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1 Introduction

The mathematical modeling of events in nature can be explained by differential equations. These equations are
mathematical models of complex physical occurrences that arise in engineering, chemistry, biology, mechanics and
physics. So, the theory of nonlinear dispersive wave motion has recently undergone much study. The solutions of
nonlinear equations play a crucial role in applied mathematics and physics, because; solutions of nonlinear partial
differential equations provide a very significant contribution to people about the nature of physical phenomenon. We
do not attempt to characterize the general form of nonlinear dispersive wave equations [1, 2]. Furthermore, when an
original nonlinear equation is directly calculated, the solution will preserve the actual physical characters of
solutions [3]. Explicit solutions to the nonlinear equations are of fundamental importance. Various methods for
obtaining explicit solutions to nonlinear evolution equations have been proposed. Many explicit exact methods have
been introduced in literature [4-17]. Among them are Generalized Miura Transformation, Darboux Transformation,
Cole-Hopf Transformation, Hirota’s dependent variable Transformation, the inverse scattering Transform and the
Backlund Transformation, sine-cosine method, Painleve method, homogeneous balance method, and similarity
reduction method.

Traveling wave solutions of many nonlinear differential equations can be stated with tanh function terms [18, 19].
The tanh function terms firstly were used on base ad hoc in 1990 and 1991 [20, 21]. Then, Malfliet [22] formalized
the tanh method in 1992 and illustrated it with several examples, Parkes and Duffy presented the automatic tanh
method [23] in 1996, after, Fan defined the extended tanh method [24] in 2000, later Elwakil presented the modified
extended tanh method [25] in 2002, separately, the generalized extended tanh method [26] by Zheng in 2003, the
improved extended tanh method [27] by Yomba in 2004, the tanh function method [28] by Chen and Zhang in 2004.

In this study, we implement the generalized tanh function method [29] to obtain the traveling wave solutions of the
gRLW equation
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Up + Uy + y(up)x = By =0 )

where p is a positive integer and y and  are positive constants. The Eq. (1) was first put forward as a model for
small-amplitude long-waves on the surface of water in a channel by peregrine [30, 31] and later by Benjamin et al
[32]. In physical situations such as unidirectional wave’s propagation in a water channel, long-crested waves in
near-shore zones, and many others, the RLW equation serves an alternative model to the KdV equation [33, 34].

Furthermore, we study traveling wave solutions of general Boussinesq (gBQ) type fluid model. There are many
types of equation form of the Boussinesq equation system, one of them is given by

U + Uy +UUy, + PUyye = 0
vt + (uv)x + ﬁuxxx = 0 (2)

(2) where p and § are real constant. This system which generalizes the classical Boussinesq equation system was
derived by Sachs [35] to describe small amplitude long waves in a water channel.

2 An Analysis of the Method and applications

In this chapter, we give a simple description of the tanh function method. For doing this, it can be considered in a
two variables general form of nonlinear PDE

Q(U, Upy Uy, Usey .o.) = 0 (3)
The solution of the equation (3) is expressed as a finite series of tanh functions
u(x, t) = Xilo a;(x, OF () “4)

where & = &(x,t) = ax + q(t), M is a positive integer that can be determined by balancing the highest order
derivate and with the highest nonlinear terms in equation, aq(x,t),a,(x,t),..,a,(x,t) and é(x,t) can be
determined. Substituting solution (4) into Eq. (3) yields a set of algebraic equations for F!, then, all coefficients of
F' have to wvanish. After this separated algebraic equation, we could found coefficients
ag(x,t), a;(x,t), ..., a,(x, t).

In this work, we consider to solve the Boussinesq equation and gRLW by using the generalized tanh function
method which is introduced by Chen and Zhang [29]. The fundamental of their method is to take full advantage of
the Riccati equation that tanh function satisfies and use its solutions. The required Riccati equation is given as

F'= A+ BF + CF? ®)
where F' = Z—}; and A, B, C are constants. Some of the solutions are given the paper [29].
3 Applications of the Method
Example 1. Let’s consider a gRLW equation,

Up + Uy + Y (UP)y — Bl = 0 (6)
Lety =1, =1 and p = 2, we have equation

U + Uy + 20Uy — Uy = 0 (7
When balancing uu,, with u,,, then gives M = 2. Therefore, we may choose

u=f®+g®FE) +h®OF* ) ®)
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Where & = ax + q(t). Substituting (8) into Eq. (7) yields a set of algebraic equations for f(t), g(t), h(t)
and 4, B, C. These systems are finding as

fi + 9q: A+ gAa + 2fgAa — g,a?AB — ga?q.AB* — 2a*A*Cgq; — 2h,a*A* — 6ha’A?Bq, = 0
ge + 9q:B + 2hAq, + gBa + 2hAa + 2fgBa + 4fhAa + 2g*Aa — g.a*B? — ga?q,B® —
—8a%ABCgq, — 2g,a*AC — 6h,a’AB — 14ha’AB?%*q, — 16ha”A*Cq, = 0
99:C + h, + 2hBq, + gCa + 2hBa + 2fgCa + 4fhBa + 2g°Ba + 6hgAa — 3g,a*BC — 7ga?q,B*C
—8a%AC?gq, — 8h,a’AC — 52ha?ABCq, — 8ha?B3q, — 4h,a*B* =0
2hCq; + 2hCa + 4fhCa + 2g*Ca + 6hgBa + 4h*Aa — 2a%C%g, — 12ga?q,BC? — 38ha’B?*Cq, —
40ha?AC?q, — 10h,a*BC = 0 9)
6hgCa + 4h?’Ba — 6a%C3gq, — 54ha?BC%q, — 6h,a?C?> =0
4h2Ca — 24ha?C3q, = 0
From the solutions of the system, we can found

8a?ACq+a’B?qi—qr—a

h = 6aC2qt; g = 6BCO(qt, f =

(10)
with the aid of Mathematica. From (10), we can get

» G =0

2a

8a2ACA+a?B*A1-A-a
2a

q=At, q. =21 h=6aC?1, g=6BCal, f= , A = const. (11)
Substituting (10) and (11) into (8) we have obtained the following multiple soliton-like and triangular periodic
solutions (including rational solutions) of equation (7). These solutions are:

Casel: f A=C=1,

w + 6adtan?(§) (12)

Case2: if A=C=-1,

w + 6aicot?(&) (13)

Case3: if A=1,C =-1,

u= M + 6altanh?(§)
—8a A-A—a

2a

(14)
+ 6alcoth?(§)

Case 4: if A=C=—%,

_2a%A-2— a 3al
- 2a

(cot(f) + csc(f))
_ 2a21-A— oc 30(/1

P (sec(f) - tan(f)) (15)

_ 2a%A- /1 a 3aicot?(§)
2a 2(1ic5c($))2

Case5: if A=C=
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( ZaZA Y oc 3al (tan(f) +S€C(f))

2a? /1 A— a 30(1
=— (csc(f) — cot(f)) (16)
_ _ 2a%A- ). a 3altan?(§)
2a 2(1isec(f))2
1 1
Case 6: zfA—E =-—3
—2a21-1- a 3al
u=—H—+ (COth(f) + csch(f))
—2a2)—
u= % 3’” (tanh(f) + lsech(f))
9 U= —2a%2- ,1 a | 3aitanh?(§)
2a 2(1isech(f))2
_ —2a?A-1-a 3alcoth? (&) 2 - _q
\ 2a 2(1iicsch(§))2’

(17)

Case7: if A=1,B=-2,C=2

_ 20a?A-A-a  24adtan(§) | 24aitan?(§) (18)
¢ (1+tan(®) ' (1+tan(®))?

Case8: if A=1, B=(C=2,

20a22-A-a | 24aitan(§) | 24aitan?(§) (19)
Py (1-tan(®) " (1-tan(®)’

Case9: f A=—-1,B=2, C=-2

_ 20a%A-A-a _ 24akcot(§) | 24aicot?(§) (20)
2a (1+cot(®)) (1+cot(f))2

Casel0: if A=—-1, B=C=-2

20a?A-21-a | 24aicot(§) . 24aicot?(§)
= 21
u 2a (1—cot®) | (1-cot(®))? @

Casell: f A=B=0andC # 0,

() o

Cé+co

where & = ax + At for (12) - (22).
Example 2. Let’s consider Boussinesq equation system,

{ut + v+ UUy + PU =0 (23)
U+ (U0 + Py = 0

Letp = 1, = 1, we have system of the equation

{ut+vx+uux+uxxt=0 (24)
Ve + UV + VpU + Uy = 0

When balancing uu, with u,,, then gives M; = 2 and u, v, v,u with u,,, then gives M, = 2. Therefore, we may
choose
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{ u=f()+g@F +h(®)F*(§) (25)
v =fi(t) + g1 (OF () + h (OF?($)

where & =ax+q(t). Substituting (25) into Eq. (24) yields a set of algebraic equations
forf (t), g(t), h(t), f1(t), g1 (t), hy(t). These systems are finding as

fi + 99:.A+ giAa + fga + g.a?AB + ga’q.,AB? + 2a?A?Cgq, + 2h,a’A? + 6ha’A?Bq, = 0

ge + 9q.B + 2hAq, + g1Ba + 2h;Aa + fgBa + 2fhAa + g?Aa + g.a’B? + ga®q,B% + 8a?gABCq,
+ 2a?ACg, + 6h,a’AB + 14ha’AB%q, + 16ha’A*Cq, = 0

9q:C + h, + 2hBq, + g,Ca + 2h Ba + fgCa + 2fhBa + g’Ba + 3hgAa + 7ga®B2Cq, + 3a*BCg,
+ 8a?AC?gq, + 52ha’ABCq, + 8h,a?AC + 4h,a’B? + 8ha’B3q, = 0

2hCq; + 2hCa + 2fhCa + g?Ca + 3hgBa + 2h*Aa + 12a?gBC?%q, + 2a?C?g, + 40ha?AC?q,
+ 38ha?B2Cq, + 10h,a?BC = 0

3hgCa + 2h?Ba + 6a%C3gq, + 54ha’BC?%q, + 6h,a’C?* =0
2h?Ca + 24ha?C3q, =0
(f)e + 914q: + gfiAa + g, fAa + ga®AB? + 2a3A*Cg + 6ha®A*B =0

(9)¢ + 91Bq; + 2hiAq, + gfiBa + 2hfiAa + 2gg,Aa + g,fBa + 2h,fAa + ga®B3 + 8a3gABC
+ 14ha®AB? + 16ha3A%C =0

91Cq: + (W) + 2hBq; + gfiCa + 2hf,Ba + 2gg,Ba + 3hgAa + 3gh,Aa + g, fiCa + 2h,fBa
+ 7ga®B?C + 8a3AC?g + 52ha®ABC + 8ha®B3 =0

2h,Cq; + 2hf,Ca + 299,Ca + 3hg;Ba + 3gh,Ba + 4hh,Aa + 2h,fCa + 12a3gBC? +
40ha3AC? + 38ha®B?C =0
3hg.Ca + 3gh,Ca + 4hhBa + 6a3C3g + 54ha®BC? = 0

4hh,Ca + 24haC3 = 0
(26)

From the solutions of the system, we can found

h =—-12aC?q,, g =—-12BCaq,, f = _%_Ziqt_ B%aq, — 8ACaq,, q. =0
hy = —6a%C?%, g, = —6BCa?, f; = — 2 — 4a?AC +- (‘;;2 @7)
with the aid of Mathematica. From (27), we can get
q=AM, q =21 h=-12aC?1, g =—12BCal
f=-2_%_ B2 —8alAC, f, = - — 4a?AC + % (28)
« 22 2 A

Substituting (27) and (28) into (25) we have obtained the following multiple soliton-like and triangular periodic
solutions (including rational solutions) of equation (24) same as the above example. These solutions are:
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Casel: ifA=C=1,

{u = (—g - zi - 8a/1) — 12aAtan?(§)

2
v= (—4-a2 + 4“7) — 6a?tan?(§)

Case2: ifA=C=—1,
2
{u = (—; — % — 8a/1) — 12aAcot?(§)

2
v = (—4a2 + :17) — 6a’cot?(§)

Case3:ifA=1, C =—1,
2 A
{u = (—; - % + 8a/1) — 12aAtanh?(§) {u = (—; - % + 8aA) — 12alcoth?(§)

2 2
v= (40{2 + f?) — 6a’tanh?(§) v= (4a2 + :17) — 6a?coth?(§)

Cased: ifA=C = —%,

{u - (_g— % - Zaxl) —3aA(cot(é) + csc(f))z

v = (—a2 + %) — %az(cot(s‘) + Csc(f))z

u= (—% - % - Za/l) — 3aA(sec(E) — tan(<f))2
v= (—az + a—z) - %az(sec(f) — tan(<f))2

472

u= (_%_i_ Zal) _ 3adcot?(§)

22 (1icsc(f))2
_ 2, a? 3 a?cot?(§)
v=(—-a’+—)-——7>35
( 412) 2 (1icsc(§))2

Q
19
w
o
o
=
>~
I
)
I
|

a

u= (—% - % - Za/l) — 3aA(tan(E) + sec(E))2
v= (—a2 + m) — %az(tan(f) + sec(f))2

u= (—g — % — 20{/1) — 3a/'1(csc(§) — cot(<§))2
v= (—az + a—z) - %az(csc(f) - cot(g‘))2

422
2 a 3aitan?(§)
=|-=-——=- 201 ) ———5
“ ( a a) (14sec()”

= (g2 4 ) _ 3 aPtan®(®)
v ( a 412) 2(1isec(f))2

A= c=-1
Case6.zfA—2, C= >
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(30)
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(32)

(33)



2
v= (a2 + a—z) — %az(coth(s‘) + Csch(f))2

422

o+ “_2) - %az(tanh(f) + iSECh(f))z

472

/A 3altanh?(§)
=(—==——+42a1) - ——=
{u ( a 21 +ia ) (1isech(f))2

(az az) 3 a?tanh?(§)

422 2 (1isech(f))2
1« 3alcoth?(§)
=|--—=42a1) ————=
u ( a 21 tela ) (1iicsch(§))2

v = (az az) _ 3 a®coth?(§)

422 2 (1iicsch(€))2
Case7: if A=1,B=-2,C=2

48aAtan(§)  48aAtan?(§)
1+tan(§)  (1+tan(®))’

2 24a?tan(§)  24a’tan?(¥)
=(-10a® + =) + -
v ( @ ) 1+tan(®)  (1+tan(@))’

u=(—20ml—§—%)+

422

Case8: if A=1,B=C=2

A a 48aitan(§)  48altan?(§)
=|-20aA —=——=) — —
u ( 20a 2/1) 1-tan(é) (1—tan(f))2
_ 24a?tan(§) _ 24a?tan?(§)
1-tan(®)  (1-tan(®))’

V= (—100(2 + a—z)

422

Case9: fA=-1, B=2,C=-2

_(_ A a 48alcot(§)  48acot?(§)
u= ( 20al a 2/1) + 1+cot(§) (1+cot(f))2
az) 24a?cot(§) _ 24a?cot?(§)

1+cot(®)  (1+cot(®))’

Case10: fA=-1, B=-2, C=-2

__48adcot(§)  48adcot?(§)
1-cot(®)  (1-cot(§))
2 2 2,042
— (-1 2, @\ _ 24a cot(&) __ 24a“cot (€3]
v=(-100"+73) 1—cot®  (1-cot®)’

u= (—200{/1—%—%)

422

Casell: fA=B=0,C+0

u=(-1-5) - 120 (5)

2 2
a 2.2 ( -1
v=——6a°C ( )
422 Cé+cy

where £ = ax + At for (29) - (39).

3 Conclusions

u= (—% - % + Za/l) — 3aA(tanh(f) + iS@Ch(f))z
v=(

(34

(35)

(36)

(37

(38)

(39)

In this paper, we present the generalized tanh function method by using ansatz (4) and, with aid of Mathematica,

implement it in a computer algebraic system. An implementation of the method is given by applying it to gRLW
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equation and Boussinesq equation system with physics interests. We also obtain some new and more general
solutions for gRLW equation and Boussinesq equation system at same time. The method can be used to many other
nonlinear equations or coupled ones. In addition, this method is also computerizable, which allows us to perform
complicated and tedious algebraic calculation on a computer.
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