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Abstract
The authors prove some new results on the asymptotic behavior of solutions of nth order
forced integro-differential equations with a β-Laplacian. The main goal is to investigate
when all solutions behave at infinity like certain nontrivial nonlinear functions. They
apply a technique involving Young’s inequality. The paper concludes with two examples
illustrating the applicability of the main results.
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1. Introduction
Consider the forced integro-differential equation(

a(t)
(
x′(t)

)β)(n−1)
= e(t) +

∫ t

c
(t − s)α−1f(s, x(s))ds, (1.1)

where β ≥ 1 is the ratio of odd positive integers, α ∈ (0, 1), c > 1, and n ∈ N. We assume
that:

(i) a : [c, ∞) → (0, ∞) and e : [c, ∞) → R are continuous functions;
(ii) f : [c, ∞) × R → R is continuous function and there exist a continuous function

m : [c, ∞) → (0, ∞) and positive numbers γ and τ with γ ≤ β such that

xf(t, x) ≤ m(t)tτ−1 |x|γ+1 .
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A function x : [c, ∞) → R is a solution of equation (1.1) if x ∈ C1 ([c, ∞),R), a (x′)β ∈
Cn−1 ([c, ∞),R), and x satisfies equation (1.1). Oscillation and nonoscillation of such
solutions are defined in the usual way.

In the last few decades, integral equations have gained considerably more attention
due to their applications in many engineering and scientific disciplines; they appear as
the mathematical models for systems and processes in areas such as physics, mechanics,
chemistry, aerodynamics, and the electrodynamics of complex media.

Oscillation and other asymptotic results for integral as well as integro-differential equa-
tions are relatively scarce in the literature; some recent results on various types of integral
equations can be found in [1, 3–12, 15–17]. It appears that there are no such results for
integral equations of the type (1.1). The main objective of this paper then is to establish
some new criteria for the asymptotic behavior of all solutions of equation (1.1). We also
investigate some new criteria on the asymptotic behavior of the nonoscillatory solutions
of equation (1.1) with τ = 1 in condition (ii).

2. Main results
To obtain our results in this paper, we shall make use of the following lemmas.

Lemma 2.1 (Young’s inequality [13]). If X and Y are nonnegative, δ > 1, and 1/δ +
1/δ∗ = 1, then

XY ≤ 1
δ

Xδ + 1
δ∗ Y δ∗

, (2.1)

where equality holds if and only if Y = Xδ−1.

Lemma 2.2 ([14,18]). Let β, γ, and p be positive constants such that
p(β − 1) + 1 > 0 and p(γ − 1) + 1 > 0.

Then ∫ t

0
(t − s)p(β−1) sp(γ−1)ds = tθB, t ≥ 0,

where

B := B [p(γ − 1) + 1, p(β − 1) + 1] and B[ξ, η] =
∫ 1

0
sξ−1(1 − s)η−1ds,

for ξ > 0, η > 0, and θ = p(β + γ − 2) + 1.

Lemma 2.3 ([2]). Let α and p be positive constants such that p(α − 1) + 1 > 0. Then,∫ t

0
(t − s)p(α−1)epsds ≤ Qept, t ≥ 0,

where
Q = Γ (1 + p(α − 1))

p1+p(α−1) ,

and
Γ(x) =

∫ ∞

0
sx−1e−sds, x > 0,

is the Euler-Gamma function.

For notational purpose, for any continuous function b : [c, ∞) → (0, ∞), it will be
convenient to set

gb(t) = (β − γ)
(

γγ

ββ

) 1
β−γ

(
mβ(t)
bγ(t)

) 1
β−γ

, (2.2)

and let
I(t, c) :=

∫ t

c
a−1/β(s)ds.
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We now give our first result on the asymptotic behavior of the nonoscillatory solutions
of equation (1.1).

Theorem 2.4. Let conditions (i)–(ii) hold and assume that there exist real numbers p > 1,
0 < α < 1, and τ = 2 − α − 1/p such that p(α − 1) + 1 > 0 and p(τ − 1) + 1 > 0. If there
is a continuous function b : [c, ∞) → (0, ∞) such that∫ ∞

c
bq(t)t(n−1)qIβq(t, c)dt < ∞, where q = p

p − 1
, (2.3)

lim
t→∞

|e(t)| < ∞, (2.4)
and

lim
t→∞

∫ t

c
(t − s)α−1sτ−1gb(s)ds < ∞, (2.5)

then every nonoscillatory solution x(t) of equation (1.1) satisfies

lim sup
t→∞

|x(t)|
t(n−1)/βI(t, c)

< ∞. (2.6)

Proof. Let x(t) be an eventually positive solution of equation (1.1), say x(t) > 0 for t ≥ t1
for some t1 ≥ c. It follows from (i)–(ii) and (1.1) that(

a(t)
(
x′(t)

)β)(n−1)
≤
∫ t1

c
(t − s)α−1|f(s, x(s))|ds + |e(t)|

+
∫ t

t1
(t − s)α−1 sτ−1

[
m(s)xγ(s) − b(s)xβ(s)

]
ds

+
∫ t

t1
(t − s)α−1 sτ−1b(s)xβ(s)ds. (2.7)

Applying (2.1) to
[
m(t)xγ(t) − b(t)xβ(t)

]
with

δ = β

γ
> 1, X = xγ(t), Y = γ

β

m(t)
b(t)

, and δ∗ = β

β − γ
,

we obtain

m(t)xγ(t) − b(t)xβ(t) = β

γ
b(t)

[
xγ(t)γ

β

m(t)
b(t)

− γ

β
(xγ(t))β/γ

]
= β

γ
b(t)

[
XY − 1

δ
Xδ
]

≤ β

γ
b(t)

( 1
δ∗ Y δ∗

)
=
(

β − γ

γ

)[
γ

β
m(t)

]β/(β−γ)
bγ/(γ−β)(t) := gb(t), (2.8)

where gb(t) is as in (2.2). Using (2.8) in (2.7) gives(
a(t)

(
x′(t)

)β)(n−1)
≤
∫ t1

c
(t1 − s)α−1 |f(s, x(s))| ds + |e(t)|

+
∫ t

t1
(t − s)α−1 sτ−1gb(s)ds

+
∫ t

t1
(t − s)α−1 sτ−1b(s)xβ(s)ds. (2.9)

In view of (2.4) and (2.5), it follows from (2.9) that(
a(t)

(
x′(t)

)β)(n−1)
≤ M1 +

∫ t

t1
(t − s)α−1 sτ−1b(s)xβ(s)ds := w(t)

for some constant M1 > 0. Integrating this inequality (n − 1)-times from t1 to t gives

a(t)
(
x′(t)

)β ≤ M2tn−2 + M3tn−1w(t) := Ω(t)
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for some positive constants M2 > 0 and M3 > 0. This can be written as

x′(t) ≤
(Ω(t)

a(t)

)1/β

. (2.10)

Noting that Ω(t) is an increasing function, it follows from (2.10) that

x(t) ≤ x(t1) + Ω1/β(t)
∫ t

t1
a−1/β(s)ds = x(t1) + Ω1/β(t)I(t, t1)

=
[

x(t1)
I(t, t1)

+ Ω1/β(t)
]

I(t, t1)

≤
[

x(t1)
I(t2, t1)

+ Ω1/β(t)
]

I(t, t1) (2.11)

for t ≥ t2 and all t2 > t1. From (2.11), we obtain
x(t)

I(t, t1)
≤ M4 + Ω1/β(t) for t ≥ t2, (2.12)

where M4 = x(t1)/I(t2, t1) > 0. Applying the elementary inequality
(A + B)µ ≤ 2µ−1(Aµ + Bµ), A, B ≥ 0 and µ ≥ 1, (2.13)

to (2.12) gives (
x(t)

I(t, t1)

)β

≤ 2β−1(M4)β + 2β−1Ω(t) for t ≥ t2. (2.14)

In view of the definition of Ω(t), it follows from (2.14) that(
x(t)

I(t, t1)

)β

≤ 2β−1(M4)β + 2β−1
[
M2tn−2 + M3tn−1w(t)

]
,

from which we see that (
x(t)

t(n−1)/βI(t, t1)

)β

≤ M5 + 2β−1M3w(t) (2.15)

for some constant M5 > 0. In view of the definition of w(t), it follows from (2.15) that(
x(t)

t(n−1)/βI(t, t1)

)β

≤ M6 + M7

∫ t

t1
(t − s)α−1 sτ−1b(s)xβ(s)ds, (2.16)

where M6 = M5 + 2β−1M1M3 and M7 = 2β−1M3. Applying Hölder’s inequality and
Lemma 2.2 to the integral on the right in (2.16), we obtain∫ t

t1
(t − s)α−1 sτ−1b(s)xβ(s)ds ≤

(∫ t

t1
(t − s)p(α−1) sp(τ−1)ds

)1/p (∫ t

t1
bq(s)xβq(s)ds

)1/q

≤
(∫ t

0
(t − s)p(α−1) sp(τ−1)ds

)1/p (∫ t

t1
bq(s)xβq(s)ds

)1/q

≤ (Btθ)1/p
(∫ t

t1
bq(s)xβq(s)ds

)1/q

= B1/p
(∫ t

t1
bq(s)xβq(s)ds

)1/q

, (2.17)

where
B = B [p(τ − 1) + 1, p(α − 1) + 1] , and θ = p(τ + α − 2) + 1 = 0.

Using (2.17) in (2.16), we obtain

z(t) :=
(

x(t)
t(n−1)/βI(t, t1)

)β

≤ 1 + M6 + M8

(∫ t

t1
bq(s)xβq(s)ds

)1/q

, (2.18)
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where M8 = M7B1/p > 0. Employing again inequality (2.13), we obtain from (2.18) that

zq(t) ≤ 2q−1(1 + M6)q + 2q−1M q
8

∫ t

t1
bq(s)xβq(s)ds,

which, in view of the left hand side of (2.18), can be written as

zq(t) ≤ 2q−1(1 + M6)q + 2q−1M q
8

∫ t

t1
bq(s)s(n−1)qIβq(s, t1)zq(s)ds. (2.19)

Setting P1 = 2q−1(1 + M6)q, Q1 = 2q−1M q
8 , and w(t) = zq(t) so that z(t) = w1/q(t),

inequality (2.19) becomes

w(t) ≤ P1 + Q1

∫ t

t1
bq(s)s(n−1)qIβq(s, t1)w(s)ds.

By Gronwall’s inequality and (2.3), we see that w(t) is bounded. Thus,

lim sup
t→∞

x(t)
t(n−1)/βI(t, t1)

< ∞,

which is what we wanted to show.
The proof in case x(t) is eventually negative is similar. This completes the proof of the

theorem. �
We now give our second result on the asymptotic behavior of nonoscillatory solutions

of (1.1).

Theorem 2.5. Let condition (i) and condition (ii) with τ = 1 hold, and assume that there
exist p > 1 and 0 < α < 1 such that p(α − 1) + 1 > 0. If, in addition to (2.3) and (2.4),
there is a continuous function b : [c, ∞) → (0, ∞) such that

lim
t→∞

∫ t

c
(t − s)α−1gb(s)ds < ∞,

then every nonoscillatory solution x(t) of equation (1.1) satisfies

lim sup
t→∞

e−t/β|x(t)|
t(n−1)/βI(t, c)

< ∞.

Proof. Let x(t) be an eventually positive solution of equation (1.1), say x(t) > 0 for t ≥ t1
for some t1 ≥ c. Proceeding exactly as in the proof of Theorem 2.4, we again arrive at
(2.16) with τ = 1, namely,(

x(t)
t(n−1)/βI(t, t1)

)β

≤ M6 + M7

∫ t

t1
(t − s)α−1 b(s)xβ(s)ds. (2.20)

Applying Hölder’s inequality and Lemma 2.3 to the integral on the right hand side, we
obtain∫ t

t1
(t − s)α−1b(s)xβ(s)ds =

∫ t

t1

[
(t − s)α−1 es

] [
e−sb(s)xβ(s)

]
ds

≤
(∫ t

t1
(t − s)p(α−1) epsds

)1/p (∫ t

t1
e−qsbq(s)xβq(s)ds

)1/q

≤
(∫ t

0
(t − s)p(α−1) epsds

)1/p (∫ t

t1
e−qsbq(s)xβq(s)ds

)1/q

≤ (Qept)1/p
(∫ t

t1
e−qsbq(s)xβq(s)ds

)1/q

= Q1/pet
(∫ t

t1
e−qsbq(s)xβq(s)ds

)1/q

. (2.21)
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Using (2.21) in (2.20), we obtain

z(t) :=
(

x(t)
t(n−1)/βet/βI(t, t1)

)β

≤ 1 + M9 + M10

(∫ t

t1
e−qsbq(s)xβq(s)ds

)1/q

, (2.22)

where M9 an upper bound for M6e−t, and M10 = M7Q1/p > 0. Employing inequality
(2.13) again, (2.22) becomes

zq(t) ≤ 2q−1(1 + M9)q + 2q−1M q
10

∫ t

t1
e−qsbq(s)xβq(s)ds,

which can be written as

zq(t) ≤ 2q−1(1 + M9)q + 2q−1M q
10

∫ t

t1
bq(s)s(n−1)qIβq(s, t1)zq(s)ds. (2.23)

Setting P2 = 2q−1(1 + M9)q, Q2 = 2q−1M q
10, and w(t) = zq(t), inequality (2.23) becomes

w(t) ≤ P2 + Q2

∫ t

t1
bq(s)s(n−1)qIβq(s, t1)w(s)ds.

The conclusion follows from Gronwall’s inequality and (2.3), that is,

lim sup
t→∞

e−t/βx(t)
t(n−1)/βI(t, t1)

< ∞.

This completes the proof of the theorem. �

We conclude this paper with two examples to illustrate our results.

Example 2.6. Consider the fourth order integro-differential equation

(
t(x′(t))3

)′′′
= e−t sin 3t +

∫ t

8
(t − s)−1/2e−4ss−1/6x5/3(s)ds, t ≥ 8. (2.24)

Here we have α = 1/2, c = 8, β = 3, a(t) = t, e(t) = e−t sin 3t, f(t, x(t)) = e−4tt−1/6x5/3(t),
and γ = 5/3. Then

I(t, c) = I(t, 8) =
∫ t

8
s−1/3ds = 3

2
(t2/3 − 4).

Letting p = 3/2, we see that q = 3, p(α − 1) + 1 = 1/4 > 0, τ = 2 − α − 1/p = 5/6 and
p(τ −1)+1 = 3/4 > 0. Letting m(t) = b(t) = e−4t, we see that (ii) holds and gb(t) = ke−4t

with k > 0. Since

∫ ∞

c
bq(t)t(n−1)qIβq(t, t1)dt ≤

(3
2

)9 ∫ ∞

8

t15

e12t
dt < ∞,
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condition (2.3) holds. It can be easily seen that condition (2.4) is satisfied. To see that
(2.5) holds, note that letting u = t − s + 8, the integral becomes∫ t

8
(t − s)−1/2s−1/6ke−4sds

≤ −k8−1/6
∫ 8

t
(u − 8)−1/2e4u−4t−32du

≤ k√
2e4t+32

∫ t

8
(u − 8)−1/2e4udu

= k√
2e4t+32

[∫ 16

8
(u − 8)−1/2e4udu +

∫ t

16
(u − 8)−1/2e4udu

]
= k√

2e4t+32

[
lim

b→8+

∫ 16

b
(u − 8)−1/2e4udu

]
+ k√

2e4t+32

[∫ t

16
(u − 8)−1/2e4udu

]

≤ ke64
√

2e4t+32 lim
b→8+

∫ 16

b
(u − 8)−1/2du + k (16 − 8)−1/2

√
2e4t+32

∫ t

16
e4udu

= k25/2e64
√

2e4t+32 + k2−7/2
√

2e4t+32

(
e4t − e64

)
< ∞ as t → ∞,

so (2.5) holds. Since all conditions of Theorem 2.4 are satisfied, we may conclude that
every nonoscillatory solution x(t) of equation (2.24) satisfies (2.6), that is,

lim sup
t→∞

|x(t)|
t(n−1)/βI(t, c)

= lim sup
t→∞

|x(t)|
3
2 t(t2/3 − 4)

< ∞.

Example 2.7. Consider the fourth order integro-differential equation(
t(x′(t))3

)′′′
= e−4t cos 3t +

∫ t

8
(t − s)−1/2e−4sx5/3(s)ds, t ≥ 8. (2.25)

Here we have α = 1/2, c = 8, β = 3, a(t) = t, e(t) = e−4t cos 3t, and f(t, x(t)) =
e−4tx5/3(t). Proceeding as in Example 2.1, we can easily see that all conditions of Theorem
2.5 are satisfied, and so every nonoscillatory solution of equation (2.25) satisfies

lim sup
t→∞

e−t/β|x(t)|
t(n−1)/βI(t, c)

= lim sup
t→∞

e−t/3|x(t)|
3
2 t(t2/3 − 4)

< ∞.
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