward Algorithm, uses most promising state to generate the shortest path and makes the process 

start from the desired state back to the initial state. Proposed algorithms do not deal with the reachability tree or graph 

of the net under analysis and use memory only for  storing the obtained paths unlike the approaches based on the 

reachability tree. Moreover, the algorithms can be applied to general Petri nets without any restriction. Simulation 

results demonstrate that the proposed algorithms reduces the computational time and complexity significantly.     

Keywords: Petri net, Shortest path, Algorithms. 
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1. Introduction 
1 blank line (10-point font with single spacing) 

Petri nets are frequently used for modeling and analysing  

Discrete Event Systems such as communication 

protocols, manufacturing systems, transport systems and 

others [1,2,3,4].  

      In most cases, it is interested in driving a system from 
a given initial state to a desired state, and obtaining the 

required operation sequence. For minimizing the cost, it 

is aimed to reach the desired state by minimum number 

of operations. This problem is called as shortest path 

problem for Petri nets and aims to compute the shortest 

transition sequence, i.e., transition sequence with the 

minimum number of transitions, firing which from the 

initial state drives the system to the desired state.   

      Reachability analysis techniques and shortest path 

problems are strictly connected, since the reachability 

analysis techniques are utilized to solve shortest path 

problems. The main reachability analysis technique of 
Petri nets is the reachability tree (or reachability graph) 

approach which is obtained by enumerating all reachable 

states. But, constructing the reachability tree and 

investigating the paths towards a desired state would be 

rather difficult task. Many works have been presented on 

this subject. The author in [7] deals the shortest path 

problem directly and the length of the path is obtained for 

some subclasses of Petri nets in that work. But the 

transition sequence of the corresponding path is not 

referred. In [5], Petri nets without transition invariants are 

studied, while only strictly monotone Petri nets are 
considered in [6]. In [3], reachability condition of some 

subclasses of Petri nets is exhibited. The authors of [7]  

 

 

 
propose a method to generate a reduced reachability tree 

for a class of unbounded generalized Petri nets. The work 

in [8] proposes a shortest path based on ant colony 

algorithm, while in [9] a Petri net based shortest path 

algorithm is presented. Although these works upgrade the 

reachabiliy analysis techniques and propose new 

perspectives for the solution of path problems for some 

subclasses, their complexity and expansions are still 

open.  

     In this work, two algorithms are developed to obtain 

the shortest path leading the system from the given initial 
state to the desired state. The first algorithm, namely 

Forward Algorithm, uses integer programming approach 

and makes the process start from the initial state towards 

the desired state. The second algorithm, namely 

Backward Algorithm, which is the improved version of 

the one presented in [10] by the author, uses the most 

promising state to generate the shortest path and makes  

the process start from the desired state back to the  initial 

state.       

    The main contributions of this paper are as follows: 

The proposed algorithms do not deal with the reachability 

tree or reachability graph of the net under analysis and 
use memory only for  storing the obtained path as distinct 

from the approaches based on reachability tree. 

Moreover, developed algorithms can be applied to 

general Petri nets without any restriction.  Simulation 

results demonstrate that the proposed algorithms reduces 

the computational time and complexity, significantly. 
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2. Petri Nets 
1 blank line (10-point font with single spacing) 

This section provides a background on Petri nets 

related to the discussion of this work and presents an 

introductory example. The readers are recommended to 

see [2,3] for more detailed information. 

Petri net is a tuple , , ,G P T N O=  where P is the set 

of places, T is the set of transitions, : P T Z N is the 

input matrix that specifies the weights of arcs directed 

from places to transitions, : P T Z O  is the output 

matrix that specifies the weights of arcs directed from 

transitions to places. Here, Z   is the set of non-negative 

integer numbers.   

: P Zm  is a state vector or marking vector 

(shortly, state or marking, respectively), ( )m p  indicates 

the number of tokens assigned by marking m  to place 

p P  , and the initial state of the system is denoted by 

0m . When an initial state is introduced to the net model 

G ,  the model is called as Petri net system and noted by 

0( , )G m  

 A transition t T  is enabled if and only if 

11 blank line (10-point font with single spacing)       

( ) ( )m p N p,t p P                                              (1) 

11 blank line (10-point font with single spacing)       

which is called as enability condition. The set of 

transitions which are enabled at a marking m   is denoted 

by ( , )E G m .  

A transition sequence g is defined as firing sequence 

of enabled transitions 
1 2 kt t tK where 

1 2, , kt t t TK . A 

marking m'  is said to reachable from m  if there exists a  

transition sequence 1 2, , 1 ,k 1,2,i i kt t i T   K Kg  

which can be fired starting from m  (i.e., the first 

transition of the sequence fires at m ) and yielding 'm  

(i.e., the final transition of the sequence yields 'm ) 

according to the following so-called state equation: 

11 blank line (10-point font with single spacing)       

' g  m m C                                                              (2) 

11 blank line (10-point font with single spacing)       

where, C = O - N denotes the incidence matrix, 

:g T Z   denotes the  firing count vector whose jth 

element (represented by [ g ]j) indicates how many times 

tj is fired in the transition sequence g. Besides, 

'gm m denotes that the marking m'  is reachable 

from a marking m  by firing the transition sequence g. 

The set denoted by R( , )G m is the set of all markings 

reachable from m . The set of all reachable markings 

from 0m  is called reachability set of Petri net and 

represented by 0R( , )G m . 

    If 0 y  such that 0 y C  then, y is called as P-

semiflow of the net and every marking m  reachable 

from 0m  satisfies: 

11 blank line (10-point font with single spacing)       

0  y m y m                                                                  (3) 

1 blank line (10-point font with single spacing) 

This provides a token balance law which is  necessary 

for marking m to be reachable from 
0m , thus for 

satisfying 
0R( , )Gm m . 

 For a given Petri net system, as many  new markings 

as the number of the enabled transitions can be obtained 
from the initial marking. From each new marking, more 

new markings can be reached until repeated nodes are 

encountered “old” or no transitions are enabled “dead-

end”.  This process yields tree representation of the 

evaluation of the system which is called as reachability 

tree. In the reachability tree each node represents a 

marking and the firing of a transition transforming one 

marking to another is represented by arcs.  

A reachability graph of a PN is a directed graph G = 

(
0R( , )G m , E), where e E  represents a directed arc 

from a class of markings to the other class of markings. 

The reachability graph demonstrates a better performance 

than the reachability tree [11]. 
1 blank line (9-point font with single spacing) 

Example 1: 
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Figure 1. A simple Petri net model 

1 blank line (10-point font with single spacing) 

For the Petri net system in Figure 1, the initial marking is 

0m =[1 0 0 1 1 0 0]T . 

The set of places is  1 2 3 4 5 6 7, , , , , ,P p p p p p p p  and the set 

of transitions is  1 2 3 4 5 6, , , , ,T t t t t t t ,respectively. Input and 

output matrices of this Petri net model are as follows: 

11 blank line (10-point font with single spacing)      

          
11 blank line (10-point font with single spacing)       

Note that, P-semiflows of this net are  y1=[1 1 1 0 0 0 0] T,   

y2 =[0 0 1 1 0 0 1]T and y3=[0 0 0 0 1 1 1]T.  The reachability 

graph of the net is given in Figure 2.  
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Figure 2. Reachability graph of the Petri net in Figure 1. 

1 blank line (10-point font with single spacing) 

By using the reachability tree, it is possible to obtain 

all reachable markings and to get corresponding 

transition sequences to reach these markings. For 

example, it is clear from the tree that firing the transition 

sequence  
4 5t tg    from 

0
m  drives the system to the 

marking [1 0 0 0 0 0 1]T. 

Unfortunatelly, for Petri nets with great number of 

reachable markings, using reachability graph to find the 

paths driving the system from the initial marking to 

desired marking  is an exhausting way. 

1 blank line (10-point font with single spacing) 

3. Shortest Path Algorithms 
1 blank line (10-point font with single spacing) 

In this work, the main goal is to develop efficient 

techniques to solve shortest path problem of general Petri 

nets. Firstly, we give a formal shortest path definition  for 

Petri nets. 

Definition 1: Let (G ,
0

m ) be a Petri net system and 

0R( , )d Gm m  be a desired marking. The transition-

marking sequence leading 
0

m  to dm   while including 

minimum number of transition firing is called as  shortest 

path.   

In order to obtain  the shortest path for a Petri net 

system, an exhausting approach may be composing 

reachability tree as considered in many works in the 

literature [9,10,11] . But this is time consuming method 
especially for big sized Petri nets. In this work, two 

algorithms, namely Forward Algorithm and Backward 

Algorithm, will be introduced to determine the shortest 

path driving the system from 
0

m  to dm   without 

constructing a reachability tree.  
1 blank line (9-point font with single spacing) 

3.1. Forward Algorithm 
1 blank line (10-point font with single spacing) 

In the Forward Algorithm, for a Petri net system 

( G ,
0

m ) the shortest transition sequence  driving the 

system from  0m to a desired marking 0R( , )d Gm m  is 

attained by obtaining the fired transitions one by one  

starting from 0m  towards dm . 

Let g  be firing count vector of transition sequence g 

driving the system from the given initial marking to the 

desired target marking, i..e. 0 dg
m m .  This vector 

can be calculated by solving the state equation 

d g  
0

m m C   for g with given 0m and dm  by using 

an integer programming method.  

Integer Linear Programming (ILP)  deals with 

problems that  same as linear programming (LP) with the 

one additional restriction that the variables must have 
integer values. Compared to LP , ILP has  additional 

constraints.  An ILP begins with an LP, and adds the 

requirement that some or all of the variables take on 

integer values. This addition increases the number of 

problems that can be modeled,  while making  the models 

more difficult to solve. For solving ILP, the first step is to 

solve its LP relaxation, which is obtained by dropping the 

requirement that all variables must be integers. If all 

variables are integers in the solution of this relaxation, 

the solution of ILP has been found. Otherwise, methods 

like Branch and Bound (such as, Dakin’s and Dijkstra 
etc,) can be used to find an integer  solution (see [12] for 

details) which may increase the computational time 

slightly.  

In the Forward algorithm the first step is to find firing 

count vector g  driving the system from 
0

m  to 
dm   by 

the following ILP: 

 

 

_

0

1,2, ,

g

d g

g

g gi

Minimize

Subject to

Z i

  



      K

m m C







 

                      (4) 

 

    After determining g  which provides the information 

of transitions and minimum number of times they should 

be fired to drive the system from  
0

m  to dm , it is time to 

find their firing order. Here, it is proposed to build up a 

branch structure in order to find this order. Forward 

Algorithm generates node couples ( m ,
g

)m ) which 

consists of the marking m and 
g

)m which is the set of 

ordered transition sequence driving the system from 
0

m  

to m . This process starts with the root couple of 

(
0

m , ) and labeling it as “new”. From each new node 

couple ( m , g

)m ), more new node couples are obtained by 

firing the enabled transitions which also belong to g but 

not fired to reach the marking m  of the considered node 

couple as the same number of times as in g . The set of 

these enabled transitions at m , i.e. 
enT
)

m ,  is obtained by 

( ( , ) )enT E G 
) )m

g
m 

)m

g
 , where 

)
g

  is the set of 

transitions that includes the transitions as the same 

number of times as in g . When, a node couple of dm is 

obtained, the algorithm terminates. Note that if the 

algorithm continues to process after obtaining dm , more 

than one shortest path can be obtained.  

 

Forward Algorithm  

Input:  0, , dG m m  

Solve  
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 

0

0

1,2, ,

d

i

Minimize

Z i

  



      K

g

g

g

g g

m m C







 

 

Label ( m ,
)m

g
 ) as “new” 

do-while   “new” node couple 

      Select a “new” ( m ,
)m

g
 ) 

      Delete the label of ( m ,
)m

g
 ) 

     ( ( , ) )enT E G 
) )m

g
m 

)m

g
   

     for i=1: 
enT
)

m  

           en
i

T     

)
m

m' m C  

           en
i

T   

)) )m' m m

g g
   

           Introduce  ( m' ,
)m'

g
 ) as a “new” node couple. 

           if dm' m  

               Return ( m' ,
)m'

g
 ) 

               Exit 

          end-if 

     end-for 

end-while 

 
Example 2: Let us apply Forward Algorithm to the Petri 

net in Example 1. Let the initial and desired markings are  

0m = [1 0 0 1 1 0 0]T and dm =[0 1 0 0 0 0 1]T  , 

respectively. The solution of ILP (3) is obtained via its 

LP relaxation as g
 =[1 0 0 1 0 1]T, thus each of 

transitions 1t , 4t  and 5t should be fired at once in order  to 

drive the system from 0m to dm . The first node couple 

of the branch structure is ( 0m , ).  The set of enabled 

transitions which also belong to g
 but not fired to reach 

the marking m  of the considered node couple as the 

same number of times as in g is 

0

enT
)

m
=

1 4 1 4 5({ , } { , , })t t t t t 1 4{ , }t t  . From 0m , firing 

the transition 1t  yields 1m =[0 1 0 1 1 0 0]T, while firing 

the transition 4t yields 2m =[1 0 0 1 0 1 0]T . Hence,  the 

new node couples are ( 1m , { 1t }) for which 
enT
)

1m ={ 4t }  

and  ( 2m , { 4t }) for which 
enT
)

2m ={ 5t } (see Figure 3).  

Firing transition 4t  from 1m  of ( 1m , { 1t })  yields 

3m =[0 1 0 1 1 0 0]T and firing transition 5t  from 2m of 

( 2m , { 4t })  yields 4m =[1 0 0 0 0 0 1]T. Hence, the new 

node couples are ( 3m , { 1t , 4t }) for which enT
)

m ={ 5t }  

and ( 4m , { 4t , 5t }) for which enT
)

m ={ 1t } (see Figure 4).  

By firing the transition 1t  from 4m of ( 4m , { 4t , 5t }), 

dm is reached. Finally,  the last node couple of the 

algorithm is obtained as  ([0 1 0 0 0 0 1]T, { 4t , 5t , 1t }) 

(which represents the path 
0

54 1
d

t t t
m m ) and the 

algorithm terminates, with the following shortest 

path:
0m = [1 0 0 1 1 0 0]T 4t [1 0 0 1 0 1 0]T 5t [1 0 0 

0 0 1]T 1t  
dm = [0 1 0 0 0 0 1]T (see Figure 5). 

      Note that if the algorithm continues to evaluate, after 

dm  is reached, an alternative shortest path would be 

obtained (see Figure 6).   

 

([1 0 0 1 1 0 0]
T
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t4t1

( [0 1 0 1 1 0 0]
T
 , {t1} ) [1 0 0 1 0 1 0]

T
, {t4 })(

new new
 

1 blank line (9-point font with single spacing) 

Figure 3. The first step of the Forward Algorithm 

1 blank line (10-point font with single spacing 

( [0 1 0 1 0 1 0]
T
 , {t1,t4 })

t5t4

([1 0 0 1 1 0 0]
T
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t4t1
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T
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T 
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         1 blank line (9-point font with single spacing) 
Figure 4. The second step of the Forward Algorithm 
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Figure 5. The final step of the Forward Algorithm 

1 blank line (10-point font with single spacing) 
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Figure 6.  An alternative shortest path for Example 2 

1 blank line (10-point font with single spacing) 

3.2. Backward Algorithm 
1 blank line (10-point font with single spacing) 

In the Backward Algorithm, for a Petri net system 

( G ,
0

m ) the transition sequence  driving the system from  

0m  to 0R( , )d Gm m is attained by obtaining the fired 

transitions one by one  starting from 
dm   back to 0m . 
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If a transition jt T  is fired at a marking m  yielding 

m' , element-wise representation of the state equation 

can be written as 

11 blank line (10-point font with single spacing) 

       , ,i i i j i jp p p t p t  m' m O N ip P          (5) 

11 blank line (10-point font with single spacing) 

yielding 

11 blank line (10-point font with single spacing) 

       , ,i i j i i jp p t p p t  m' O m N  
ip P          (6) 

11 blank line (10-point font with single spacing 

Necessary condition for transition jt to be enabled at a 

marking m  yielding m'  can be reformulated in terms of 

m' by combining equation (5) and enabling condition  

(1) together: 

11 blank line (10-point font with single spacing) 

   , 0i i jp p t m' O  i jp t                                    (7) 

11 blank line (10-point font with single spacing) 
where jt  denotes the set of all places from which there 

exists a directed arc to jt , i.e.,  (p, ) 1j jt p N t   . 

      From a marking 0R( , )Gm m , firing any transition 

jt T  which satisfies the condition (6) may yield m' . 

Corresponding m  is obtained by solving the following 

equation system: 

11 blank line (10-point font with single spacing) 

   :, :, (a)

' (b)

j j

T T

t t 



m m' - O N

y m y m
                                  (8) 

11 blank line (10-point font with single spacing) 

where equation (7)(a) is the state equation  and equation 

(7)(b) corresponds to reachability of m  from  
0

m , i.e. 

0R( , )Gm m [2].    

      Backward Algorithm is based on generating couples 

( , )g

)m
m   which consists of a marking m and 

g

)m which  

is the set of ordered transition sequence driving the 

system from m  to dm .  The marking of each node 

couple ( , )g

)m
m   is definitely obtained by firing 

transitions 
m

t T
)

 from  preceding marking 'm , such 

that tm' m . Transitions of  
m

T
)

are obtained 

according to the condition (7) and the preceding 
markings are obtained by equation system in (8). Each 

node couple obtained by this way is introduced as new. 

The most promising new node couple, thus including 

closest marking to 0m , is introduced as path, while the 

other new node couples are deleted. The algorithm starts 

with the node couple of ( ,d m ) and introducing it as 

path. If the path includes 0m  the algorithm terminates, 

otherwise preceding new node couples are obtained.  
1 blank line (9-point font with single spacing) 

 

Backward Algorithmblank line (9-point font with single 

Input:  0, , dG m m  

Label ( ,d m ) as path 

do-while 0m m  

     New=  

     Take the node couple  path  ( m' ,
g

)m ) 

           , 0m

i i it p p t p t   
)
T = m' O   

     for i=1: m
)
T  

           Solve the following equation system for m  

                     
   :, :,

'

m m

i i

T T

       



) )
m m' - O T N T

y m y m

 

     m

g
i

    

)) )m m'

g
T  

            Introduce  ( , )g

)m
m   as a new node couple.    

       end-for 

           Select the most promising  node couple ( m ,
g

)m )     

           through the new node couples via:  

                         st.  0 0min
New

  
m

m m m m  

             Introduce ( m ,
g

)m ) as path 

              Delete new nodes 

             if 0m m  

               Return ( 0m , 0

g

)m  ) 

               Exit 

           end-if 

end-while 

 

Example 3: Let us consider the PN system given in  

Example 2, again with the same initial and desired 

markings, i.e., 0m = [1 0 0 1 1 0 0]T and dm =[0 1 0 0 0 0 

1]T. Backward algorithm starts with the node couple ( dm  

,  ) and introducing it as path. Transitions firing which 

may yield dm  are 1t  and 5t  and the corresponding 

preceding markings are  m1= [1 0 0 1 0 1 0]T (i.e., 

1m 1t  dm  ) and  2m  =[0 1 0 1 0 1 0]T (i.e., 2m  5t  

dm  ),  respectively. Hence, new node couples are ( 1m , 1t ) 

and ( 2m , 5t ) (see Figure 7). Through these new node 

couples the most promising one is  ( 2m , 5t ) which is 

introduced as path and the other new node couple is 

deleted. Transitions firing which may yield 2m  of  ( 2m , 

5t ) are 4t  and 2t  with the corresponding preceding 

markings are 3m =[0 1 0 1 1 0 0]T and 4m = [1 0 0 1 0 1 0]T , 

respectively. Hence the new node couples are obtained as 

( 3m , 4 5t t ) and ( 4m , 2 5t t ) (see Figure 8). Among them, 

( 4m , 2 5t t ) is the most promising one through these new 

node couples and introduced as path while the other one 

is deleted (see Figure 9). The transition, firing which 

yields 4m  of ( 4m , 2 5t t )  is 
4t  with the preceding marking 

0m =[0 1 0 1 1 0 0]T. Hence the last node couple is 

( 0m , 4 2 5t t t ) presenting the following shortest path: 0m = [0  
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1 0 1 1 0 0]T 4t [1 0 0 1 0 1 0]T 2t [0 1 0 1 0 1 

0]T 5t  
dm = [0 1 0 0 0 0 1]T (See Figure 10) 
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Figure 7. The second step of the Backward Algorithm 
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Figure 8. The fourth step of the Backward Algorithm  
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Figure 9. The third step of the Backward Algorithm 
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Figure 10. The final step of the Backward Algorithm 
 

 

 

 

 

4. Case Study 
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Figure 11. A Petri net model of a table factory system  
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Let us consider the Petri net  system sketched in Figure 

11 (taken from [13]) which models a table factory 

system.This system, consists of two different machines  to 

make table-legs, a new one which produces two legs at a 

time, and the old one, which makes legs one by one ( 1t   

and 2t ), a machine to produce the table boards ( 3t ), a 

machine to assemble four legs and a board ( 5t ), a big 

painting line which paints two tables at once ( 6t ). More 

unpainted tables are sent ( 4t ) from another factory. The 

places 31 2 ,,p p p  and 
4

p  are work orders; while 5p , 6p  

and 7p  are devoted to the storage of table-legs, boards 

and unpainted tables, respectively (see [17]  for details). 

Suppose in the initial marking 0 1 0 4( ) ( ) 2m p m p  , 

0 2 0 3 0 5( ) ( ) ( ) 1m p m p m p   and 
0 6 0 7(p ) (p ) 0m m  . For 

the final state, work orders are desired 

as 1 2 3 4( ) ( ) ( ) ( ) 1d d d dm p m p m p m p    ; while the 

number of stored table legs is 6, i.e. 5( ) 6dm p  . It is 

also desired to keep the number of stored boards 

7( ) 1dm p   and store 1 unpainted table, i.e., 6( ) 1dm p  . 

For this net 0R( , )G m  has 294 marking vectors and 

constructing the  reachability tree  of the net takes 33.2 

sec. by using the Matlab toolbox “pntool” (on a PC with 

Intel(R) Core(TM) i7 2640M CPU @ 2.8GHz).Searching 

the shortest path from 0m  to dm  through this tree takes 

4.1 sec. additionally.  For the same shortest path, LP 

relaxation  of ILP results in integer solution and the 
proposed Forward Algorithm terminates with the node 

couple  ([1 1 1 1 6 1 0]T,{ 4t , 2t , 4t , 4t , 6t , 1t , 3t }) in 3.4 

sec; while the Backward Algorithm terminates with ([1 1 

1 1 6 1 0]T,{ 4t , 3t , 4t , 4t , 6t , 1t , 2t }) in 3.5 sec. (see Figure 

12). The proposed algorithms reduce the computational 

time about 5% of the time consumed by conventional 

reachability tree methods.  
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Figure 12. Shortest paths obtaind by (a) Forward    

                       Algorithm  and  (b) Backward Algorithm 

 

5. Conclusions 
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In this work, shortest path problem is considered from the 

view of Petri nets and two algorithms are developed to 

obtain the shortest path leading the system from the given 

initial state to the desired state with the minimum number 

of transition firing (operation). The first algorithm, 

namely Forward Algorithm, uses ILP approach and 
makes the process start from the initial marking towards 

the desired marking. The second algorithm, namely 

Backward Algorithm uses most promising marking 

vector to generate the shortest path and makes the process 

start from the desired marking back to the  initial 

marking.  In the case that LP relaxation of the ILP results 

in integer solution without applying other methods (such 

as Daikin’s and Dijkstra) Forward Algorithm finds the 

shortest path in minimum time. Otherwise, Backward 

Algorithm obtains the shortest path in a little less time 

compared to Forward Algorithm.  The proposed 
algorithms do not deal with the reachability tree or 

reachability graph of the net under analysis and use 

memory only for  storing the obtained path as distinct 

from the approaches based on reachability tree. 

Moreover, developed algorithms can be applied to 

general Petri nets without any restriction. Simulation 

results demonstrate that the proposed algorithms reduces 

the computational time and complexity significantly. 
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