http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 71, Number 4, Pages 919–929 (2022) DOI:10.31801/cfsuasmas.1076462 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: February 20, 2022; Accepted: May 1, 2022

SHARP WEAK BOUNDS FOR *p*-ADIC HARDY OPERATORS ON *p*-ADIC LINEAR SPACES

Amjad HUSSAIN¹, Naqash SARFRAZ² and Ferit GURBUZ³

¹Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, PAKISTAN ²Department of Mathematics University of Kotli Azad Jammu and Kashmir, PAKISTAN ³Hakkari University, Faculty of Education, Department of Mathematics Education, Hakkari 30000, TURKEY

ABSTRACT. The current paper establishes the sharp weak bounds of *p*-adic fractional Hardy operator. Furthermore, optimal weak type estimates for *p*-adic Hardy operator on central Morrey space are also acquired.

1. INTRODUCTION

For every non-zero rational number x there is a unique $k = k(x) \in \mathbb{Z}$ such that $x = p^k s/t$, where $p \ge 2$ is a fixed prime number which is coprime to $s, t \in \mathbb{Z}$. We define a mapping $|.|_p : \mathbb{Q} \to \mathbb{R}_+$ as follows:

$$|x|_{p} = \begin{cases} p^{-k} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$
(1)

The *p*-adic norm $|\cdot|_p$ undergoes many properties of the usual real norm $|\cdot|$ with an additional non-Archimedean property,

$$x + y|_{p} \le \max\{|x|_{p}, |y|_{p}\}.$$
(2)

The field of *p*-adic numbers, denoted by \mathbb{Q}_p , is the completion of rational numbers with respect to the *p*-adic norm $|\cdot|_p$. A *p*-adic number $x \in \mathbb{Q}_p$ can be written in the formal power series as (see [30]):

$$x = p^{k}(\alpha_{0} + \alpha_{1}p + \alpha_{2}p^{2} + ...)$$
(3)

©2022 Ankara University Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 42B35, 26D15, 46B25, 47G10.

Keywords. Sharp bounds, boundedness, p-adic weak type spaces, p-adic fractional Hardy operator.

ahabbasi123@yahoo.com; 00000-0002-5840-0846

²naqashawesome@gmail.com; ⁰0000-0002-0705-8462

feritgurbuz@hakkari.edu.tr-Corresponding author; 00000-0003-3049-688X.

where $\alpha_i, k \in \mathbb{Z}, \alpha_0 \neq 0, \alpha_i \in \{0, 1, 2, ..., p-1\}, i = 1, 2, \cdots$. The *p*-adic norm ensures the convergence of series (3) in \mathbb{Q}_p , because $|p^k \alpha_i p^i|_p \leq p^{-k-i}$.

The *n*-dimensional vector space \mathbb{Q}_p^n , $n \ge 1$, consists of tuples $\mathbf{x} = (x_1, x_2, \ldots, x_n)$, where $x_j \in \mathbb{Q}_p$ and $j = 1, 2, \ldots, n$. The norm on this space is given by

$$\mathbf{x}|_p = \max_{1 \le j \le n} |x_j|_p.$$

In non-Archimedean geometry, the ball and its boundary are defined, respectively, as:

$$B_k(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{Q}_p^n : |\mathbf{x} - \mathbf{a}|_p \le p^k \}, \ S_k(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{Q}_p^n : |\mathbf{x} - \mathbf{a}|_p = p^k \}.$$

For convenience we denote $B_k(\mathbf{0})$ and $S_k(\mathbf{0})$ by B_k and S_k , respectively.

The local compactness and commutativity of the group \mathbb{Q}_p^n under addition implies the existence of Haar measure $d\mathbf{x}$ on \mathbb{Q}_p^n , such that

$$\int_{B_0} d\mathbf{x} = |B_0|_H = 1,$$

where the notation $|B|_H$ refers to the Haar measure of a measurable subset B of \mathbb{Q}_p^n . Furthermore, it is not hard to see that $|B_k(\mathbf{a})|_H = p^{nk}$, $|S_k(\mathbf{a})|_H = p^{nk}(1-p^{-n})$, for any $\mathbf{a} \in \mathbb{Q}_p^n$.

Let $w(\mathbf{x})$ be a nonnegative locally integrable function on \mathbb{Q}_p^n and w(E) the weighted measure of measurable subset $E \subset \mathbb{Q}_p^n$, that is $w(E) = \int_E w(x) dx$ respectively. The space of all complex-valued functions f with norm conditions:

$$\|f\|_{L^r(w;\mathbb{Q}_p^n)} = \left(\int_{\mathbb{Q}_p^n} |f(\mathbf{x})|^r w(\mathbf{x}) d\mathbf{x}\right)^{1/r} < \infty,$$

is denoted by $L^r(w, \mathbb{Q}_p^n), (0 < r < \infty)$, and is known as weighted Lebesgue space. Note that $L^r(1, \mathbb{Q}_p^n) = L^r(\mathbb{Q}_p^n)$.

In [22], authors have defined the weighted *p*-adic weak Lebesgue space $L^{r,\infty}(w; \mathbb{Q}_p^n)$ by

$$\|f\|_{L^{r,\infty}(w,\mathbb{Q}_p^n)} = \sup_{\mu>0} \mu w \left(\left\{ \mathbf{x} \in \mathbb{Q}_p^n : |f(\mathbf{x})| > \mu \right\} \right)^{1/r} < \infty.$$

When w = 1, we get the weak Lebesgue space $L^{r,\infty}(\mathbb{Q}_p^n)$ defined in [32]. Next, we give the relevant p-adic function spaces.

Definition 1. [34] Suppose $1 < r < \infty$ and $\mu \in \mathbb{R}$. The p-adic space $\dot{B}^{r,\mu}(\mathbb{Q}_p^n)$ is the set of all measurable functions $f: \mathbb{Q}_p^n \to \mathbb{R}$ which satisfy

$$\|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} = \sup_{\gamma \in \mathbb{Z}} \left(\frac{1}{|B_\gamma|_H^{1+\mu r}} \int_{B_\gamma} |f(\mathbf{x})|^r d\mathbf{x} \right)^{1/r} < \infty$$

When $\mu = -1/r$, then

 $\dot{B}^{r,\mu}(\mathbb{Q}_p^n) = L^r(\mathbb{Q}_p^n)$. It is easy to see that $\dot{B}^{r,\mu}(\mathbb{Q}_p^n)$ is reduced to $\{0\}$ whenever $\mu < -1/r$.

Definition 2. [35] Suppose $\mu \in \mathbb{R}$ and $1 < r < \infty$. The p-adic space $WB^{r,\mu}(\mathbb{Q}_p^n)$ is defined as

$$W\dot{B}^{r,\mu}(\mathbb{Q}_p^n) = \{f : \|f\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} < \infty\},\$$

where

$$||f||_{W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} = \sup_{\gamma \in \mathbb{Z}} |B_{\gamma}|_H^{-\mu-1/r} ||f||_{WL^r(B_{\gamma})},$$

and $||f||_{WL^r(B_\gamma)}$ is the local p-adic L^r -norm of f(x) restricted to the ball B_γ , that is

$$||f||_{WL^{r}(B_{\gamma})} = \sup_{\mu > 0} |\{\mathbf{x} \in B_{\gamma} : |f(\mathbf{x})| > \mu\}|^{1/r}.$$

Evidently, if $\mu = -1/r$, then $W\dot{B}^{r,\mu}(\mathbb{Q}_p^n) = L^{r,\infty}(\mathbb{Q}_p^n)$. Also, $\dot{B}^{r,\mu}(\mathbb{Q}_p^n) \subseteq W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)$ for $-1/r < \mu < 0$ and $1 \leq r < \infty$.

In the last several decades, a growing interest to p-adic models have been seen because p-adic analysis is a natural base for development of various models of ultrametric diffusion energy landscape [4]. It also attracts great deal of interest towards quantum mechanics [30], theoretical biology [11], quantum gravity [1,7], string theory [31], spin glass theory [3, 26]. In [4], it was shown that the p-adic analysis can be efficiently applied both to relaxation in complex speed systems and processes combined with the relaxation of a complex environment. Besides, the applications of p-adic analysis can be found in harmonic analysis and pseudodifferential equations, see for example [5,9,10,21,28,29].

The one-dimensional Hardy operator

$$Hf(x) = \frac{1}{x} \int_0^x f(t)dt, \quad x > 0,$$
(4)

has been introduced by Hardy in [18] for measurable functions $f : \mathbb{R}^+ \to \mathbb{R}^+$. This operator satisfies the inequality

$$\|Hf\|_{L^{r}(\mathbb{R}^{+})} \leq \frac{r}{r-1} \|f\|_{L^{r}(\mathbb{R}^{+})}, \quad 1 < r < \infty,$$
(5)

where the constant r/(r-1) is sharp.

In [12], Faris has proposed an extension of the Hardy operator H on higher dimensional Euclidean space \mathbb{R}^n by

$$Hf(\mathbf{x}) = \frac{1}{|\mathbf{x}|^n} \int_{|\mathbf{t}| \le |\mathbf{x}|} f(\mathbf{t}) d\mathbf{t}.$$
 (6)

where $|\mathbf{x}| = (\sum_{i=1}^{n} x_i^2)^{1/2}$ for $\mathbf{x} = (x_1, \dots, x_n)$. In addition, Christ and Grafakos [8] have obtained the exact value of the norm of (6). For more details related to Hardy type operators and, in particular, to boundedness of these operators, we refer to publications [6, 13, 19, 23, 24, 27, 36, 39].

On the other hand, the fractional Hardy operator is obtained by merely writing $|\cdot|^{n-\alpha}$ $(0 \le \alpha < n)$ instead of $|\cdot|^n$ with in (6). The weak type estimates for the

fractional Hardy type operators has also spotlighted many researchers in the past, see for example [2, 13, 15, 16, 20, 37, 38].

In what follows, the higher dimensional fractional Hardy operator in the p-adic field

$$H^p_{lpha}f(\mathbf{x}) = rac{1}{|\mathbf{x}|_p^{n-lpha}} \int_{|\mathbf{t}|_p \le |\mathbf{x}|_p} f(\mathbf{t}) d\mathbf{t}, \qquad \mathbf{x} \in \mathbb{Q}_p^n \setminus \{\mathbf{0}\}.$$

has been defined and studied for $0 \leq \alpha < n$ and $f \in L_{\text{loc}}(\mathbb{Q}_p^n)$ in [33]. When $\alpha = 0$, the operator H^p_{α} transfers to the *p*-adic Hardy operator (see [14]). Fu et al. in [14] have acquired the optimal bounds of *p*-adic Hardy operator on Lebesgue spaces. For more details, we refer the publications [17,22,25,34] and the references therein.

The purpose of the current paper is to study the sharp weak bounds for fractional Hardy operator in the *p*-adic field on *p*-adic Lebesgue space. Moreover, we also discuss the optimal weak type estimates for Hardy operator in the *p*-adic field on central Morrey spaces.

2. Sharp weak bounds for *p*-adic fractional Hardy Operator on Lebesgue spaces

Our main result for this section is as follows.

Theorem 1. Suppose $0 < \alpha < n$ and $n + \gamma > 0$. If $f \in L^1(\mathbb{Q}_p^n)$, then

$$\|H^p_{\alpha}f\|_{L^{(n+\gamma)/(n-\alpha),\infty}(|\mathbf{x}|^{\gamma}_p;\mathbb{Q}^n_p)} \leq C \|f\|_{L^1(\mathbb{Q}^n_p)},$$

where the constant

$$C = \left(\frac{1 - p^{-n}}{1 - p^{-(n+\gamma)}}\right)^{(n-\alpha)/(n+\gamma)}$$

is optimal.

Proof. We have

$$|H^{p}_{\alpha}f(\mathbf{x})| = \left| \frac{1}{|\mathbf{x}|_{p}^{n-\alpha}} \int_{|\mathbf{t}|_{p} \le |\mathbf{x}|_{p}} f(\mathbf{t}) d\mathbf{t} \right|$$
$$\leq |\mathbf{x}|_{p}^{-(n-\alpha)} ||f||_{L^{1}(\mathbb{Q}_{p}^{n})}.$$
(7)

Let $C_1 = ||f||_{L^1(\mathbb{Q}_p^n)}$, then

$$\{\mathbf{x} \in \mathbb{Q}_p^n : |H_\alpha^p f(\mathbf{x})| > \mu\} \subset \{\mathbf{x} \in \mathbb{Q}_p^n : |\mathbf{x}|_p < (C_1/\mu)^{1/(n-\alpha)}\}.$$

Thus,

$$\begin{split} \|H_{\alpha}^{p}f\|_{L^{(n+\gamma)/(n-\alpha),\infty}(|x|_{p}^{\gamma};\mathbb{Q}_{p}^{n})} \\ &\leq \sup_{\mu>0} \mu \bigg(\int_{\mathbb{Q}_{p}^{n}} \chi_{\{\mathbf{x}\in\mathbb{Q}_{p}^{n}:|H_{\alpha}^{p}f(\mathbf{x})|>\mu\}}(\mathbf{x})|\mathbf{x}|_{p}^{\gamma}d\mathbf{x} \bigg)^{(n-\alpha)/(n+\gamma)} \\ &\leq \sup_{\mu>0} \mu \bigg(\int_{\mathbb{Q}_{p}^{n}} \chi_{\{\mathbf{x}\in\mathbb{Q}_{p}^{n}:|\mathbf{x}|_{p}<\left(C_{1}/\mu\right)^{1/(n-\alpha)}\}}(\mathbf{x})|\mathbf{x}|_{p}^{\gamma}d\mathbf{x} \bigg)^{(n-\alpha)/(n+\gamma)} \\ &= \sup_{\mu>0} \mu \bigg(\int_{|\mathbf{x}|_{p}<\left(C_{1}/\mu\right)^{1/(n-\alpha)}} \int_{S_{j}} |\mathbf{x}|_{p}^{\gamma}d\mathbf{x} \bigg)^{(n-\alpha)/(n+\gamma)} \\ &= (1-p^{-n})^{(n-\alpha)/(n+\gamma)} \sup_{\mu>0} \mu \bigg(\sum_{j=-\infty}^{\log_{p}\left(C_{1}/\mu\right)^{1/(n-\alpha)}} p^{j(n+\gamma)}d\mathbf{x} \bigg)^{(n-\alpha)/(n+\gamma)} \\ &= \bigg(\frac{1-p^{-n}}{1-p^{-(n+\gamma)}} \bigg)^{(n-\alpha)/(n+\gamma)} \sup_{\mu>0} \mu \bigg(\frac{C_{1}}{\mu} \bigg) \\ &\leq \bigg(\frac{1-p^{-n}}{1-p^{-(n+\gamma)}} \bigg)^{(n-\alpha)/(n+\gamma)} \|f\|_{L^{1}(|\mathbf{x}|_{p}^{\beta})}. \end{split}$$
(8)

To show that the constant

$$\left(\frac{1-p^{-n}}{1-p^{-(n+\gamma)}}\right)^{(n-\alpha)/(n+\gamma)},$$

appeared in (8) is optimal, we proceed as, consider

$$f_0(\mathbf{x}) = \chi_{\{\mathbf{x} \in \mathbb{Q}_p^n : |\mathbf{x}|_p \le 1\}}(\mathbf{x}),$$

 then

$$||f_0||_{L^1(\mathbb{Q}_p^n)} = 1.$$

Also,

$$\begin{split} H^p_{\alpha}f_0(\mathbf{x}) = & \frac{1}{|\mathbf{x}|_p^{n-\alpha}} \int_{|\mathbf{t}|_p \le |\mathbf{x}|_p} f_0(\mathbf{t}) d\mathbf{t} \\ = & \frac{1}{|\mathbf{x}|_p^{n-\alpha}} \int_{|\mathbf{t}|_p \le |\mathbf{x}|_p} \chi_{\{\mathbf{x} \in \mathbb{Q}_p^n : |\mathbf{t}|_p \le 1\}}(\mathbf{t}) d\mathbf{t} \\ = & \frac{1}{|\mathbf{x}|_p^{n-\alpha}} \begin{cases} \int_{|\mathbf{t}|_p \le |\mathbf{x}|_p} d\mathbf{t}, & |\mathbf{x}|_p \le 1; \\ \int_{|\mathbf{t}|_p \le 1} d\mathbf{t}, & |\mathbf{x}|_p > 1. \end{cases} \end{split}$$

Since $|B_{\log_p |\mathbf{x}|_p}|_H = |\mathbf{x}|_p^n |B_0|_H$, therefore,

$$H^p_{\alpha}f_0(\mathbf{x}) = \begin{cases} |\mathbf{x}|^{\alpha}_p, & |\mathbf{x}|_p \leq 1; \\ |\mathbf{x}|^{\alpha-n}_p, & |\mathbf{x}|_p > 1. \end{cases}$$

Now,

$$\{ \mathbf{x} \in \mathbb{Q}_p^n : |H_\alpha^p f_0(\mathbf{x})| > \mu \} = \{ |\mathbf{x}|_p \le 1 : |\mathbf{x}|_p^\alpha > \mu \} \cup \{ |\mathbf{x}|_p > 1 : |\mathbf{x}|_p^{\alpha-n} > \mu \}.$$

Since $0 < \alpha < n$, therefore, when $\mu \ge 1$, then

$$\{\mathbf{x} \in \mathbb{Q}_p^n : |H^p_{\alpha} f_0(\mathbf{x})| > \mu\} = \emptyset,$$

and when $0 < \mu < 1$, then

$$\{\mathbf{x} \in \mathbb{Q}_p^n : |H_{\alpha}^p f_0(\mathbf{x})| > \mu\} = \{\mathbf{x} \in \mathbb{Q}_p^n : (\mu)^{1/\alpha} < |\mathbf{x}|_p < (1/\mu)^{1/n-\alpha}\}.$$

Ultimately we are down to:

$$\begin{split} \|H_{\alpha}^{p}f_{0}\|_{L^{(n+\gamma)/(n-\alpha))),\infty}(|\mathbf{x}|_{p}^{\gamma}, \mathbb{Q}_{p}^{n})} \\ &= \sup_{0 < \mu < 1} \mu \left(\int_{\mathbb{Q}_{p}^{n}} \chi_{\{\mathbf{x} \in \mathbb{Q}_{p}^{n}:(\mu)^{1/\alpha} < |\mathbf{x}|_{p} < (1/\mu)^{1/(n-\alpha)}\}}(\mathbf{x}) |\mathbf{x}|_{p}^{\gamma} d\mathbf{x} \right)^{(n-\alpha)/(n+\gamma)} \\ &= \sup_{0 < \mu < 1} \mu \left(\int_{(\mu)^{1/\alpha} < |\mathbf{x}|_{p} < (1/\mu)^{1/(n-\alpha)}} |\mathbf{x}|_{p}^{\gamma} d\mathbf{x} \right)^{(n-\alpha)/(n+\gamma)} \\ &= (1 - p^{-n})^{(n-\alpha)/(n+\gamma)} \sup_{0 < \mu < 1} \mu \left(\sum_{j=\log_{p} \mu^{1/\alpha} + 1}^{\log_{p} \mu^{1/(\alpha-n)}} p^{j(n+\gamma)} \right)^{(n-\alpha)/(n+\gamma)} \\ &= (1 - p^{-n})^{(n-\alpha)/(n+\gamma)} \sup_{0 < \mu < 1} \mu \left(\frac{p^{(\log_{p} \mu^{1/\alpha} + 1)(n+\gamma)} - p^{(\log_{p} \mu^{1/(\alpha-n)} + 1)(n+\gamma)}}{1 - p^{(n+\gamma)}} \right)^{(n-\alpha)/(n+\gamma)} \\ &= (1 - p^{-n})^{(n-\alpha)/(n+\gamma)} \sup_{0 < \mu < 1} \mu \left(\frac{\mu^{(n+\gamma)/\alpha} - \mu^{(n+\gamma)/(\alpha-n)}}{p^{-(n+\gamma)} - 1} \right)^{(n-\alpha)/(n+\gamma)} \\ &= (1 - p^{-n})^{(n-\alpha)/(n+\gamma)} \sup_{0 < \mu < 1} \left(\frac{1 - \mu^{(n+\gamma)/\alpha} \mu^{(n+\gamma)/(n-\alpha)}}{1 - p^{-(n+\gamma)}} \right)^{(n-\alpha)/(n+\gamma)} \\ &= \left(\frac{1 - p^{-n}}{1 - p^{-(n+\gamma)}} \right)^{(n-\alpha)/(n+\gamma)} \sup_{0 < \mu < 1} \left(1 - \mu^{(n+\gamma)/\alpha} \mu^{(n+\gamma)/(n-\alpha)} \right)^{(n-\alpha)/(n+\gamma)} \\ &= \left(\frac{1 - p^{-n}}{1 - p^{-(n+\gamma)}} \right)^{(n-\alpha)/(n+\gamma)} \|f_{0}\|_{L^{1}(\mathbb{Q}_{p}^{n})}. \end{split}$$

We thus conclude from (8) and (9) that

$$\|H^{p}_{\alpha}\|_{L^{1}(\mathbb{Q}^{n}_{p})\to L^{(n+\gamma)/(n-\alpha),\infty}(|\mathbf{x}|^{\gamma}_{p};\mathbb{Q}^{n}_{p})} = \left(\frac{1-p^{-n}}{1-p^{-(n+\gamma)}}\right)^{1/q}.$$

3. Optimal Weak Type Estimates for *p*-adic Hardy Operator on Weak Central Morrey Spaces

In the current section we investigate the boundedness of p-adic Hardy operator on p-adic weak central Morrey spaces. It is shown the constant obtained in this case is also optimal.

Theorem 2. Suppose $-1/r \leq \mu < 0, 1 \leq r < \infty$ and if $f \in \dot{B}^{r,\mu}(\mathbb{Q}_p^n)$, then

$$\|H^p f\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} \le \|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)},$$

and the constant 1 is optimal.

Proof. Applying Hölder's inequality, we obtain

$$\begin{aligned} |H^p f(\mathbf{x})| \leq & \frac{1}{|\mathbf{x}|_p^n} \left(\int_{B(0,|\mathbf{x}|_p)} |f(\mathbf{t})|^r d\mathbf{t} \right)^{1/r} \left(\int_{B(0,|\mathbf{x}|_p)} d\mathbf{t} \right)^{1/r'} \\ = & |\mathbf{x}|_p^{n\mu} \|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)}. \end{aligned}$$

Let $C_2 = ||f||_{\dot{B}^{r,\mu}(\mathbb{Q}_n^n)}$. Since $\mu < 0$, we have

$$\begin{split} \|H^{p}f\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_{p}^{n})} &\leq \sup_{\gamma \in \mathbb{Z}} \sup_{y > 0} y|B_{\gamma}|_{H}^{-\mu - 1/r} \big| \{\mathbf{x} \in B_{\gamma} : C_{2}|\mathbf{x}|_{p}^{n\mu} > y\} \big|^{1/r} \\ &= \sup_{\gamma \in \mathbb{Z}} \sup_{y > 0} y|B_{\gamma}|_{H}^{-\mu - 1/r} \big| \{|\mathbf{x}|_{p} \leq p^{\gamma} : |\mathbf{x}|_{p} < (y/C_{2})^{1/n\mu}\} \big|^{1/r}. \end{split}$$

If $\gamma \leq \log_p(y/C_2)^{1/n\mu}$, then for $\mu < 0$, we obtain

$$\begin{split} \sup_{y>0} \sup_{\gamma \le \log_p(y/C_2)^{1/n\mu}} y |B_{\gamma}|_H^{-\mu-1/r} |\{|\mathbf{x}|_p \le p^{\gamma} : |\mathbf{x}|_p < (y/C_2)^{1/n\mu}\}|^{1/r} \\ \le \sup_{y>0} \sup_{\gamma \le \log_p(y/C_2)^{1/n\mu}} tp^{-\gamma n\mu} \\ = C_2 \\ \le \|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)}. \end{split}$$

If $\gamma > \log_p(y/C_2)^{1/n\mu}$, then for $\mu + 1/r > 0$, we get

$$\begin{split} \sup_{y>0} \sup_{\gamma>\log_p(y/C_2)^{1/n\mu}} y |B_{\gamma}|_H^{-\mu-1/r} |\{|\mathbf{x}|_p \le p^{\gamma} : |\mathbf{x}|_p < (y/C_2)^{1/n\mu}\}|^{1/r} \\ \le \sup_{y>0} \sup_{\gamma>\log_p(y/C_2)^{1/n\mu}} y p^{-\gamma n(\mu+1/r)} (y/C_2)^{1/r\mu} \\ = C_2 \\ \le \|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)}. \end{split}$$

Therefore,

$$\|H^{p}f\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_{p}^{n})} \leq \|f\|_{\dot{B}^{r,\mu}(\mathbb{Q}_{p}^{n})}.$$
(10)

Conversely, to prove that the constant 1 is optimal, consider

$$f_0(\mathbf{x}) = \chi_{\{|\mathbf{x}|_p \le 1\}}(\mathbf{x}),$$

then,

$$\|f_0\|_{\dot{B}^{q,\mu}(\mathbb{Q}_p^n)} = \sup_{\gamma \in \mathbb{Z}} \left(\frac{1}{|B_\gamma|_H^{1+\mu r}} \int_{B_\gamma} \chi_{\{|\mathbf{x}|_p \le 1\}}(\mathbf{x}) d\mathbf{x} \right)^{1/r}.$$

If $\gamma < 0$, then

$$\sup_{\substack{\gamma \in \mathbb{Z} \\ \gamma < 0}} \left(\frac{1}{|B_{\gamma}|_{H}^{1+\mu r}} \int_{B_{\gamma}} d\mathbf{x} \right)^{1/r} = \sup_{\substack{\gamma \in \mathbb{Z} \\ \gamma < 0}} p^{-n\gamma\mu} = 1,$$

since $\mu < 0$. If $\gamma \ge 0$, then using the condition that $\mu + 1/r > 0$, we have

$$\sup_{\substack{\gamma \in \mathbb{Z} \\ \gamma \ge 0}} \left(\frac{1}{|B_{\gamma}|_{H}^{1+\mu r}} \int_{B_{0}} d\mathbf{x} \right)^{1/r} = \sup_{\substack{\gamma \in \mathbb{Z} \\ \gamma \ge 0}} p^{-n\gamma(\mu+1/r)} = 1.$$

Therefore,

$$||f_0||_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} = 1.$$

Moreover,

$$H^p f_0(\mathbf{x}) = \begin{cases} 1, & |\mathbf{x}|_p \le 1; \\ |\mathbf{x}|_p^{-n}, & |\mathbf{x}|_p > 1, \end{cases}$$

which implies that $|H^p f_0(\mathbf{x})| \leq 1$. Next, in order to construct weak central Morrey norm we divide our analysis into following two cases: Case 1. When $\gamma \leq 0$, then

$$||H^p f_0||_{WL^r(B_{\gamma})} = \sup_{0 < y \le 1} y |\{\mathbf{x} \in B_{\gamma} : 1 > y\}|^{1/r} = p^{n\gamma/r},$$

and

$$\|H^p f_0\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)} = \sup_{\gamma \le 0} |B_\gamma|_H^{-\mu-1/r} \|f\|_{WL^r(B_\gamma)} = \sup_{\gamma \le 0} p^{-n\gamma\mu} = 1 = \|f_0\|_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)}.$$

Case 2. When $\gamma > 0$, we have

$$\|H^p f_0\|_{WL^r(B_{\gamma})} = \sup_{0 < y \le 1} y |\{\mathbf{x} \in B_{\mathbf{0}} : 1 > y\} \cup \{1 < |\mathbf{x}|_p < p^{\gamma} : |\mathbf{x}|_p^{-n} > y\}|^{1/r}.$$

For further analysis, this case is further divided into the following subcases: Case 2(a). If $1 < \gamma < \log_n y^{-1/n}$, then

$$||H^p f_0||_{WL^r(B_\gamma)} = \sup_{0 < y \le 1} y \{1 + p^{n\gamma} - 1\}^{1/r} = \sup_{0 < t \le 1} t p^{n\gamma/r}.$$

Case 2(b). If $1 < \log_p y^{-1/n} < \gamma$, then:

$$\|H^p f_0\|_{WL^r(B_{\gamma})} = \sup_{0 < y \le 1} y(1 + y^{-1} - 1)^{1/r} = \sup_{0 < y \le 1} y^{1 - 1/r}.$$

Now, for $1 \le r < \infty$ and $-1/r \le \mu < 0$, from case 2(a) and 2(b), we obtain

$$\begin{aligned} \|H^{p}f_{0}\|_{W\dot{B}^{r,\mu}(\mathbb{Q}_{p}^{n})} &= \max\left\{\sup_{0 < y \leq 1} \sup_{1 < \gamma \leq \log_{p}(1/y)^{-1/n}} yp^{-n\gamma\mu}, \sup_{0 < y \leq 1} \sup_{1 < \log_{p}(1/y)^{-1/n} < \gamma} y^{1-1/r}p^{-n\gamma(\mu+1/r)}\right\} \\ &= \max\left\{\sup_{0 < y \leq 1} t^{1+\mu}, \sup_{0 < y \leq 1} y^{1+\mu}\right\} \\ &= 1 = \|f_{0}\|_{\dot{B}^{r,\mu}(\mathbb{Q}_{p}^{n})}. \end{aligned}$$
(11)

Finally, using (10) and (11), we arrive at:

$$||H||_{\dot{B}^{r,\mu}(\mathbb{Q}_p^n)\to W\dot{B}^{r,\mu}(\mathbb{Q}_p^n)}=1.$$

		-	
L			
L			
L			

Author Contribution Statements The authors contributed equally to this work. All authors read and approved the final copy of this paper.

Declaration of Competing Interests The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement The authors are thankful to the referees for making valuable suggestions leading to the better presentations of this paper.

References

- Aref'eva, I. Ya., Dragovich, B., Frampton, P. H., Volovich, I. V., The wave function of the universe and p-adic gravity, *Internat. J. Modern Phys. A*, 6(24) (1991), 4341–4358. https://doi.org/10.1142/S0217751X91002094
- [2] Asim, M, Hussain, A., Sarfraz, N., Weighted variable Morrey–Herz estimates for fractional Hardy operators, J. Ineq. Appl., 2022(2) (2022), 12 pp. https://doi.org/10.1186/s13660-021-02739-z

- [3] Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., Application of p-adic analysis to models of breaking of replica symmetry, J. Phys. A: Math. Gen., 32(50) (1999), 8785–8791. https://doi.org/10.1088/0305-4470/32/50/301
- [4] Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., Osipov, V. A., p-adic models of ultrametric diffusion constrained by hierarchical energy landscaapes, J. Phys. A:Math.Gen., 35(2) (2002), 177–189. https://doi.org/10.1088/0305-4470/35/2/301
- [5] Bandaliyev, R. A., Volosivets, S. S., Hausdorff operator on weighted Lebesgue and grand Lebesgue p-adic spaces, p-Adic Numbers Ultrametric Anal. Appl., 11(2) (2019), 114–122. https://doi.org/10.1134/S207004661902002X
- [6] Bliss, G. A., An integral inequality, J. London Math. Soc., 5(1) (1930), 40–46. https://doi.org/10.1112/jlms/s1-5.1.40
- Brekke, L., Freund, Peter, G. O., p-adic numbers in Physics, Phys. Rep., 233(1) (1993), 1–66. https://doi.org/10.1016/0370-1573(93)90043-D
- [8] Christ, M., Grafakos, L., Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123(6) (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6
- [9] Chuong, N. M., Egorov, Yu. V., Khrennikov, A., Meyer, Y., Mumford, D., Harmonic, wavelet and *p*-adic analysis. Including papers from the International Summer School held at Quy Nhon University of Vietnam, Quy Nhon, June 10–15, 2005. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. x+381 pp. ISBN: 978-981-270-549-5; 981-270-549-X. https://doi.org/10.1142/6373
- [10] Chuong, N. M., Hung, H. D., Maximal functions and weighted norm inequalities on local fields, *Appl. Comput. Harmon. Anal.*, 29(3) (2010), 272–286. https://doi.org/10.1016/j.acha.2009.11.002
- [11] Dubischar, D., Gundlach, V.M., Steinkamp, O., Khrennikov, A., A *p*-adic model for the process of thinking disturbed by physiological and information noise, *J. Theor. Biol.*, 197(4) (1999), 451–467. DOI: 10.1006/jtbi.1998.0887
- [12] Faris, W. G., Weak Lebesgue spaces and quantum mechanical binding, *Duke Math. J.*, 43(2) (1976), 365–373. DOI: 10.1215/S0012-7094-76-04332-5
- [13] Fu, Z. W., Grafakos, L., Lu, S. Z., Zhao, F. Y., Sharp bounds for *m*-linear Hardy and Hilbert operators, *Houston. J. Math.*, 38(1) (2012), 225–244.
- [14] Fu, Z. W., Wu, Q. Y., Lu, S. Z., Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya operators, Acta Math. Sin. (Engl. Ser.), 29(1) (2013), 137–150. https://doi.org/10.1007/s10114-012-0695-x
- [15] Gao, G., Zhao, F. Y., Sharp weak bounds for Hausdorff operators, Anal Math., 41(3) (2015), 163–173. https://doi.org/10.1007/s10476-015-0204-4
- [16] Gao, G., Hu, X., Zhang, C., Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7(3) (2016), 421–433. https://doi.org/10.1215/20088752-3605447
- [17] Gao, G., Zhong, Y., Some estimates of Hardy operators and their commutators on Morrey-Herz spaces, J. Math. Inequal., 11(1) (2017), 49–58. DOI: 10.7153/jmi-11-05
- [18] Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6(3-4) (1920), 314–317. https://doi.org/10.1007/BF01199965
- [19] Ho, K.-P., Hardy's inequality on Hardy–Morrey spaces, Georg. Math. J., 26(3) (2019), 405–413. https://doi.org/10.1515/gmj-2017-0046
- [20] Hussain A., Asim, M., Aslam, M., Jarad, F., Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Spaces, (2021), Art. ID 9705250, 10 pp. https://doi.org/10.1155/2021/9705250
- [21] Hussain, A., Sarfraz, N., The Hausdorff operator on weighted p-adic Morrey and Herz type spaces, p-Adic Numbers Ultrametric Anal. Appl., 11(2) (2019), 151–162. https://doi.org/10.1134/S2070046619020055

- [22] Hussain, A., Sarfraz, N., Optimal weak type estimates for p-adic Hardy operators, p-Adic Numbers Ultrametric Anal. Appl., 12(1) (2020), 29–38. https://doi.org/10.1134/S2070046620010033
- [23] Hussain, A., Ahmed, M., Weak and strong type estimates for the commutators of Hausdorff operator, Math. Inequal. Appl., 20(1) (2017), 49–56. DOI: 10.7153/mia-20-04
- [24] Hussain, A., Gao, G., Multidimensional Hausdorff operators and commutators on Herz-type spaces, J. Inequal. Appl., 2013(594) (2013), 12 pp. https://doi.org/10.1186/1029-242X-2013-594
- [25] Liu, R.H., Zhou, J., Sharp estimates for the p-adic Hardy type operator on higher-dimensional product spaces, J. Inequal. Appl., 2017(219) (2017), 13 pp. https://doi.org/10.1186/s13660-017-1491-z
- [26] Parisi, G., Sourlas, N., p-adic numbers and replica symmetry, Eur. Phys. J. B Condens. Matter Phys., 14(3) (2000), 535–542. https://doi.org/10.1007/s100510051063
- [27] Persson, L.-E., Samko, S. G., A note on the best constants in some hardy inequalities, J. Math. Inequal., 9(2) (2015), 437–447. DOI:10.7153/jmi-09-37
- [28] Sarfraz, N., Gürbüz, F., Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator, Int. J. Nonlinear Sci. Numer. Simul., 2021 (2021), 12 pp. https://dx.doi.org/10.1515/ijnsns-2020-0290
- [29] Sarfraz, N., Aslam, M., Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Math., 6(9) (2021), 9633–9646. DOI:10.3934/math.2021561
- [30] Vladimirov, V. S., Volovich, I. V., Zelenov, E. I., p-adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xx+319 pp. ISBN: 981-02-0880-4. https://doi.org/10.1142/1581
- [31] Vladimirov, V. S., Volovich, I. V., p-adic quantum mechanics, Commun. Math. Phy., 123 (1989), 659–676. https://doi.org/10.1007/BF01218590
- [32] Volosivets, S. S., Weak and strong estimates for rough Hausdorff type operator defined on p-adic linear space, p-Adic Numbers Ultrametric Anal. Appl., 9(3) (2017), 236–241. https://doi.org/10.1134/S2070046617030062
- [33] Wu, Q.Y., Boundedness for commutators of fractional p-adic Hardy operator, J. Inequal. Appl., 2012(293) (2012), 12pp. https://doi.org/10.1186/1029-242X-2012-293
- [34] Wu, Q. Y., Mi, L., Fu, Z. W., Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., (2013), Art. ID 359193, 10 pp. https://doi.org/10.1155/2013/359193
- [35] Wu, Q. Y., Fu, Z. W., Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces, J. Funct. Spaces, (2015), Art. ID 419532, 7 pp. https://doi.org/10.1155/2015/419532
- [36] Xiao, J., L^p and BMO bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl., 262(2) (2001), 660–666. https://doi.org/10.1006/jmaa.2001.7594
- [37] Yu, H., Li, J., Sharp weak bounds for n-dimensional fractional Hardy operators, Front. Math. China, 13(2) (2018), 449–457. https://doi.org/10.1007/s11464-018-0685-0
- [38] Zhao, F. Y., Lu, S. Z., The best bound for n-dimensional fractional Hardy operator, Math. Inequal Appl., 18(1) (2015), 233–240. DOI: 10.7153/mia-18-17
- [39] Zhao, F. Y., Fu, Z. W., Lu, S. Z., Endpoint estimates for n-dimensional Hardy operators and their commutators, *Sci. China Math.*, 55(10) (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0