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Abstract: In this study, the differential equation characterizations of constant breadth spacelike curves are given in the Minkowski
4-space E4

1 . Furthermore, a criterion for a spacelike curve to be a curve of constant breadth in E4
1 is introduced. As an example, the

obtained results are applied to the case that the curvatures k1,k2,k3 are constants and are discussed.
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1 Introduction

Euler introduced the constant breadth curves in 1778 [6]. He considered these special curves in the plane. Later, many
mathematicians have studied these curves. Struik published a brief review of the most important publications on this
subject [18]. Also, Ball [1], Barbier [2], Blaschke [3,4] and Mellish [12] investigated the properties of plane curves of
constant breadth. Fujiwara obtained a space curve of constant breadth by taking a closed curve whose normal plane at a
point P has only one more point Q in common with the curve, and for which the distance d(P,Q) is constant [7]. He also
defined and studied constant breadth surfaces. Later, Smakal studied the constant breadth space curves [17].
Furthermore, Blaschke considered the notion of curve of constant breadth on the sphere [4]. Moreover, Reuleaux studied
the curves of constant breadth and gave the method related to these curves for the kinematics of machinery [14]. Then,
constant breadth curves had an importance for engineering sciences and Tanaka used the constant breadth curves in the
kinematics design of Com follower systems [19].

Moreover, Köse has presented some concepts for constant breadth space curves in Euclidean 3-space in [10] and Sezer
has obtained the differential equations characterizing constant breadth space curves and introduced a criterion for these
curves [16]. Constant breadth curves were investigated by Mağden and Köse in Euclidean 4-space [11]. Moreover,
constant breath curves have been studied in Minkowski space. Kazaz, Önder and Kocayiğit have studied spacelike curves
of constant breadth in Minkowski 4-space [8]. Önder, Kocayiğit and Candan have obtained and studied the differential
equations characterizing constant breadth curves in Minkowski 3-space [13]. Furthermore, Kocayiğit and Önder have
showed that constant breadth spacelike curves are helices, normal curves and spherical curves in some special cases in
Minkowski 3-space [9].

In this study, we give differential equations characterizing spacelike curves of constant breadth in the Minkowski 4-space
E4

1 . Furthermore, we give a criterion characterizing these curves in E4
1 .
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2 Differential Equations Characterizing Constant Breadth Spacelike Curves in E4
1

Let (C) be a unit speed regular spacelike curve in the Minkowski 4-space E4
1 with parametrization α : I ⊂ IR → E4

1 .
Denote by {T, N, B,E} the moving Frenet frame along the spacelike curve (C) in E4

1 . Then, we can give following Frenet
formulae, 

T′

N′

B′

E′

=


0 k1 0 0
−ε1k1 0 k2 0
0 ε2k2 0 k3

0 0 ε1k3 0




T
N
B
E


where k1, k2 and k3 express the first, second and third curvatures of the curve (C), respectively and T, N, B,E express
tangent, principal normal, first binormal and second binormal, respectively and they satisfy the following equalities [20].

g(T,T) = 1, g(N,N) = ε1,g(E,E) = ε2, g(B,B) =−ε1ε2 ,

g(T,N) = g(T,B) = g(T,E) = g(N,B) = 0
ε1 = ε2 =∓1

where ⟨ ,⟩ is the Lorentzian inner product defined by

⟨a,b⟩=−a1b1 +a2b2 +a3b3 +a4b4,

here a = (a1,a2,a3,a4), b = (b1,b2,b3,b4) are the vectors in E4
1 .

Definition 2.1. Let (C) be a unit speed regular spacelike curve in E4
1 , and let α(s) position vector of the curve (C). If the

curve (C) has parallel tangents T and T∗ in opposite direction at the opposite points α(s) and α∗(s) of the curve and the
distance between opposite points is always constant then the curve (C) is named a spacelike curve of constant breadth in
E4

1 . Furthermore, a pair of spacelike curves (C) and (C∗), for which the tangent vectors at the corresponding points are in
opposite directions and parallel, and the distance between corresponding points is always constant, is called a spacelike
curve pair of constant breadth in E4

1 .

We suppose that (C) and (C∗) be a pair of unit speed spacelike curves in E4
1 with position vectors α(s) and α∗(s∗),

where s and s∗ are arc length parameters of the curves, respectively, and let (C) and (C∗) have parallel tangents in
opposite directions at the opposite points. Then the curve (C∗) may be represented by the equation

α∗(s) = α(s)+m1(s)T(s)+m2(s)N(s)+m3(s)B(s)+m4(s)E(s) (1)

where mi(s), (1 ≤ i ≤ 4) are differentiable functions of s. Differentiating Eq.(1) with respect to s and using the Frenet
formulae we gain

dα∗
ds = T∗ ds∗

ds =
(

1+ dm1
ds − ε1m2k1

)
T+

(
m1k1 +

dm2
ds + ε2m3k2

)
N

+
(

m2k2 +
dm3
ds + ε1k3m4

)
B+

(
m3k3 +

dm4
ds

)
E

Since T =−T∗ at the corresponding points of (C) and (C∗), we have


1+ dm1

ds − ε1m2k1 =− ds∗
ds ,

m1k1 +
dm2
ds + ε2m3k2 = 0,

m2k2 +
dm3
ds + ε1m4k3 = 0

m3k3 +
dm4
ds = 0

(2)
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We know that the curvature of the curve (C) is lim(∆φ/∆s)= (dφ/ds)= k1(s), where φ =
∫ s

0 k1(s)ds is the angle between
tangent vectors of the curve (C) and a given fixed direction at the point α(s). Then from (2) we have the following system

m′
1 = ε1m2 − f (ϕ) , m′

2 =−m3ε2ρk2 −m1, m′
3 =−m4ε1ρk3 −m2ρk2, m4′=−m3ρk3. (3)

Here and after we will use (′) to show the differentiation with respect to φ . In (3), f (φ) = ρ + ρ∗ and, ρ = 1
k1

and
ρ∗ = 1

k∗1
are the radius of curvatures at the points α(s) and α∗(s∗), respectively. From (3) eliminating m2, m3, m4 and

their derivatives we obtain following differential equation

d
dφ

[
ε2

ρk3
d

dφ

[
1

ρk2

(
ε1

d2m1
dφ2 +m1

)]
− k2

k3

dm1
dφ

]
− ε2

k3
k2

(
ε1

d2m1
dφ2 +m1

)
+ d

dφ

[
ε2

ρk3
d

dφ

(
1

ρk2
ε1

d f
dφ

)
− k2

k3
f
]
− ε2

k3
k2

ε1
d f
dφ = 0

(4)

Then, the following theorem can be given.

Theorem 2.1. The general differential equation characterizing constant breadth spacelike curves in E4
1 is given by (4).

Let now consider the system (3) again. The distance d between the opposite points is constant. Then we can write
following equality.

d2 = ∥d∥2 = ∥α∗−α∥2 = m2
1 + ε1m2

2 − ε1ε2m2
3 + ε2m2

4 = const. (5)

In addition, the system (3) can be written as follows:

f (φ) = ε1m2, m′
2 =−m3ε2ρk2, m′

3 =−ε1m4ρk3 −m2ρk2, m′
4 =−m3ρk3, m1 = 0, (6)

or
m′

1 = ε1m2, m′
2 =−m1 −m3ε2ρk2, m′

3 =−m4ε1ρk3 −m2ρk2, m4′=−m3ρk3, (7)

such that, the system (7) describes the curve (1).

Let us consider the system (7) with special chosen m1 = const. Here, eliminating first m1, m2, m3 and their derivatives,
and then m1, m2, m4 and their derivatives, respectively, we gain following linear differential equations of second order{

(ρk3)m4′′− (ρk3)
′ m′

4 − ε1 (ρk3)
3 m4 = 0, ρk2 ̸= 0,

(ρk3)m3′′− (ρk3) ′m′
3 − ε1 (ρk3)

3 m3 = 0, ρk3 ̸= 0.
(8)

By changing the variable φ of the form ξ =
φ∫
0

ρ (t)k3 (t)dt, Equations given by (8) can be transformed the differential

equations with constant coefficients as follows:

d2m4

dξ 2 − ε1m4 = 0 and
d2m3

dξ 2 − ε1m3 = 0 (9)

respectively. If ε1 = 1. Then, the general solutions of differential equations (9) are


m3 = Acosh

(φ∫
0

ρk3dt
)
+Bsinh

(φ∫
0

ρk3dt
)
,

m4 =C cosh
(φ∫

0
ρk3dt

)
+Dsinh

(φ∫
0

ρk3dt
) (10)
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respectively, where A,B,C and D are real constants. Substituting (10) into (7), we have A = −D, B = −C. Thus, the
solution set of the system (7), in the form


m1 = c = const., m2 = 0,

m3 = Acosh
φ∫
0

ρk3dt +Bsinh
φ∫
0

ρk3dt,

m4 =−Bcosh
φ∫
0

ρk3dt −Asinh
φ∫
0

ρk3dt

 (11)

d2 = ∥α∗−α∥2 = const.,so from (11) the breadth of the curve is k2 = c2 − ε2A2 + ε2B2. If ε1 = −1. Then, the general
solutions of differential equations (9) are

m3 = Acos
(φ∫

0
ρk3dt

)
+Bsin

(φ∫
0

ρk3dt
)
,

m4 =C cos
(φ∫

0
ρk3dt

)
+Dsin

(φ∫
0

ρk3dt
) (12)

respectively, where A,B,C and D are real constants. Substituting (12) into (7), we gain A = D, B =C. Thus, the solution
set of the system (7) can be written as 

m1 = c = const., m2 = 0,

m3 = Acos
φ∫
0

ρk3dt +Bsin
φ∫
0

ρk3dt,

m4 = Bcos
φ∫
0

ρk3dt −Asin
φ∫
0

ρk3dt

 (13)

d2 = ∥α∗−α∥2 = const.,so from (13) the breadth of the curve is k2 = c2 + ε2A2 + ε2B2.

Now, let us return to the system (6) with m1 = 0. By changing the variable φ of the form u =
φ∫
0

µ (t)dt, µ = ρk3 and

eliminating m1, m2, m4 and their derivatives we obtain the following linear differential equation

d2m3

du2 − ε1m3 =− d
du

(
k2

k3
m2

)
, (14)

If ε1 = 1, then we have following solution

m3 = A1 cosh

φ∫
0

ρk3dt +B1 sinh

φ∫
0

ρk3dt −
φ∫

0

cosh [u(φ)−u(t)]ρk2 f (t)dt. (15)

If ε =−1, then we have following solution

m3 = A1 cos

φ∫
0

ρk3dt +B1 sin

φ∫
0

ρk3dt +

φ∫
0

cos [u(φ)−u(t)]ρk2 f (t)dt (16)
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Then, the general solution of the system (6) is

m1 = 0,
m2 = ε1 f (φ),(ε1 =∓1)

m3 = A1 cosh
φ∫
0

ρk3dt +B1 sinh
φ∫
0

ρk3dt −
φ∫
0

cosh [u(φ)−u(t)]ρk2 f (t)dt,(ε1 = 1)

m3 = A1 cos
φ∫
0

ρk3dt +B1 sin
φ∫
0

ρk3dt +
φ∫
0

cos [u(φ)−u(t)]ρk2 f (t)dt,(ε1 =−1)

m4 =−B1 cosh
φ∫
0

ρk3dt −A1 sinh
φ∫
0

ρk3dt +
φ∫
0

sinh [u(φ)−u(t)]ρk2 f (t)dt,(ε1 = 1)

m4 = B1 cos
φ∫
0

ρk3dt −A1 sin
φ∫
0

ρk3dt −
φ∫
0

sin [u(φ)−u(t)]ρk2 f (t)dt (ε1 =−1) ,

(17)

which determines the constant breadth spacelike curve in (1) where A1, B1 are real constants.

Furthermore, in this case, i.e.,m1 = 0, from (4) we can write following differential equation

d
dφ

[
ε2

ρk3

d
dφ

(
1

ρk2

d f
dφ

)
− k2

k3
f
]
− ε1ε2

k3

k2

d f
dφ

= 0. (18)

By changing the variable φ of the form w =
φ∫
0

ρk2dφ , (18) becomes

d
dw

[
k2

k3
ε1

(
d2 f
dw2 − ε2 f

)]
− k3

k2

d f
dw

= 0, (19)

which also determines the constant breadth curve in (1).

On the other hand let us consider a unit speed simple closed spacelike curve (C) in E4
1 for which the normal plane of

every point P on the curve meets the curve of a single opposite point Q other than P. Then, we can give following
theorem related to spacelike curves of constant breadth in E4

1 .

Theorem 2.2. Let (C) be a closed spacelike curve in E4
1 having parallel tangents in opposite directions at the opposite

points of the curve. The chord joining the opposite points of (C) is a double-normal if and only if (C) is a constant
breadth spacelike curve in E4

1 .

Proof: Let the vector d = α∗−α = m1T+m2N+m3B+m4E be a double-normal of (C) where m1, m2, m3 and m4 are
the functions of s, the arc length parameter of the curve. Then we get ⟨d,T∗⟩ = −⟨d,T⟩ = m1 = 0. Thus from (2) we
have

m2
dm2

ds
+m3

dm3

ds
+m4

dm4

ds
= 0. (20)

It follows that ε1m2
2 − ε1ε2m2

3 + ε2m2
4 = const.

Conversely, if the curve (C) is a constant breadth spacelike curve in E4
1 then ∥d∥2 = m2

1 +ε1m2
2 −ε1ε2m2

3 +ε2m2
4 = const.

Then as shown, m1 = 0. This means that d is perpendicular to T and T∗. So, d is double normal of the curve (C).

A simple closed spacelike curve having parallel tangents in opposite directions at opposite points can be expressed by the
system (17). In this state, a pair of opposite points of the curve is (α∗(φ),α(φ)) for φ , where 0 ≤ φ ≤ 2π . Since the
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curve (C) is a simple closed spacelike curve we get α∗(0) = α∗(2π). Hence from (14) we have

2π∫
0

ρk3dt = 2nπ, (n ∈ Z). (21)

From the equality ds = ρdφ , this formula can be written as
∫
C

k3ds = 2nπ, (n ∈ Z). This says that the third integral

curvature of the curve (C) is zero. So, we can write following corollary.

Corollary 2.1. The total third curvature of a simple closed spacelike curve (C) of constant breadth is 2nπ, (n ∈ Z).

Furthermore, if we take k2
k3

= a = constant, then from (16) we have

d3 f
dw3 −K

d f
dw

= 0, . (22)

where K = ε2 +
1

ε1a2 . If we assume K ̸=±1, the general solution of (19) is

f = A2 sinh

φ∫
0

Kρk2dt +B2 cosh

φ∫
0

Kρk2dt +C1, (23)

where A2, B2 and C1 are real constants. Since the curve (C) is a simple closed spacelike curve, i.e., α∗(0) = α∗(2π), from
(23) it follows,

φ∫
0

Kρk2dt = 2nπ, (n ∈ Z). (24)

Using the equality ds = ρdφ , this formula may be given as
∫
C

k2ds = 2 n
K π, (K,n ∈ Z). This says that the second integral

curvature of the curve (C) is 2 n
K π, (K,n ∈ Z). Then, we can give the following corollary.

Corollary 2.2. The total second curvature of a simple closed spacelike curve (C) of constant breadth with
a = k2/k3 = constant is 2 n

K π , where n ∈ Z and K = ε2 +
1

ε1a2 .

3 A Criterion for Constant Breadth Spacelike Curves in E4
1

Let us suppose that the curve (C) is a constant breadth spacelike curve in E4
1 and α(s) denotes the position vector of the

curve. If (C) is a closed curve, then the position vector α(s) must be a periodic function of period ω = 2π , where ω is
the total length of (C). Then the curvatures k1(s), k2(s) and k3(s) are also periodic of the same period. However,
periodicity of the curvatures and closeness of the curve are not sufficient to guarantee that a spacelike space curve is a
constant breadth curve in E4

1 . That is, if a spacelike curve is closed curve (periodic), it may be the constant breadth curve
or not. Therefore, to guarantee that a spacelike curve is a constant breadth curve, we may use the system (7)
characterizing a constant breadth spacelike curve and follow the similar way given in [5].

For this purpose, first we condider the following Frenet formulas at a generic point on the curve (C),

dT
ds

= k1N ,
dN
ds

=−ε1k1T + k2B,
dB
ds

= ε2k2N+ k3E,
dE
ds

=−k3ε1B. (25)
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By expressing the formula (22) in terms of φ and allowing for dφ
ds = k1 =

1
ρ we have

dT
dφ

= N,
dN
dφ

=−ε1T +ρk2B,
dB
dφ

= ε2ρk2N+ρk3E,
dE
dφ

=−ρk3B. (26)

Moreover we can write the Frenet vectors T, N, B, E in the coordinate forms as

T =
4

∑
i=1

tiei, N =
4

∑
i=1

niei, B =
4

∑
i=1

biei, E =
4

∑
i=0

êiei. (27)

{T, N, B,E}is the orthonormal base in E4
1 . So, substituting (27) and their derivatives into (26), we get the systems of

linear differential equations
dt1
dφ = n1,

dt2
dφ = n2,

dt3
dφ = n3,

dt4
dφ = n4

dn1
dφ =−ε1t1 +ρk2b1,

dn2
dφ =−ε1t2 +ρk2b2,

dn3
dφ =−ε1t3 +ρk2b3,

dn4
dφ =−ε1t4 +ρk2b4

db1
dφ = ρk3ê1 + ε2ρk2n1,

db2
dφ = ρk3ê2 + ε2ρk2n2,

db3
dφ = ρk3ê3 + ε2ρk2n3,

db4
dφ = ρk3ê4 + ε2ρk2n4

dε1
dφ =−ρk3b1,

dε2
dφ =−ρk3b2,

dε3
dφ =−ρk3b3,

dε4
dφ =−ρk3b4

(28)

From (28), we find that {t1,n1,b1, ê1} , {t2,n2,b2, ê2} , {t3,n3,b3, ê3} ,{t4,n4,b4, ê4} are four independent solutions of the
following system of differential equations:

dψ1

dφ
= ψ2,

dψ2

dφ
=−ψ1 +ρk2ψ3,

dψ3

dφ
= ρk3ψ4 −ρk2ψ2,

dψ4

dφ
=−ρk3ψ3. (29)

If the curve (C) is the constant breadth spacelike curve, then the systems (7) and (29) must be the same system. So, we
observe that ψ1 = m1, ψ2 = m2, ψ3 = m3, ψ4 = m4. For brevity, we can express (7) or (29) in the form

dψ
dφ

= A(φ)ψ, (30)

where

ψ =


m1

m2

m3

m4

 , A(φ) =


0 1 0 0
−ε1 0 ρk2 0
0 ε2ρk2 0 ρk3

0 0 ε1ρk3 0

 .
Obviously, (30) is a special case of the general linear differential equations shortened to the form

dψ
dt = A(t)ψ,

φ =


m1

m2
...
mn

 , A(t) =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 , (4 ≤ n)
(31)

where ai j (t) are assumed to be periodic and continuous of period ω (See [5,15]). Let the initial conditions be ψi (0) =
xi, (i = 1,2, ...,n). Let us take x = [x1,x2, ...,xn]

T and

ψ (t,x) = [m1 (t,x) ,m2 (t,x) , . . .mn (t,x)]
T .
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Then the equation (31) may be written in the form dψ
dt = A(t)ψ, ψ (0) = x as is well known from [5], the solution ψ (t,x)

of this equation is periodic of period ω , if
ω∫

0

A(ξ )ψ (ξ ,x)dξ = 0,

and 

ψ (t,x) = {E +M (t)}x, (E = unit matrix) ,
M (t) = IA(t)+ I(2)A(t)+ · · ·+ I(n)A(t)+ · · · ,

(IA)(t) ≡ I(I)A(t) =
t∫

0
A(ξ )dξ(

I(n)A
)
(t) =

t∫
0

A(ξ )
(

I(n−1)A
)
(ξ )dξ , n > 1.

(32)

Moreover, the following theorem can be given in [5]:

Theorem 3.1. The equations dψ
dt = A(t)ψ possess a non-vanishing periodic solution of period ω , if and only if

det(M (ω)) = 0. In particular, in order that the equations dψ
dt = A(t)ψ possess n linearly independent periodic solutions

of period ω , the necessary and sufficient condition is that M (ω) be a zero matrix.

Now, let us apply this theorem to the system (30). If M (ω) = 0, there exist the unit vector functions T,N,B,E of period
ω , such that each set of functions {ti,ni,bi,εi} , (i = 1,2,3,4) form a solution of the equation (30) corresponding to the
initial conditions (Ai,Bi,Ci,Di). The curve (C) can be described as follows

α(s) =
s∫

0

T(s)ds or α(φ) =
φ∫

0

ρ(φ)T(φ)dφ .

Here, in order to find T, we can use the equation


ti
ni

bi

εi

= {E +M (φ)}


Ai

Bi

Ci

Di

 , (i = 1,2,3,4) , (33)

which is established by (29). If we take the initial conditions as ti (0) = Ai, ni (0) = Bi,
bi (0) = Ci, εi = Di, (i = 1,2,3,4) such that (A1,A2,A3,A4), (B1,B2,B3,B4), (C1,C2,C3,C4), (D1,D2,D3,D4) form an
orthonormal frame, then from (30) we gain

ti = (1+m11)Ai +m12Bi +m13Ci, m14Di; (i = 1,2,3,4). (34)

As the spacelike curve (C) is a constant breadth curve, which is also periodic of period ω , it is clear that

ω∫
0

ρtidφ = 0. (35)
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Hence, form (34) and (35), we have

Ai

ω∫
0

ρ (1+m11)dφ +Bi

ω∫
0

ρm12dφ +Ci

ω∫
0

ρm13dφ +Di

ω∫
0

ρm14dφ = 0; (i = 1,2,3,4).

Since the coefficient determinant ∆ ̸= 0 in this system, we have the equalities as

ω∫
0

ρ (1+m11)dφ = 0 =

ω∫
0

ρm12dφ =

ω∫
0

ρm13dφ =

ω∫
0

ρm14dφ , (36)

which are the conditions for a spacelike curve to be constant breadth curve in E4
1 . Here, we can take the period ω = 2π

because of 0 ≤ φ ≤ 2π . Thus we obtain the following corollary.

Corollary 3.1. Let (C) be a regular curve in E4
1 such that ρ(φ)> 0,k2(φ) and k3(φ) are continuous periodic functions of

period ω . Then (C) is a constant breadth spacelike curve and also periodic of period ω , if and only if

M (ω) = 0,
ω∫

0

ρ (1+m11)dφ = 0 =

ω∫
0

ρm12dφ =

ω∫
0

ρm13dφ =

ω∫
0

ρm14dφ, (37)

holds, where 

M (t) = IA(t)+ I(2)A(t)+ · · ·+ I(n)A(t)+ · · · ,

A(t) =


0 1 0 0
−ε1 0 ρk2 0
0 ε2ρk2 0 ρk3

0 0 ε1ρk3 0

 (38)

and mi j (t) are the entries of the matrixM (t) . From (32) and (38), the matrix M (t) can be constructed and each mi j involves
infinitely many integrations. Thus, we can give the conditions (37) in the following forms:

ω∫
0

ρ(φ)dφ −
ω∫
0

r∫
0

s∫
0

ε1ρ(φ)dsdtdφ +
ω∫
0

ϕ∫
0

p∫
0

r∫
0

s∫
0

ρ(φ)ε1 [ε1 − ε2λ (p)λ (s)]dtdsdrd pdφ −·· ·= 0

ω∫
0

s∫
0

ρ(φ)dtdφ −
ω∫
0

p∫
0

r∫
0

s∫
0

ρ(φ) [ε1 − ε2λ (t)λ (s)]dtdsdrdφ + · · ·= 0
ω∫
0

r∫
0

s∫
0

ρ(φ)λ (t)dtdsdφ

−
ω∫
0

ϕ∫
0

p∫
0

r∫
0

s∫
0

ρ(φ) [ε1λ (t) − ε2λ (p){λ (t)λ (s)+ ε1µ (t)µ (s)}]dtdsdrd pdφ + · · ·= 0
ω∫
0

p∫
0

r∫
0

s∫
0

ρ (φ)λ (s)µ (t)dtdsdrdφ

−
ω∫
0

q∫
0

ϕ∫
0

p∫
0

r∫
0

s∫
0

ρ (φ)λ (p)µ (t) [ε1 − ε2λ (t)λ (s)− ε1µ (t)µ (s)]dtdsd pdϕdφdq+ ...= 0

(39)

where λ (ξ ) = ρ (ξ )k2 (ξ ) ,µ(ξ ) = ρ(ξ )k3(ξ ).
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Example 3.1. Let us consider the special case ρ = const., k2 = const. and k3 = const. In this case, from (36), we have
ω − ε1

ω3

3! + ε1
(
ε1 − ε2ρ2k2

2
) ω5

5! − ε1
(
ε1 − ε2ρ2k2

2
)2 ω7

7! . . .= 0
ω2

2! −
(
ε1 − ε2ρ2k2

2
) ω4

4! +
(
ε1 − ε2ρ2k2

2
)2 ω6

6! − . . .= 0

k2

[
ω3

3! −
(
ε1 − ε2ρ2k2

2 − ε1ρ2k2
3
) ω5

5! +
(
ε1 − ε2ρ2k2

2 − ε1ρ2k2
3
)2 ω7

7! − . . .= 0
]

k2k3

[
ω4

4! −
(
ε1 − ε2ρ2k2

2 − ε1ρ2k2
3
) ω6

6! + ...= 0
] (40)

or 

ε1ε2ρ2k2
2
(
1− ε1ε2ρ2k2

2
) 1

2 ω + sin
[(

1− ε1ε2ρ2k2
2
) 1

2 ω
]
= 0,

cos
[(

ε1 − ε2ρ2k2
2
) 1

2 ω
]
= 1 or

(
ε1 − ε2ρ2k2

2
) 1

2 ω = 2kπ, (k ∈ Z),

k2

[(
ε1 − ε2ρ2k2

2 − ε1ρ2k2
3
) 1

2 ω − sin
[(

ε1 − ε2ρ2k2
2 − ε1ρ2k2

3
) 1

2 ω
]]

= 0,

k2k3

[[(
ε1 − ε2ρ2k2

2 − ε1ρ2k2
3
)1/2
]2

ω2

2 − sin2

[(
(ε1−ε2ρ2k2

2−ε1ρ2k2
3)

1
2 ω

2

)]]
(41)

where ω = 2kπ i f ε1 = 1and ω = −2kπ i f ε1 = −1 . It is seen that all of the equalities (40) or (41) are satisfied
simultaneously, if and only if ρk2 = 0, ρk3 = 0, that is, ρ = const. > 0 and k2, k3 = 0. Therefore, only ones with
ρ = const. > 0 and k2, k3 = 0 of the curves with ρ = const. > 0 and k2,k3 = const. are curves of constant breadth, which
are spacelike circles inE4

1 .

Now let us construct the relation characterizing these circles. Since ρk2 = 0, ρk3 = 0, system (7) becomes

m′
1 = ε1m2, m′

2 =−m1, m′
3 = 0, m4′= 0. (42)

If ε1 = 1,ε2 =∓1 the general solution of (39) is

m1 = Acosφ +Bsinφ
m2 = Bcosφ −Asinφ
m3 = K
m4 = L

(43)

Where A,B,K,L are arbitrary constants.

Consequently, replacing (43) into (1), we gain the equation

α∗(φ) = α(φ)+(Acosφ +Bsinφ)T+(−Asinφ +Bcosφ)N+KB+LE,

which gives the constant distance d = ∥α∗−α∥ =
(∣∣A2 +B2 ±K2 ∓L2

∣∣) 1
2 . In this case, a pair of opposite points of the

curve is (α∗(φ),α(φ)) for φ in0 ≤ φ ≤ 2π .

Since ρk3 = 0, ρk2 = 0 system (7) becomes

m′
1 = ε1m2, m′

2 =−m1, m′
3 = 0, m4′= 0
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If ε1 =−1,ε2 =+1 the general solution of (39) is

m1 = Acoshφ +Bsinhφ
m2 =−Bcoshφ −Asinhφ
m3 = K
m4 = L

(44)

Where A,B,E and F are arbitrary constants.

Consequently, replacing (44) into (1), we obtain the equation

α∗(φ) = α(φ)+(Acoshφ +Bsinhφ)T+(−Asinhφ −Bcoshφ)N+KB+LE,

which represents the Spacelike circles with the diameter d = ∥α∗−α∥ =
(∣∣A2 −B2 +K2 +L2

∣∣) 1
2 . In this case, a pair of

opposite points of the curve is (α∗(φ),α(φ)) for φ in0 ≤ φ ≤ 2π .

4 4. Conclusion

The characterizations and determinations of the special curves or curve pairs are important in the curve theory. A
differential equation or a system of differential equations with respect to the curvatures can determinate the special
curves or curve pairs. In this paper, the differential equations characterizing the constant breadth spacelike curves are
studied in E4

1 . Moreover, a criterion for a spacelike space curve to be the curve of constant breadth in E4
1 is given.
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