

Mugla Journal of Science and Technology

69

A NEW MULTI-PARTY PRIVATE SET INTERSECTION PROTOCOL BASED on
OPRFs

Aslı BAY*, Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Antalya Bilim University,
asli.bay@antalya.edu.tr

(https://orcid.org/0000-0002-3820-1778)
Anıl KAYAN, Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Antalya Bilim University,

anil.kayan@antalya.edu.tr

(https://orcid.org/0000-0002-6531-046X)

Received: 18.02.2022, Accepted: 16.06.2022
*Corresponding author

Research Study

DOI: 10.22531/muglajsci.1075788

Abstract

In many crucial real-world applications, parties must jointly perform some secure multi-party computation (MPC) while
keeping their inputs hidden from other parties. Private Set Intersection (PSI), the specific area of Multi-Party Computation,
let the parties learn the intersection of their private data sets without sharing their secret data with others. For instance, a
smartphone user downloads a messaging application, naturally, he wants to discover who are the other contacts that are
using the same application. The naive and insecure solution is to send all contacts to the server to discover them. However,
the user does not want to share his contacts with the application for privacy issues. To handle this, in recent years,
companies and organizations start to use PSI to enhance privacy and security with a little cost of communication and
computation. In this paper, we introduce a novel method to compute Private Set Intersection with multi parties where there
are at least three or more parties participating in the protocol. By employing the Zero-Secret Sharing scheme and Oblivious
Pseudo-Random Functions (OPRFs), parties securely calculate the intersection with computational and communication
complexities which are both linear in the number of parties.
Keywords: Private set intersection, multi-party private set intersection, multi-party computation, oblivious transfer,
oblivious pseudorandom function, zero sharing

OPRF’LERE DAYALI YENİ ÇOKLU KULLANICILI ÖZEL SET KESİŞİMİ
PROTOKOLÜ

Özet

Birçok önemli gerçek dünya uygulamasında, taraflar girdilerini diğer taraflardan gizli tutarken bazı güvenli çok taraflı
hesaplama (MPC) işlemlerini birlikte yapmalıdır. Çok Taraflı Hesaplamanın özel alanı olan Özel Set Kesişimi (PSI),
tarafların gizli verilerini başkalarıyla paylaşmadan veri kümelerinin kesişimini öğrenmelerini sağlar. Örneğin, bir akıllı
telefon kullanıcısı bir mesajlaşma uygulaması indirir, doğal olarak aynı uygulamayı kullanan diğer kişilerin kim olduğunu
keşfetmek ister. Naif ve güvensiz çözüm, tüm kişileri, sunucuya göndermek ve kim olduklarını keşfetmektir. Ancak kullanıcı,
gizlilik sorunları için uygulama ile temaslarını paylaşmak istemezler. Bunu halletmek için, son yıllarda şirketler ve
kuruluşlar, küçük bir iletişim ve hesaplama maliyetiyle gizliliği ve güvenliği artırmak için PSI kullanmaya başladılar. Bu
makalede, protokole en az üç veya daha fazla tarafın katıldığı çoklu taraflarla Özel Set Kesişimi hesaplamak için yeni bir
yöntem tanıtıyoruz. Taraflar, Sıfır Gizli Paylaşım ve Habersiz Sözde Rastgele Fonksiyonları kullanarak, her ikisi de kullanıcı
sayısı ile doğrusal olan hesaplama ve iletişim karmaşıklıklarıyla kesişimi güvenli bir şekilde hesaplar.
Anahtar Kelimeler: özel set kesişimi, çoklu kullanıcılı özel set kesişimi, çok taraflı hesaplama, habersiz transfer, habersiz
sözde rastgele fonksiyonlar, sıfır gizli paylaşım.
Cite
BAY, A., KAYAN, A., (2022). “A New Multi-Party Private Set Intersection Protocol Based on OPRFs”, Mugla Journal of Science
and Technology, 8(1), 69-75.

1. Introduction

Private Set Intersection (PSI) is a way of finding the
intersection of two secret data sets without disclosing
their elements other than the intersection. In a formal

way, two parties 𝑷𝟏 and 𝑷𝟐 holding their data sets 𝑺𝟏 and
𝑺𝟐 are willing to compute the intersection 𝑺𝟏 ∩ 𝑺𝟐
without revealing their data sets. As our lives are getting
digital day by day, as a consequence of this, people
inevitably demand more secure applications from
companies or organizations. Therefore, in the past years,

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

70

PSI has been enthusiastically researched and found
various practical and fast applications [1-6].

Traditionally PSIs are designed for two parties. At certain
setups, we can derive much more information than the
two-party intersections and it is only possible to get
these meaningful inferences with multiple parties
simultaneously joined together. In this setting, there are
more than two parties, say t parties 𝑷𝟏,...,𝑷𝒕 having their
own sets 𝑺𝟏,...,𝑺𝒕 respectively, are interested in finding
𝑺𝟏 ∩ … ∩ 𝑺𝒕 without revealing any other information.

Both, the usages of PSIs and Multi-party Private Set
Intersections (MPSIs) are very broad in real-life
applications and can be exemplified as follows:

Contact Tracing: In the ongoing COVID-19 pandemic,
the researchers from UC Berkeley introduced a
lightweight way for contact tracing. Users are alerted by
an application if they contact any diagnosed people with
the disease while protecting private information [7].

Password Checkup: Based on the numbers from the
paper 1.5% of logins on the web involve breached
credentials. Another use of PSI is checking whether your
password is leaked or not. Users can compare their
credentials with millions of entries in breached
databases without revealing any part of it [8].

Ad Efficiency: Facebook, Datalogix, Epsilon, and Acxiom,
consumer data collection companies measure how well
an ad is performing. Rather than using naive hashing
solutions to compare merchant's lists of customers and
advertiser's lists, they are using PSI methods to increase
security [9].

Genome Discovery: In the field of paternity and
ancestry testing, it can be possible to perform these tasks
without revealing any further individual genomic
information [10].

1.1. Related Work

The naive solution of PSI is where all the parties deal with
a hashing algorithm and then apply this algorithm to
their sets. By comparing resulting hashes, parties easily
come up with an intersection but the problem with this
approach is when the input domains are small, the brute
force attack can be applied. Early researches are based on
public-key cryptography techniques that have
computational challenges rather than symmetric key
cryptography [11-13].

There are different types of techniques that are used to
build PSIs and MPSIs. The well-known ones are
permutation-based hashing [5], circuit-based
computations [14-16], oblivious transfer [1,3,17], Bloom
filters [18], cuckoo hashing [2], oblivious programmable
hashing [19]. To the best of the author’s knowledge, the
fastest PSI protocols are designed by Pinkas et al. [5,19]
where the former is based on oblivious transfer and
permutation-based hashing and the latter uses a generic
circuit-based multi-party computation.

The earliest MPSI protocol by Freedman et al. [20] is
based on Oblivious Polynomial Evaluation (OPE) which
makes use of a homomorphic encryption scheme. In this

scheme, users’ private data sets are represented as
polynomials and the coefficients are encrypted by a
homomorphic encryption scheme and obliviously
evaluated on the other party’s data sets. The same OPE
technique is also used by Kissner et al. [21] which has a
quadratic complexity in the number of parties. Another
work by Hazay and Venkitasubramaniam is similar to
work [22] which uses an additively homomorphic public-
key encryption scheme with threshold decryption. The
computational complexity of this protocol is linear in the
input data sets. Recently, Kolesnikov et al. proposed an
MPSI which is based on Oblivious Transfer which makes
their protocol faster due to the usage of symmetric
algorithms. The computational complexity is quadratic in
the number of parties while it is independent of the size
of the sets.

1.2. Our Contribution

Inspired by Chase-Miao’s PSI protocol [3] which is based
on Oblivious Pseudorandom Functions (OPRFs), we
design an efficient and secure multi-party PSI. In our
design, we consider t parties each of which has private
data sets of the same size n, and a Trusted Dealer D who
has no clue about the secret key and data sets of the
parties. The effectiveness of our protocol is that any party
can compute the intersection, however, for the sake of
simplicity, we consider the first party 𝑷𝟏 as the server
who outputs the intersection. Our scheme is based on
again Oblivious Pseudorandom Functions and zero
secret sharing to protect the privacy of the parties. Our
protocol is efficient in terms of both computational and
communication complexities which are both linear in the
number of parties.

2. Preliminaries

In this section, we will provide the necessary background
for our protocol. We start with the notations, then we
explain the security model of the protocol. Finally, we
briefly explain the Chase-Miao PSI protocol that we
inspired from [3].

2.1. Notations

We use λ, 𝜿, and 𝒍𝟏 to denote the computational and
statistical security parameters.

𝒕: Number of parties.

𝒎: The number of rows in the matrices.

𝒘: The number of columns in the matrices.

𝒍𝟏 : The output length of the Hash function H.

𝒔: A random string to be used in Oblivious Transfer
operations.

𝑷𝒊: The i-th party, where 𝑷𝟏 is the server and the rest is
the clients.

𝑿𝒊: The dataset of 𝑷𝒊.

D: The Trusted Dealer.

𝒏𝒊: The size of the dataset of 𝑷𝒊, we assume that the all
the parties have data set of the same size.

𝒔𝒉𝒊
𝒂,𝒃: The i-th secret share part at index (a,b).

𝑪𝒊: The matrix constructed via OT operations of 𝑷𝒊.

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

71

𝑪: The final matrix constructed by trusted dealer D

𝑷𝑺𝑰: Private Set Intersection.

𝑴𝑷𝑺𝑰: Multi-Party Private Set Intersection.

𝑺: The intersection of 𝑺𝒊’s, 𝑺 =∩𝒊=𝟏
𝒕 𝑺𝒊.

𝜿: The computational security parameter.

𝒓: The length of secret shares in bits.

2.2. Security Model

The security of the protocol is based on the semi-honest
model with static adversaries. To explain briefly, the
parties follow the protocol honestly without deviating
from the flow of the protocol and the number of
corrupted parties is determined before the start of the
protocol.

As we will omit the proof, we refer the reader to the
security definition of the semi-honest security for
deterministic functionalities defined by Goldreich[23].
The protocol has a trusted Dealer D, who contacts with
the clients through a secure communication channel. The
security definition for our MPSI protocol matches up
with that of Miyaji et al. [24] which can be explained as
follows.

An MPSI is player-private secure under the existence of a
trusted Dealer 𝑫 if the following two conditions are
satisfied:

• The clients can only learn the other client’s
elements only if the elements are in the
intersection ∩𝒊 𝑺𝒊.

• The trusted dealer D cannot learn any
information about the data sets of the clients.

Note that the trusted Dealer has no access to the data set
of the clients, also he cannot obtain the mutual or full
intersection client’s data sets by trying the elements from
the domain. The reason is that he does not know the
secret key 𝒌 of PRF and cannot infer anything from the
parties’ matrices 𝑪𝒊’s which will be clarified in Sec. 3.

2.3. Technical Background

The Zero-Secret Sharing Scheme: To extend two-party
protocols to multiple parties, we usually make use of
secret sharing schemes. The idea behind secret sharing
schemes is as follows: we divide the secret into several
shares in such a way that when a sufficient number of
shares are available, which is greater than a threshold
number, then the secret can be reconstructed. This
means that if there is not enough shares, no one can be
able to reconstruct the secret, nor any part of it. In this
work, we make use of an additive XOR-based (𝑡, 𝑡) secret
sharing scheme [25] which can be briefly explained as
follows: we create 𝑡 − 1 shares of the same size as the
secret s, the last share becomes the Exclusive OR (XOR)
of all 𝑡 − 1 shares and the secret 𝑠. To reconstruct the
secret 𝑠, it is simply needed to XOR all 𝑡 shares. In our
case, we use a fixed secret as 𝑠 = 0 which makes the
scheme (𝑡 − 1, 𝑡) as 𝑠 is already known by the parties.

Oblivious Transfer: Oblivious transfer (OT), proposed
by Rabin [26], is a cryptographic protocol executed
among two parties: the sender has two inputs 𝑚0 and 𝑚1

and the receiver has a bit 𝑏, at the end of the protocol,
while the receiver learns 𝑚𝑏 while no parties learn any
additional information. When there are 𝑛 OTs are
needed, there is an efficient extension of this technique
called OT extension which requires 𝒪(𝜅) public-key
operations instead of 𝒪(𝑛), where 𝜅 is a computational
security parameter [27].

Single-Point OPRF: As proposed in Kolesnikov et. al. [4],
the single point oblivious PRF (OPRF) is defined as
follows: let the PRF key k be the two-bit strings 𝑞, 𝑠 ∈
{0,1}𝜆. Let 𝐻 be a hash function and 𝐹(∙) be a
pseudorandom code that produces a pseudorandom
string. The oblivious pseudorandom function is defined
as

𝑂𝑃𝑅𝐹𝑘(𝑥) = 𝐻(𝑞⨁[𝐹(𝑥) ⋅ 𝑠]) (1)

where ‘⋅’ is bitwise-AND and ‘⊕’ is bitwise-XOR
operands. Here, the OPRF is assumed to be
pseudorandom if 𝐻 is a collision-resistant hash function
and 𝐹 is a pseudorandom generator function, lastly 𝑠
should be a randomly generated string.

Let’s see how we can evaluate the single-point OPRF on
the receiver’s input 𝑦. First of all, the receiver chooses a
random 𝑟0 from {0,1}𝜆 and computes 𝑟1 = 𝑟0 ⊕ 𝐹(𝑦). The
sender then samples a random string 𝑠 from {0,1}𝜆 where
each bit of s is one of the 𝜆 choice bits for OT. Then, these
two parties execute 𝜆 oblivious transfers where the
sender acts as a receiver in the OT and inputs single bits
𝑠[1], 𝑠[2], … , 𝑠[𝜆]. The receiver acts as a sender in the OT
and inputs single bits {𝑟0[𝑖], 𝑟1[𝑖]}𝑖∈{1,…,𝜆}. After all OTs are

executed, the sender obtains a set of 𝜆 bits and sets 𝑞 =
𝑟𝑠[1][1]|| … ||𝑟𝑠[𝜆][𝜆]. The sender also sets the PRF key as

𝑘 = (𝑞, 𝑠). Then, he chooses 𝑥 and computes 𝑞 ⨁[𝐹(𝑥) ⋅
𝑠]. Therefore, the PRF value on 𝑦 learned by the receiver
is 𝐻(𝑟0) no matter 𝑠 is chosen. That is, for 𝑥 = 𝑦, we have
𝐻(𝑞⨁[𝑠 ⋅ 𝑓(𝑥)]) = 𝐻(𝑟0⨁[𝑠 ⋅ (𝐹(𝑥)⨁𝐹(𝑦)]) = 𝐻(𝑟0).
Otherwise, the receiver has no clue about 𝑂𝑃𝑅𝐹𝑘(𝑥).

Multi-Point OPRF: Instead of executing the single-point
OPRF for every value of the receiver which is not
efficient, the single-point OPRF is extended to Multi-Point
OPRF [3][28]. According to Chase and Miao [3], instead
of a vector PRF key k, here they define the key as 𝑚 × 𝑤
matrix. Similarly, we use a hash function 𝐻 and
pseudorandom code 𝐹(∙) that produces a pseudorandom
vector 𝑣 ∈ [𝑚]𝑤 . The pseudorandom function is defined
as

𝑂𝑃𝑅𝐹𝑀(𝑥) = 𝐻(𝑀1[𝑣[1]|| … ||𝑀𝑤[𝑣[𝑤]]) (2)

We evaluate OPRF on input 𝑦, the sender picks a random
string 𝑠 from {0,1}𝑤 . The receiver prepares (in a way that
it will be explained in the PSI protocol) two matrices 𝐴
and 𝐵, where 𝐴𝑖 ∈ {0,1}𝑚 and 𝐵𝑖 ∈ {0,1}𝑚 are column
matrices of 𝐴 and 𝐵 respectively, where 1 ≤ 𝑖 ≤ 𝑤. There
will be 𝑤 number of execution of OTs where the sender
behaves as the receiver and the receiver behaves as the
sender as in the single-point OPRF. After all, OTs are
executed, the sender gets 𝑤 columns vectors which will

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

72

be assigned to have the PRF key M. As for all 𝑥 ∈ 𝑌,
𝑂𝑃𝑅𝐹𝑀(𝑥) = 𝑂𝑃𝑅𝐹𝐴(𝑥) is independent of chosen s.

2.4. The Chase-Miao’s PSI Protocol

In their protocol [3], Chase and Miao use the multi-point
OPRF to find the intersection of two private data sets.
Their protocol is as follows:

• Input: Let λ, be security parameters, 𝐻1: {0,1}∗ →
{0,1}𝑙1 and 𝐻2: {0,1}∗ → {0,1}𝑙2 and pseudorandom

function 𝐹: {0,1}𝜆||{0,1}𝑙1 → {0,1, … 𝑚 − 1}𝑤 agreed

by two parties 𝑃1 𝑎𝑛𝑑 𝑃2.

• Precomputation:

1. 𝑃1 chooses a random string 𝑠 ∈𝑅 {0,1}𝑤 .

2. 𝑃2 constructs a matrix 𝐷 which have all entries
are set to 1. Let 𝐷1, … , 𝐷𝑤 be column vectors of 𝐷.

3. 𝑃2 chooses a random key 𝑘 of length 𝜆 for
𝐹, 𝑘 ∈𝑅 {0,1}𝜆 .

4. 𝑃2 computes 𝑣 = 𝐹𝑘(𝐻1(𝑦)) for each element 𝑦 ∈
𝑌 and update 𝐷 as 𝐷𝑖[𝑣[𝑖]] = 0 for all 𝑖 ∈
{1, … , 𝑤}.

5. 𝑃2 constructs a random matrix 𝐴 of size 𝑚 × 𝑤
and computes another matrix 𝐵 by 𝐵 = 𝐴⨁𝐷.

• Oblivious Transfer: 𝑃1 as the receiver with input
choice bits 𝑠[𝑖]’s and 𝑃2 as the sender with inputs
{𝐴𝑖 , 𝐵𝑖}𝑖 execute 𝑤 oblivious transfers (OTs) and 𝑃1
obtains an 𝑚 × 𝑤 matrix 𝐶 at the end.

• Computing Intersections with OPRF:

1. 𝑃2 sends 𝑘 to 𝑃1.

2. 𝑃1 computes 𝑣 = 𝐹𝑘(𝐻1(𝑥)) for each element 𝑥 in
his data set.

3. Then, 𝑃1 computes OPRF value of each element

𝑋 ∈ 𝑋 by 𝜓 = 𝐻2(𝐶1[𝑣[1]]|| … ||𝐶𝑤[𝑣[𝑤]])

constructs the set of 𝜓’s as Ψ and send Ψ to 𝑃2.

4. 𝑃2 computes 𝑣 = 𝐹𝑘(𝐻1(𝑦)) for all 𝑦 ∈ 𝑌, and
their OPRF values 𝑂𝑃𝑅𝐹𝑀(𝑦) =
𝐻2(𝐴1[𝑣[1]|| … ||𝐴𝑤[𝑣[𝑤]]]). For each 𝑦 ∈ Ψ,
outputs 𝑦.

3. Our MPSI Protocol

Assume that there are 𝑡 parties as 𝑃 = {𝑃1, … , 𝑃𝑡} each of
which has a private data set 𝑋𝑖 of size 𝑛𝑖 , respectively, and
a trusted Dealer D who helps parties to compute the
intersection. Although any party can compute the
intersection, for simplicity, we consider P1 as the server
who computes and outputs the intersection.

They agree on parameters λ, , 𝑚, 𝑤, 𝑛, 𝑙1 and a hash

function 𝐻1: {0,1}∗ → {0,1}𝑙1 , a pseudorandom function

𝐹: {0,1}𝜆||{0,1}𝑙1 → {0,1, … , 𝑚 − 1}𝑤 . The parties

generate a secret 𝑘 = {0,1}𝜆 and keep it hidden from the
dealer.

1. Precomputation

• Each 𝑃𝑖 samples 𝑡 − 1 random strings 𝑠 = {0,1}𝑤.

• Each 𝑃𝑖 chooses a random matrix 𝐴𝑖 of size
𝑚 × 𝑤, each entry of 𝐴𝑖 is a random number of

sizes 𝑟, where 𝐴𝑗
𝑖 denotes the j-th column of 𝐴𝑖 ,

where 1 ≤ 𝑗 ≤ 𝑤.

• Each 𝑃𝑖 , for each 𝑥𝑖,𝑙 ∈ 𝑋𝑖 , computes 𝑣 =

𝐹𝑘(𝐻1(𝑥𝑖,𝑙)), where 1 ≤ 𝑙 ≤ 𝑛𝑖, updates

𝐴𝑐[𝑣[𝑐]] = 0 for all 𝑐 ∈ [𝑤] by keeping rest of the

entries the same.

• Each party generates another random matrix 𝐵𝑖 ,
where 𝐵𝑖 shares zero entries with 𝐴𝑖 (that is,
each zero entry in 𝐴𝑖 appears in the same place
𝐵𝑖). The rest of the entries in 𝐵𝑖 are chosen at
random.

2. Zero Sharing

• Each 𝑃𝑖 generates 𝑡 − 1 matrices of size 𝑚 × 𝑤

called 𝐴𝑖,𝑟∗
, 1 ≤ 𝑟 < 𝑡 − 1, and fills with random

numbers, does the same thing again, and is

named as 𝐵𝑖,𝑟∗
.

• For each 0 appears in 𝐴𝑖 matrix at index (𝑎, 𝑏),
the party 𝑖 does the following:

- The party 𝑖 generates 𝑡 shares that satisfy:

0 = 𝑠ℎ1
𝑎,𝑏⨁𝑠ℎ2

𝑎,𝑏 … ⨁𝑠ℎ𝑡
𝑎,𝑏 (3)

-𝑃𝑖 keeps the first share to itself by updating

𝐴𝑎
𝑖 [𝑏] = 𝑠ℎ1

𝑎,𝑏 and 𝐵𝑎
𝑖 [𝑏] = 𝑠ℎ1

𝑎,𝑏 .

- 𝑃𝑖 sets rest of the shares to 𝐴𝑖,𝑟∗
 and 𝐵𝑖,𝑟∗

 at index
(𝑎, 𝑏) respectively to be used in Oblivous Transfer
later.

3. Oblivious Transfer

• Each 𝑃𝑖 does OT with the rest 𝑃\𝑃𝑖 ’s.

• The OT interaction, while 𝑃𝑖 will be taking the
role of the sender, the rest 𝑃𝑟 ∈ 𝑃\𝑃𝑖 takes the
role of the receiver, happens as follows:

-Party 𝑃𝑟 uses 𝑠𝑖,𝑐[1], … , 𝑠𝑖,𝑐[𝑤], while 𝑃𝑖 has the

column vectors (𝐴𝑖,𝑟∗
, 𝐵𝑖,𝑟∗

) as inputs. Here, we

have (𝐴𝑖,𝑟∗
, 𝐵𝑖,𝑟∗

), these matrices are composed of
the shares of entries of (𝐴𝑖 , 𝐵𝑖). Of course every

(𝐴𝑖,𝑟∗
, 𝐵𝑖,𝑟∗

) is different for different 𝑃𝑟 ’s (which
denotes the shares of entries to be sent to 𝑃𝑟 .

-Now, each party has a matrix 𝐶𝑖,𝑟 from their OT

interactions. Namely, 𝑃𝑖 has 𝐶𝑖,𝑟 whose columns

are either from 𝐴𝑖,𝑟∗
𝑜𝑟 𝐵𝑖,𝑟∗

 , where 𝑟 ≠ 𝑖 and has

𝐶𝑖,𝑖 = 𝐵𝑖,𝑖∗
 consisting of the shares holding for

himself. That is, for example, 𝑃1 keeps 𝑠ℎ1
𝑎,𝑏 for

himself, sends other sh’s to the other parties
where

0 = 𝑠ℎ1
𝑎,𝑏⨁𝑠ℎ2

𝑎,𝑏 … ⨁𝑠ℎ𝑡
𝑎,𝑏

(4)

• At the end each 𝑃𝑖 element-wise XOR their
obtained matrices and 𝐴𝑖 to construct 𝐶𝑖 , after
computation each 𝑃𝑖 sends 𝐶𝑖 to the Dealer,
where

𝐶𝑖 = 𝐴𝑖⨁𝐶𝑖,𝑗⨁𝐶𝑖,𝑗+1⨁ … ⨁𝐶𝑖,𝑡−1 (5)

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

73

4. Dealer Side and Requests

• The trusted dealer gathers all 𝐶’s and XOR them
to construct the final C by

𝐶 = 𝐶1⨁𝐶2⨁ … ⨁𝐶𝑡 . (6)

• Any party can act as a server and check an item
is whether inside the intersection or not by
sending previously calculated 𝑣 = 𝐹𝑘(𝐻1(𝑥𝑖,𝑙))

values to the Dealer. For simplicity, we think 𝑃1
acts like a server.

• The Dealer D checks 𝐶𝑐[𝑣[𝑐]] = 0 for all 𝑐 ∈ [𝑤],

if it encounters an entry other than 0 it means
the item is not inside the intersection. On the
other hand, if Dealer D checks that all items are
0, that means the item is inside the intersection.

In the end, Dealer D sends the output vector
(𝑑1, … , 𝑑𝑛) with the same order to Server 𝑃1
where bits represent an item whether inside the
intersection or not.

4. Complexity Analysis and Security of Our Mpsi
Protocol

4.1 Communication Complexity

There are two major contributions to the communication
complexity which are one from OT and the other from
communications with the server.

-There is 𝒕(𝒕 − 𝟏) number of OT interactions executed
during this protocol. Each party receives a matrix from
all other members. These interactions include 𝒎 ∗ 𝒘
matrix and matrix and if there the shares have length of
𝒓 bits, the communication cost from OT will be (𝒕 − 𝟏) ∗
𝒎 ∗ 𝒘 ∗ 𝒓.

-Each party sends its matrix 𝑪𝒊 of size 𝒎 ∗ 𝒘 to the server
to construct the final 𝑪. Same as before, if there are the
shares have a length of 𝒓 bits, the communication cost
from communications with the server will be 𝒎 ∗ 𝒘 ∗ 𝒓.

In the case that all the parties compute the intersection,
then for each party, the communicational complexity will
be 𝒕 ∗ 𝒎 ∗ 𝒘 ∗ 𝒓.

Choosing m and w play a crucial role in our construction
in the sense of security leaks and communication
overhead. As in [3], we set row size(m) to number of
data(n). Also, we fix column size(w) to statistical
parameter 𝜆 for all parties. We refer to reader the Miao’s
statistical explanations of how to choose m and w [3,30].
This makes our complexity 𝑡 ∗ 𝑛 ∗ 𝜆 ∗ 𝑟.

4.2. Computational Complexity

In the precomputation phase, for every element 𝑥 in each
data set, each party has to compute 𝑣 = 𝐹𝑘(𝐻1(𝑥)) which
requires 𝑛 calls of 𝐹 function, where 𝑛 = max {𝑛𝑖}. Each
party creates shares for at most 𝑚 ∗ 𝑤 entries. Then, each
party has to do 2(𝑡 − 1) OT interactions. Finally, each
party does (𝑡 − 1) matrix addition. The server makes 𝑡
matrix addition.

4.3. Security

Our protocol is secure according to the following
Theorem.

Theorem 5.1: If 𝐹 is a 𝑃𝑅𝐹, H is modelled as a random
oracle, and the underlying OT protocol is secure, for any

Figure 1: Our Multi-party private set intersection protocol when only 𝑷𝟏 outputs the
intersection.

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

74

coalition of fewer than 𝑡 clients including the server, our
MPSI has semi-honest security against an honest-but-
curious adversary.

The security of the protocol is due to the use of OT and
the zero-secret sharing protocol, as long as the parties
and the Dealer D follow the instruction of the protocol
which is aligned with the semi-honest security, no one
gets any information rather than the intersection. The
full proof will be provided later in the full version of the
paper.

5. Final Remarks and Comparison with Other
Protocols

5.1. Remarks

Remark 1: Our multi-party private set intersection
protocol relies on computationally fast primitives such as
hashing, oblivious transfers based on symmetric keys,
and bitwise-XOR operations.

Remark 2: As the number of parties participating in the
protocol increases, the communication and
computational complexity increases linearly for each
party. This makes our protocol scale well particularly
when there is a large number of participants in the setup.

Remark 3: The bottleneck of our protocol is the mesh
topology that arises from its design. To execute the
oblivious transfer section, every party needs to
communicate with the rest of the parties. The authors in
[29] proposed a multi-party PSI that is an extension of
the work of Chase and Miao’s [3] private set intersection
protocol. They employed Garbled Bloom Filters to their
protocol and this way parties interact with path-like
communication. Naturally, from the communication
perspective path-like topology is better than mesh
topology.

5.2. Comparison

Table 1: Comparison with the other protocols

Protocol

Communication Computation
#bits #operations

Server Client Server Client
[30] 𝒪(𝜆𝑡2𝑛) 𝒪(𝑡𝑛)
[22] 𝒪(𝑡𝑛𝜆) 𝒪(𝑛𝜆) 𝒪(𝑡𝑛𝑙𝑜𝑔(𝑛)) 𝒪(𝑛)

[2] 𝒪(𝑡𝑛𝜆) 𝒪(𝑛𝑙𝜆) 𝒪(𝑡𝜅) 𝒪(𝑙𝜅)
[17] 𝒪(𝑡𝑛𝜅𝑘) 𝒪(𝑡𝑛𝜅𝑘) 𝒪(𝑡𝑛𝜅𝑘) 𝒪(𝑡𝑛𝜅𝑘)
Sec. 3 𝒪(𝑡𝑛𝜆𝑟) 𝒪(𝑡𝑛𝜆𝑟) Negl 𝒪(𝑡𝜆)*

* In our construction, computational complexity heavily
depends on OT interactions. Oblivious transfers are
cryptographic primitives introduced by Rabin[26]. It
relies on public-key operations and this makes OTs
computationally expensive. However, Ishai [31]
proposed a method (OT-extension) that you can do a
number of oblivious transfers by using a few public-key
operations.

6. Implementation

We implemented and tested our protocol in Python in a
primary way. Our implementation confirms our

theoretical approach logically works. In order to do a
benchmark comparison with other protocols which have
already been implemented and are publicly available, we
plan to implement our code in C++ in the near future. In
this way, we can use the Oblivious Transfer Protocol
developed by Peter Rindal [32] where symmetric
primitives are used. For concrete analysis, the full code
will be available later.

7. Conclusion

In this paper, a novel MPSI protocol based on OPRFs and
the zero-secret sharing scheme is proposed. The key idea
of the construction is to extend OPRF-based Chase-
Miao’s PSI protocol [3] to multi parties. That is to say, we
take OPRFs idea that is used in two-party Chase-Miao’s
PSI protocol and use it in a multi-party set intersection
while the zero-secret sharing protects the privacy of the
parties. Also, the developed construction uses fast
primitives such as hashing, oblivious transfers based on
symmetric keys, and bitwise-XOR operations. These
primitives make the computational and communication
complexities of our protocol efficient which are both
linear in the number of parties (t𝜆 and t𝑛𝜆𝑟 respectively).
As future work, we plan to do benchmark
implementation of the scheme in C++ and remove the
Trusted Dealer D safely by keeping the parties’ input
secure.

8. References

[1] Pinkas, B., Schneider, T. and Zohner, M., “Faster
private set intersection based on {OT} extension”, 23rd
USENIX Security Symposium (USENIX Security 14), 2014,
797-812.
[2] Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., and
Trieu, N., “Practical multi-party private set intersection
from symmetric-key techniques”, 2017 ACM SIGSAC
Conference on Computer and Communications Security,
2017, 1257-1272.
[3] Chase, M., and Miao, P.,“Private set intersection in the
internet setting from lightweight oblivious PRF”, Annual
International Cryptology Conference, 2020, 34-63.
[4] Kolesnikov, V., Kumaresan, R., Rosulek, M., and Trieu,
N., ”Efficient batched oblivious PRF with applications to
private set intersection”, 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, 818-829.
[5] Pinkas, B., Schneider, T., Segev, G., and Zohner, M.,
“Phasing: Private set intersection using permutation-
based hashing”, 24th USENIX Security Symposium
(USENIX Security 15), 2015, 515-530.
[6] Pinkas, B., Rosulek, M., Trieu, N. and Yanai, A., “PSI
from PaXoS: fast, malicious private set intersection”,
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2020, 739-767.
[7] Trieu, N., Shehata, K., Saxena, P., Shokri, R. and Song,
D., “Epione: Lightweight contact tracing with strong
privacy”. arXiv preprint arXiv:2004.13293., 2020.
[8] Thomas, K., Pullman, J., Yeo, K., Raghunathan, A.,
Kelley, P. G., Invernizzi, L., ... and Bursztein, E., “Protecting
accounts from credential stuffing with password breach

Aslı Bay, Anıl Kayan
A new Multi-Party Private Set Intersection Protocol based on OPRFs

75

alerting”, 28th USENIX Security Symposium (USENIX
Security 19), 2019, 1556-1571.
[9] Internet: K. Opsahl, R. Reitman, The Disconcerting
Details: How Facebook Teams Up With Data Brokers to
Show You Targeted Ads,
https://www.eff.org/deeplinks/2013/04/disconcerting
-details-how-facebook-teams-data-brokers-show-you-
targeted-ads , 03.02.2022
[10] Shen, L., Chen, X., Wang, D., Fang, B. and Dong, Y.,
“Efficient and private set intersection of human
genomes”, 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 2018, 761-764.
[11] Freedman, M. J., Nissim, K. and Pinkas, B., “Efficient
private matching and set intersection”. International
Conference on the Theory and Applications of
Cryptographic Techniques, 2004, 1-19.
[12] De Cristofaro, E. and Tsudik, G., “Experimenting with
fast private set intersection”, International Conference on
Trust and Trustworthy, 2012, 55-73.
[13] Sang, Y. and Shen, H., ”Privacy preserving set
intersection based on bilinear groups”, The Thirty-first
Australasian conference on Computer science, 2008, 47-
54.
[14] Huang, Y., Evans, D. and Katz, J., “Private set
intersection: Are garbled circuits better than custom
protocols?”, NDSS. 19th Annual Network & Distributed
System Security Symposium, 2012.
[15] Yao, A. C. C., “How to generate and exchange secrets”,
27th Annual Symposium on Foundations of Computer
Science, 1986, 162-167.
[16] Kiss, Á., Liu, J., Schneider, T., Asokan, N. and Pinkas,
B., “Private Set Intersection for Unequal Set Sizes with
Mobile Applications”, Proceedings on Privacy Enhancing
Technologies, Vol. 4, 177-197, 2017.
[17] Inbar, R., Omri, E. and Pinkas, B., “Efficient scalable
multiparty private set-intersection via garbled bloom
filters”. International Conference on Security and
Cryptography for Networks, 2018, 235-252.
[18] Debnath, S. K. and Dutta, R., “Secure and efficient
private set intersection cardinality using bloom filter,
International Conference on Information Security, 2015,
209-226.
[19] Pinkas, B., Schneider, T., Tkachenko, O. and Yanai, A.,
“Efficient circuit-based PSI with linear communication”,
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2019, 122-153.
[20] Freedman, M. J., Nissim, K. and Pinkas, B., “Efficient
private matching and set intersection”. International
Conference on the Theory and Applications of
Cryptographic Techniques, 2004, 1-19.
[21] Kissner, L. and Song, D., “Privacy-preserving set
operations”, Annual International Cryptology Conference,
2005, 241-257.
[22] Hazay, C. and Venkitasubramaniam, M., “Scalable
multi-party private set-intersection”. IACR International
Workshop on Public Key Cryptography, 2017, 175-203.
[23] Goldreich O., "Secure multi-party computation",
Manuscript. Preliminary version 78, 1998.

[24] Miyaji, A., Nakasho, K. and Nishida, S., “Privacy-
preserving integration of medical data”, Journal of
Medical Systems, Vol. 41(3), 1-10, 2017.
[25] Binu V. P. and Sreekumar A., "Simple and efficient
secret sharing schemes for sharing data and image.",
International Journal of Computer Science and
Information Technologies, Vol. 6 (1), 404-409, 2015.
[26] M. O. Rabin, "How To Exchange Secrets with
Oblivious Transfer." IACR Eprint archive 2005/187,
2005.
[27] Kolesnikov, V. and Kumaresan, R., “Improved OT
extension for transferring short secrets”, Annual
Cryptology Conference, 2013, 54-70.
[28] Pinkas, B., Rosulek, M., Trieu, N. and Yanai, A., “SpOT-
light: lightweight private set intersection from sparse OT
extension”, Annual International Cryptology Conference,
2019, 401-431.
[29] Alireza K., Mohajeri J. and Mahmoud S., "Efficient
scalable multi-party private set intersection using
oblivious prf", International Workshop on Security and
Trust Management, 2021, 81-99.
[30] Cheon, J. H., Jarecki, S. and Seo, J. H., “Multi-party
privacy-preserving set intersection with quasi-linear
complexity”, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, Vol.
95(8), 1366-1378, 2012.
[31] Ishai, Y., Kilian, J., Nissim, K. and Petrank, E..
“Extending oblivious transfers efficiently”, Annual
International Cryptology Conference, 2013, 145-161.
[32] Internet: P. Rindal, A fast, portable, and easy to use
Oblivious Transfer Library, https://github.com/osu-
crypto/libOTe, 01.02.2022.

