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Abstract. The current paper establishes the sharp weak bounds of p-adic

fractional Hardy operator. Furthermore, optimal weak type estimates for p-
adic Hardy operator on central Morrey space are also acquired.

1. Introduction

For every non-zero rational number x there is a unique k = k(x) ∈ Z such that
x = pks/t, where p ≥ 2 is a fixed prime number which is coprime to s, t ∈ Z. We
define a mapping |.|p : Q → R+ as follows:

|x|p =

{
p−k if x ̸= 0,

0 if x = 0.
(1)

The p-adic norm | · |p undergoes many properties of the usual real norm | · | with
an additional non-Archimedean property,

|x+ y|p ≤ max{|x|p, |y|p}. (2)

The field of p-adic numbers, denoted by Qp, is the completion of rational numbers
with respect to the p-adic norm | · |p. A p-adic number x ∈ Qp can be written in
the formal power series as (see [30]):

x = pk(α0 + α1p+ α2p
2 + ...) (3)
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where αi, k ∈ Z, α0 ̸= 0, αi ∈ {0, 1, 2, ..., p−1}, i = 1, 2, · · ·. The p-adic norm ensures
the convergence of series (3) in Qp, because |pkαip

i|p ≤ p−k−i.
The n-dimensional vector spaceQn

p , n ≥ 1, consists of tuples x = (x1, x2, . . . , xn),
where xj ∈ Qp and j = 1, 2, . . . , n. The norm on this space is given by

|x|p = max
1≤j≤n

|xj |p.

In non-Archimedean geometry, the ball and its boundary are defined, respec-
tively, as:

Bk(a) = {x ∈ Qn
p : |x− a|p ≤ pk}, Sk(a) = {x ∈ Qn

p : |x− a|p = pk}.

For convenience we denote Bk(0)and Sk(0) by Bk and Sk, respectively.
The local compactness and commutativity of the group Qn

p under addition im-
plies the existence of Haar measure dx on Qn

p , such that∫
B0

dx = |B0|H = 1,

where the notation |B|H refers to the Haar measure of a measurable subset B of Qn
p .

Furthermore, it is not hard to see that |Bk(a)|H = pnk, |Sk(a)|H = pnk(1 − p−n),
for any a ∈ Qn

p .
Let w(x) be a nonnegative locally integrable function on Qn

p and w(E) the

weighted measure of measurable subset E ⊂ Qn
p , that is w(E) =

∫
E
w(x)dx re-

spectively. The space of all complex-valued functions f with norm conditions:

∥f∥Lr(w;Qn
p )

=

(∫
Qn

p

|f(x)|rw(x)dx
)1/r

< ∞,

is denoted by Lr(w,Qn
p ), (0 < r < ∞), and is known as weighted Lebesgue space.

Note that Lr(1,Qn
p ) = Lr(Qn

p ).
In [22], authors have defined the weighted p-adic weak Lebesgue space Lr,∞(w;Qn

p )
by

∥f∥Lr,∞(w,Qn
p )

= sup
µ>0

µw

(
{x ∈ Qn

p : |f(x)| > µ}
)1/r

< ∞.

When w = 1, we get the weak Lebesgue space Lr,∞(Qn
p ) defined in [32]. Next, we

give the relevant p-adic function spaces.

Definition 1. [34] Suppose 1 < r < ∞ and µ ∈ R. The p-adic space Ḃr,µ(Qn
p ) is

the set of all measurable functions f : Qn
p → R which satisfy

∥f∥Ḃr,µ(Qn
p )

= sup
γ∈Z

(
1

|Bγ |1+µr
H

∫
Bγ

|f(x)|rdx
)1/r

< ∞.

When µ = −1/r, then

Ḃr,µ(Qn
p ) = Lr(Qn

p ). It is easy to see that Ḃr,µ(Qn
p ) is reduced to {0} whenever

µ < −1/r.
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Definition 2. [35] Suppose µ ∈ R and 1 < r < ∞. The p-adic space WḂr,µ(Qn
p )

is defined as

WḂr,µ(Qn
p ) = {f : ∥f∥WḂr,µ(Qn

p )
< ∞},

where

∥f∥WḂr,µ(Qn
p )

= sup
γ∈Z

|Bγ |−µ−1/r
H ∥f∥WLr(Bγ),

and ∥f∥WLr(Bγ) is the local p-adic Lr-norm of f(x) restricted to the ball Bγ , that
is

∥f∥WLr(Bγ) = sup
µ>0

|{x ∈ Bγ : |f(x)| > µ}|1/r.

Evidently, if µ = −1/r, then WḂr,µ(Qn
p ) = Lr,∞(Qn

p ). Also, Ḃ
r,µ(Qn

p ) ⊆ WḂr,µ(Qn
p )

for −1/r < µ < 0 and 1 ≤ r < ∞.

In the last several decades, a growing interest to p-adic models have been seen
because p-adic analysis is a natural base for development of various models of
ultrametric diffusion energy landscape [4]. It also attracts great deal of interest
towards quantum mechanics [30], theoretical biology [11], quantum gravity [1, 7],
string theory [31], spin glass theory [3, 26]. In [4], it was shown that the p-adic
analysis can be efficiently applied both to relaxation in complex speed systems
and processes combined with the relaxation of a complex environment. Besides,
the applications of p-adic analysis can be found in harmonic analysis and pseudo-
differential equations, see for example [5, 9, 10,21,28,29].

The one-dimensional Hardy operator

Hf(x) =
1

x

∫ x

0

f(t)dt, x > 0, (4)

has been introduced by Hardy in [18] for measurable functions f : R+ → R+. This
operator satisfies the inequality

∥Hf∥Lr(R+) ≤
r

r − 1
∥f∥Lr(R+), 1 < r < ∞, (5)

where the constant r/(r − 1) is sharp.
In [12], Faris has proposed an extension of the Hardy operator H on higher

dimensional Euclidean space Rn by

Hf(x) =
1

|x|n

∫
|t|≤|x|

f(t)dt. (6)

where |x| = (
∑n

i=1 x
2
i )

1/2 for x = (x1, · · ·, xn). In addition, Christ and Grafakos [8]
have obtained the exact value of the norm of (6). For more details related to Hardy
type operators and, in particular, to boundedness of these operators, we refer to
publications [6, 13,19,23,24,27,36,39].

On the other hand, the fractional Hardy operator is obtained by merely writing
| · |n−α (0 ≤ α < n) instead of | · |n with in (6). The weak type estimates for the
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fractional Hardy type operators has also spotlighted many researchers in the past,
see for example [2, 13,15,16,20,37,38].

In what follows, the higher dimensional fractional Hardy operator in the p-adic
field

Hp
αf(x) =

1

|x|n−α
p

∫
|t|p≤|x|p

f(t)dt, x ∈ Qn
p \ {0}.

has been defined and studied for 0 ≤ α < n and f ∈ Lloc(Qn
p ) in [33]. When α = 0,

the operator Hp
α transfers to the p-adic Hardy operator (see [14]). Fu et al. in [14]

have acquired the optimal bounds of p-adic Hardy operator on Lebesgue spaces.
For more details, we refer the publications [17,22,25,34] and the references therein.

The purpose of the current paper is to study the sharp weak bounds for fractional
Hardy operator in the p-adic field on p-adic Lebesgue space. Moreover, we also
discuss the optimal weak type estimates for Hardy operator in the p-adic field on
central Morrey spaces.

2. Sharp weak bounds for p-adic fractional Hardy Operator on
Lebesgue spaces

Our main result for this section is as follows.

Theorem 1. Suppose 0 < α < n and n+ γ > 0. If f ∈ L1(Qn
p ), then

∥Hp
αf∥L(n+γ)/(n−α),∞(|x|γp ;Qn

p )
≤C∥f∥L1(Qn

p )
,

where the constant

C =

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

is optimal.

Proof. We have

|Hp
αf(x)| =

∣∣∣∣ 1

|x|n−α
p

∫
|t|p≤|x|p

f(t)dt

∣∣∣∣
≤|x|−(n−α)

p ∥f∥L1(Qn
p )
. (7)

Let C1 = ∥f∥L1(Qn
p )
, then

{x ∈ Qn
p : |Hp

αf(x)| > µ} ⊂ {x ∈ Qn
p : |x|p < (C1/µ)

1/(n−α)}.
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Thus,

∥Hp
αf∥L(n+γ)/(n−α),∞(|x|γp ;Qn

p )

≤ sup
µ>0

µ

(∫
Qn

p

χ{x∈Qn
p :|H

p
αf(x)|>µ}(x)|x|γpdx

)(n−α)/(n+γ)

≤ sup
µ>0

µ

(∫
Qn

p

χ{
x∈Qn

p :|x|p<
(
C1/µ

)1/(n−α)}(x)|x|γpdx)(n−α)/(n+γ)

=sup
µ>0

µ

(∫
|x|p<

(
C1/µ

)1/(n−α)
|x|γpdx

)(n−α)/(n+γ)

=sup
µ>0

µ

( logp

(
C1/µ

)1/(n−α)∑
j=−∞

∫
Sj

|x|γpdx
)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
µ>0

µ

( logp

(
C1/µ

)1/(n−α)∑
j=−∞

pj(n+γ)dx

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
µ>0

µ

(
C1

µ

)
≤
(

1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

∥f∥L1(|x|βp ). (8)

To show that the constant (
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

,

appeared in (8) is optimal, we proceed as, consider

f0(x) = χ{x∈Qn
p :|x|p≤1}(x),

then

∥f0∥L1(Qn
p )

= 1.

Also,

Hp
αf0(x) =

1

|x|n−α
p

∫
|t|p≤|x|p

f0(t)dt

=
1

|x|n−α
p

∫
|t|p≤|x|p

χ{x∈Qn
p :|t|p≤1}(t)dt

=
1

|x|n−α
p

{∫
|t|p≤|x|p dt, |x|p ≤ 1;∫
|t|p≤1

dt, |x|p > 1.
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Since |Blogp |x|p |H = |x|np |B0|H , therefore,

Hp
αf0(x) =

{
|x|αp , |x|p ≤ 1;

|x|α−n
p , |x|p > 1.

Now,

{x ∈ Qn
p : |Hp

αf0(x)| > µ} ={|x|p ≤ 1 : |x|αp > µ} ∪ {|x|p > 1 : |x|α−n
p > µ}.

Since 0 < α < n, therefore, when µ ≥ 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > µ} = ∅,

and when 0 < µ < 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > µ} = {x ∈ Qn
p : (µ)1/α < |x|p < (1/µ)1/n−α}.

Ultimately we are down to:

∥Hp
αf0∥L(n+γ)/(n−α))),∞(|x|γp ;Qn

p )

= sup
0<µ<1

µ

(∫
Qn

p

χ{x∈Qn
p :(µ)

1/α<|x|p<(1/µ)1/(n−α)}(x)|x|γpdx
)(n−α)/(n+γ)

= sup
0<µ<1

µ

(∫
(µ)1/α<|x|p<(1/µ)1/(n−α)

|x|γpdx
)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

( logp µ1/(α−n)∑
j=logp µ1/α+1

pj(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

(
p(logp µ1/α+1)(n+γ) − p(logp µ1/(α−n)+1)(n+γ)

1− p(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

(
µ(n+γ)/α − µ(n+γ)/(α−n)

p−(n+γ) − 1

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

(
1− µ(n+γ)/αµ(n+γ)/(n−α)

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
0<µ<1

(
1− µ(n+γ)/αµ(n+γ)/(n−α)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

∥f0∥L1(Qn
p )
. (9)
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We thus conclude from (8) and (9) that

∥Hp
α∥L1(Qn

p )→L(n+γ)/(n−α),∞(|x|γp ;Qn
p )

=

(
1− p−n

1− p−(n+γ)

)1/q

.

□

3. Optimal Weak Type Estimates for p-adic Hardy Operator on
Weak Central Morrey Spaces

In the current section we investigate the boundedness of p-adic Hardy operator
on p-adic weak central Morrey spaces. It is shown the constant obtained in this
case is also optimal.

Theorem 2. Suppose −1/r ≤ µ < 0, 1 ≤ r < ∞ and if f ∈ Ḃr,µ(Qn
p ), then

∥Hpf∥WḂr,µ(Qn
p )

≤ ∥f∥Ḃr,µ(Qn
p )
,

and the constant 1 is optimal.

Proof. Applying Hölder’s inequality, we obtain

|Hpf(x)| ≤ 1

|x|np

(∫
B(0,|x|p)

|f(t)|rdt
)1/r(∫

B(0,|x|p)
dt

)1/r′

=|x|nµp ∥f∥Ḃr,µ(Qn
p )
.

Let C2 = ∥f∥Ḃr,µ(Qn
p )
. Since µ < 0, we have

∥Hpf∥WḂr,µ(Qn
p )

≤ sup
γ∈Z

sup
y>0

y|Bγ |−µ−1/r
H

∣∣{x ∈ Bγ : C2|x|nµp > y}
∣∣1/r

=sup
γ∈Z

sup
y>0

y|Bγ |−µ−1/r
H

∣∣{|x|p ≤ pγ : |x|p < (y/C2)
1/nµ}

∣∣1/r.
If γ ≤ logp(y/C2)

1/nµ, then for µ < 0, we obtain

sup
y>0

sup
γ≤logp(y/C2)1/nµ

y|Bγ |−µ−1/r
H

∣∣{|x|p ≤ pγ : |x|p < (y/C2)
1/nµ}

∣∣1/r
≤ sup

y>0
sup

γ≤logp(y/C2)1/nµ

tp−γnµ

= C2

≤ ∥f∥Ḃr,µ(Qn
p )
.
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If γ > logp(y/C2)
1/nµ, then for µ+ 1/r > 0, we get

sup
y>0

sup
γ>logp(y/C2)1/nµ

y|Bγ |−µ−1/r
H |{|x|p ≤ pγ : |x|p < (y/C2)

1/nµ}|1/r

≤ sup
y>0

sup
γ>logp(y/C2)1/nµ

yp−γn(µ+1/r)(y/C2)
1/rµ

= C2

≤ ∥f∥Ḃr,µ(Qn
p )
.

Therefore,

∥Hpf∥WḂr,µ(Qn
p )

≤ ∥f∥Ḃr,µ(Qn
p )
. (10)

Conversely, to prove that the constant 1 is optimal, consider

f0(x) = χ{|x|p≤1}(x),

then,

∥f0∥Ḃq,µ(Qn
p )

= sup
γ∈Z

(
1

|Bγ |1+µr
H

∫
Bγ

χ{|x|p≤1}(x)dx

)1/r

.

If γ < 0, then

sup
γ∈Z
γ<0

(
1

|Bγ |1+µr
H

∫
Bγ

dx

)1/r

= sup
γ∈Z
γ<0

p−nγµ = 1,

since µ < 0. If γ ≥ 0, then using the condition that µ+ 1/r > 0, we have

sup
γ∈Z
γ≥0

(
1

|Bγ |1+µr
H

∫
B0

dx

)1/r

= sup
γ∈Z
γ≥0

p−nγ(µ+1/r) = 1.

Therefore,
∥f0∥Ḃr,µ(Qn

p )
= 1.

Moreover,

Hpf0(x) =

{
1, |x|p ≤ 1;

|x|−n
p , |x|p > 1,

which implies that |Hpf0(x)| ≤ 1. Next, in order to construct weak central Morrey
norm we divide our analysis into following two cases:
Case 1. When γ ≤ 0, then

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y|{x ∈ Bγ : 1 > y}|1/r = pnγ/r,

and

∥Hpf0∥WḂr,µ(Qn
p )

= sup
γ≤0

|Bγ |−µ−1/r
H ∥f∥WLr(Bγ) = sup

γ≤0
p−nγµ = 1 = ∥f0∥Ḃr,µ(Qn

p )
.
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Case 2. When γ > 0, we have

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y|{x ∈ B0 : 1 > y} ∪ {1 < |x|p < pγ : |x|−n
p > y}|1/r.

For further analysis, this case is further divided into the following subcases:
Case 2(a). If 1 < γ < logp y

−1/n, then

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y{1 + pnγ − 1}1/r = sup
0<t≤1

tpnγ/r.

Case 2(b). If 1 < logp y
−1/n < γ, then:

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y(1 + y−1 − 1)1/r = sup
0<y≤1

y1−1/r.

Now, for 1 ≤ r < ∞ and −1/r ≤ µ < 0, from case 2(a) and 2(b), we obtain

∥Hpf0∥WḂr,µ(Qn
p )

= max

{
sup

0<y≤1
sup

1<γ≤logp(1/y)
−1/n

yp−nγµ, sup
0<y≤1

sup
1<logp(1/y)

−1/n<γ

y1−1/rp−nγ(µ+1/r)

}
= max

{
sup

0<y≤1
t1+µ, sup

0<y≤1
y1+µ

}
= 1 = ∥f0∥Ḃr,µ(Qn

p )
. (11)

Finally, using (10) and (11), we arrive at:

∥H∥Ḃr,µ(Qn
p )→WḂr,µ(Qn

p )
= 1.

□
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