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Abstract: The main purpose of this article is to study non-homogeneous generalized multi-term fractional heat propagation and
fractional diffusion-convection equation in three-dimensional space, where the fractional derivative is defined in the Caputo sense.
The convection-diffusion equation describes physical phenomena where particles, energy, or other physical quantities are transferred
inside a physical system due to two processes: diffusion and convection.
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1. Prelude to Fractional PDEs

The partial differential equations of fractional order have been successfully used for modeling some relevant physical
processes; therefore, a large body of research in the solutions of these equations has been published in the literature.
Debnath [15] has discussed the solutions of the various types of partial differential equations occurring in the fluid
mechanics. Nikolova and Boyadjiev [16] found solution of the time-space fractional diffusion equations by means of
the fractional generalization of the Fourier transform and the classical Laplace transform. Solutions of fractional
reaction-diffusion equations are investigated in a number of recent papers by Saxena et al [17,18]. Also, in [10,11] the
authors employed integral transforms to solve certain — non homogenous heat and wave equations.

Many linear boundary value and initial value problems in applied mathematics, mathematical physics, and engineering
science can be effectively solved by the use of the Fourier transform, the Fourier cosine/sine transform.

The object of this paper is to present solutions of generalized multi-term fractional heat propagation and fractional
diffusion-convection equation in three-dimensional space involving the Caputo time-fractional derivative and by
employing the joint Laplace and Fourier transforms. In order to obtain the solutions, the definitions and notations of the
well-known Laplace transform, Fourier transform, their inverses and fractional derivatives of a function u(x,t) are
described below.

The Laplace transform of a function u(x, t) (which is supposed to be continuous or sectionally continuous, and of
exponential order as t — +oo) with respect to the variable t is defined by

(oo}

L{u(x,t)} = f e Stu(x, t)dt == U(x,s),
0

where (s) > 0, and the inverse Laplace transform of U(x, s) with respect to s is given by
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Y+ioo
1
LHU(x,8)} = ulx,t) = —— f etSU(x, s)ds,
2mi )
y—ico

where y is a fixed real quantity.

The Fourier transform of a function u(x, t) with respect to x is defined as

F{u(x,t)} = —loxy (x, )dx = u(w,t) (W € R).

|
e e
2 ~
The inverse Fourier transform of a function % (w, t) with respect to w is given by

FHu(w, 0)} = ulx,t) = xog(w,t)dw.

1 (oo}
— [e
Vr .
The finite sine transform of a function u(x, t) with respect to x € (0, L) (L is finite) is defined by

L
nmx
F{u(x,t);x > n} = fu(x, t) sianx =1(n,t) (n € NuU{0}).
0
The inverse finite sine transform is given by

)
nmx

FHu(m, 0)} = ulx,t) = %Z u(n, t) sin -

n=0

The Caputo fractional derivative of arbitrary order « is defined as

t
6Dfu(x,t) = ﬁf@ ="M UM (x, £)d¢ (t > 0)
0

wheren —1 < a <n (n € N) and u™ (x,t) is the partial derivative of order n of the function u(x, t) with respect to
the variable t.

The Laplace transform of Caputo’s fractional derivative is given by [3]

n-1
L{SD&u(x, )} = S®U(x,s) — » S ™ (x,0) (n—1< a <n).
oDt

r=0

The above formula play an important role in deriving the solution of differential and integral equations of fractional
order governing certain physical problems of reaction and diffusion. One may refer to the monographs by Podlubny [3],
Samko et al [4], Mathai et al [5] and Kilbas et al [1].

The simplest Wright function is defined by the series

W(a,B;z) : (a,B,z € C).

- kzok! T(ak + B)

The Fox-Wright function ,W,(z) is defined for z € C, complex numbers a;, b; € C and real a;,5; €R (I =
1,..,p;j=1,..,q) by the series



108

plpq(z) = quq [(az.a’l) 1p| ] Z Hf 1 ['(a; + a;k) 7k

(b1, B)1,q °_, T(b; + B;k) k!’

The Laplace transform is used in a variety of applications. The most common usage of the Laplace transform is in the
evaluation of certain integrals and solution to boundary value problems. In this paper we will briefly discuss
applications of Laplace transform in all of the above named areas.

In the following lemma, certain integrals involving Kelvin function are evaluated by means of Laplace transform.

Lemma 1.1. The following relations hold true

oo xbei(2vx 3
1' fo 12x£+§2) d /12]0 (2\/;)

5 fooxbel(Z\/_)d gjo(z)

0 x2+1

e,

Remark. The Kelvin functions ber(x), bei(x) are related to the Bessel functions in the following way:
ReJo(iVix) = ber(x),  ImJ,(iVix) = bei(x).

Laplace transform of Kelvin functions are as following
L{Jo(2vat) = ! ( a) >
Us(2var) = —exp (-

L{ber2vat} = %cos (%) , L{bei2vat} = %sin (%)

The Kelvin functions are involved in solutions of various engineering problems occurring in the theory of electrical
currents, elasticity and in fluid mechanics.

Proof.

1. Let us define the following function

1) = J‘ xbel(Z\/d)_x)

12 2 + SIZ
Taking Laplace transform of the above function, yields

L@, - =p | %’1;) x

0

The above integral can be evaluated by means of residue theorem, that is

L) = (5 exo| = ﬁ

At this point, on taking inverse Laplace transform of the above relation gives

$

1(¢) = 212 2 R

In special case ¢ = 1, one gets the result.
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2. BysettingA=¢& =1, we getfwxbe;(fl/—)d 310(2)
3. Bysetting A = 1,& = 0, we obtain fwbez(z‘/—) dx =7,
Lemma 1.2. The following identity holds true [19]
L{f Gy} = 2 f Ko (2/Pa0)f (D),
where K, is modified Bessel function of zero order.
Proof. Assume that t = xy, then
0o oo [ee] e—px [ee] _q_t [oe] e_px_Y
L@ = [ [ eroradyax = [ - [ e¥roa |ax= [ ro | dx | de
0 0 0 0 0 0

=2 f Ko(2/pqt) F ().
0

Lemma 1.3. The following integral relations hold true.

1 fooo siri/i%\/? Ko (V2t)dt = g
2. 7K (VE)de = mIn(1 +2).

Proof.

1. By two dimensional Laplace transform table, one has

L {Sﬂj;i},_} \/ﬁ(n_zmctanm)z

f sinh/t

4 1
————Arcsin| ——
Japg — 1 <2\/PCI)

Ko(2,/pqt)dt.

In special case p = %and q = 1 we get

S”‘N SN (Ve =

0

2. From table we get

sinyfxy B _ 1+ /4pq + 1)\ _ —_— 1\ sinyt
Lz{ \/x_y }—n(ln(pq) 21r1<—2 ))—27‘[5 h <2\/ﬁ>_ J- KO(Z\/E)dt

Ifwesetp=q = % then

f Sm\/_KO(\/_)dt = nln(l + \/_)

0

2. Nonhomogeneous Generalized Multi-Term Fractional Heat Propagation in a Rectangle

In this section, we consider propagation of heat in a rectangular shape plate, where we used Caputo partial fractional
derivatives in time of order 0 < a < 1.

Problem 2.1. We consider non-homogeneous generalized multi-term fractional heat propagation



110

0*ulx,y, t) 9%u(x,y,t)
6Dfu(x,y,t) = a® ( D2 + 9y? +f(x 1) (2.)

0<a<1,0<x<b,0<x<by,, t>0

with initial condition u(x,y,0) = 0 and boundary conditions
u(0,y,t) = g1, t),  ulby,y,t) = g,(,0) (2.2)
u(x,0,t) = hy(x,t), u(x, by, t) = hy(x,t).(2.3)
Solution. By using the Laplace transform with respect to ¢t and finite sine transform with respect to x, we set
L{uCx,y,t);t > s} =U(x,y,s),
Ffu(x,y, );x - n} = u(n, y, t).

By applying the joint Laplace - Fourier finite sine transforms to (2.1) and using the initial and boundary conditions
(2.2), we obtain

— g2 5%\ _ nm . 1 _
Uyy(n,%s) - —2+ _2 U(n:)/ns) = __(Gl(y;s) - (_1) GZ(yJS)) +_2F(nxy;5)
b, a by a
For the sake of simplicity, assume that
— n 1 _
K(n,}’;s)———(cﬁ(}’:s) ( 1) Gz(}’ﬁ))"‘;F(n;y.S).
thus
— S LA _
Uyy(n,y,s) — (7 + ;) Un,y,s) =K(mn,y,s).
1

Using the boundary conditions (2.3), the solution of the above equation is as

’ 22
sinh(b, — smhy +2 72
+ H,(n,s)
Sa
sinh b, a2+
y sinhw 2 +
f K(n,w,s) bl s n2?m?
a

0

Ul y,s) = Hy(n,s)

@
2+

sinh b, a

sinh(b, —y) | +——=dw
+ hb sa nzn bl
— sm 2
b1 blz
a 2.2
by sinh(b, — w) 2—2+an2
K(n,w,s) T s n2r2
—f sinhy 2+b2dw
y ﬁ leT[Z sa nzﬂz 1
=2 + b12 sinh b, b12

Applying the inverse Laplace transform, one gets

c+ico

1 _
ﬁ(n,y,t)=2—m, f U(n,y,s)etds.

c—ioco

We assume that @ = 1. For evaluation of the inverse Laplace transform of



111

nznz\
|smh(b2 V) az + 2 |
; i T
sinh b, )
Since, sinh b, [as—z + "bz—"zz has simple zeroes in
1
by |24+ — i (m € 2(0)) Cﬁ+ﬁ)22
= mmi (m or sy, = —|— +— |n?a
a*  b? " b,? " b’
Thus
|/ S —Sm n2n2\| 2a? (m—zz n—)n:zazt b, —y
llml tsinh(b, — y) | =2 (—1)™*1me \b2" b in( )mn
S—Sm . s n2m? b1 bz b2
\smhbz 2zt b2 /

Thus

— _1 m+1
b22( )

. s n?m?
sinh(b, — y) ’?+ 52 va? 2 ,
1 A, —
L7t an (b22+b >n ¢ tsin( 2 y) mrm.
s  n?m?
a?

For the general case 0 < a < 1,

nznz\

sinh(b, — y) a2+ b2

L—l

s  n2m?
72 2

® t 2 2
4a’m b, — _<m_+"_> 24271
T b, Z(_l)mHmSin( : y)mrrxfe 07 o) W (—a, 0 —1t ) de
b2 - b ; t

4 < (-D™m b, —y /1
:bzz Z T 2 sm( b, )mnk;l‘l’l

sinh b,

[ 1

" b2 b2
=p(n,y,t)

By the same procedure, for 0 < a < 1, we have

. s*  n?m?
sinh(y) 2t 7 [ ]
» L _da D™y BCONE ! |
g o TSIH (bZ) " 11{]1 (1, —a) m* n*\ ,
- — - a
Lsmhbz %J mel b,> by’ l <b22 +b1 >T[ @t J

=p,(n,y,t)
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2.2 22)
|smhw ’ + 27 —sinh(b, — y) az +n7§

I
i n2m? n2m? T
— + sinh b +
k 2 b1 2 b12 )
4q? i -D™ w b, —y
=— 5 5 sin (—) mr sin ( ) mm
b £ m2 L _ b, 2
b,” by
(i | I\
1 1,1 1
x| - ( _) - [ =ps(nw,y,0),
t 1,—-a) m2  n2
—+ — 7r2a2 tlZJ
b," by

L—l

s« 2.2 a 2.2
sinh(b, — w) +n ’Z sinhy S—2+ nr
by a

| Sy inhb, [+ TR |
k az blz sinh b, az b12 )
4q? ( 1)m+1 (b2 - W) (y )
= bz 1m2 nz Sin bz mrit Sin b2 mm
e m
b,> " b,”
N I\
1 1,1 1 —
| 1Y ( _) - [ = pa(n,w,y,t).
(1' a) m_2 + n_z T[Zaztzx
| b2 " b, ]
Now we get
t t Yyt
w70 = [ Rt = 2y 2z + [ Rt = pzy,2dz = [ [ —nw,e = 2ps 00wy, 20z dw
0 0 0

by ¢t
- f f k(n,w,t — 2)p,(n,w,y, z)dz dw.
y 0

Lastly, by using the finite Fourier sine inversion formula, we get the exact solution as follows

t

ﬁWm—@mm»@m+jEmm—@mmy@w
0

[oe]

u(x,y,t) = Z

OSQ O\”

t by ¢
fl_c(n w,t —z2)ps(n,w,y, 2)dz dw — J- J-k(n w,t —2)ps(n,w,y,z)dzdw sinnbﬂ.
1
0 y 0

When a = 1, one has
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. s n?m? . s  n2m?
) B sinh(b, —y) pri b2 sinh y e b2
Un,y,s) =H,(n,s)

+ H,(n,s)
s n2m? s n2m?
sinh b, |=+ sinhb, |+
2 |2 blz 2 | g2 blz
2772
y sinhw iz+n nz
174 a b 2.2
K(n,w,s) 1 s nimw
- sinh(b, —y) |5 +——=dw
o |s n?m? Wb, |5 n2m? a by
?+ b12 sinh b, ?+ b12
22
by sinh(b, — w) % +2 7;
K(n,w,s) b, s n?m?
—f sinhy |—=+—5-dw
y by

242 242
s nim . s | nm
—+— sinhb, |—+—=
a b, a b,

By applying the inverse Laplace transform, we can find

2

T b, — y g —<m—2+n—>n2azz
i(n,y,t) = (-1)™*m sin( 2 )mnf_l(n, t —2z)e \b2" bi? dz
0

bz 2 b2

m2

® vt )
4a2 -1 m+1 b, — _ w _(mZ n" )\ 2,2
T e n2 sin( - y>mﬂxjjk(n,W,t—z) sin(b—>mne <b22 b12>n iz
00

2

mZ 2

t
_ b, — NESRCAWIPS
xf fk(n,w,t—z) sin( 2 W)mne <b22+b12>n “ dz dw.
y 0

b,

Now, by using the finite Fourier sine inversion formula, we obtain the exact solution for « = 1 as
2 _ . nmx
u(x,y,t) = —Z u(n,y,t)sin——.
b, ] b,
n=

3. Non-homogenous Fractional Diffusion-Convection Equation
Problem 3.1. We consider fractional diffusion-convection equation

SDfu = a?A%u + 2Pyu, + 2Pu, — ku + f(x,y,t) (3.1)
0,<a<l—-o<x,y<o

with initial condition u(x,y,0) = g(x,y) and boundary conditions

lim u= lim u=0.

|x| > 00 |y|—o0
Solution. We use the joint Laplace-Fourier transform and assume that
Liu(x,y,0);t > s} =U(x,y,9),

F{ulx,y,t);x » w,,y = 0y} = u(wy, wy, t).



114

Taking the joint Laplace-Fourier transform of equation (3.1), we find

ST (w1, 3, 5) = S G(wy, ;) _ _
= —a?(w? + 0T (wy, 0y, 5) — 2i(B1w; + Pow;)U(wy, Wy, 5) — kU (wy, w,, )

+ F(wll le S);
or
= 1 Sa_lg(wpwz) + F(wpwz,s)
U(wl'les) _2 2 a 2 2 .
( 31) < +@) +S_+ﬁl+ﬁz+k
W2 T, a? a?

2 2
Lety = ﬁlz# then applying the Fourier inversion formula with respect to w, and convolution theorem in Fourier

integrals gives

s@ i\
exp —IZI\/?+(0)2 +%) +y

_ Sa 1
U(x, w,,s) = fg(x zwz)e a dz
a i 2
\/52+<w2+%> +y
_| | S_a+ +@ 2_|_
o por exp Zl |32 wz +7, Y
+ﬁ F(x —z,w,,s)e a - dz.
“o Sa i
\/ 2+(w2+%) +y

For 0 < a < 1 we use the integral representation

se &)
exp |Z|\/ + ((‘)2 a +y 5 © _772((1 (a) +g21) +ya2> |z]2
= —J e ’ e 4aZnZe=n*S%gy
0

Foety 7

Then

) 2
2 2 +l32 +ya? |Z|2 1
= _f e K <a (wz ) re )e a?n? —W( a,0; —n?t~%)dn,
\/SZ+<w2+ﬁi)2+y ’
a

Similarly, for0 < a < 1

—_—

oo 2 2 Bat 2) __lz|?
_ feﬂ(a(wz+a)+ya)e _4‘1221W( a1 — a—n’t-<)dn.
0
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Soforo<a<1,

[ee]

o0 2 2
2 —nz(az wy+B2¢ +ya2) lzI* 1
X —fe (Z a) e‘“l22 —W(—a,1—a;—n*t"*)dn |dz
0

pa— +E28)" ) Iz q
X _fen(a(wz a) ") e ramn? W( a,0; —n*u~*)dn |dudz.
0

Now, the Fourier inversion formula with respect to w, and convolution theorem in Fourier integrals yields analytical
solution

[e9) oo 2
ﬁlz 1|

1 Bz [ (1 —aryye- L2, _
Wy ) = e f ¢ f e TR (a1 - )
—00 0

[oe]
r2

Bt s
X fg(x—z,y—r)eae 4a’ndridn |dz

— 00

oo t oo
B1z 1 _azynz_ 172
2na3feéffn o ‘“‘ZZW(QO —n?u~%)
—00 0 0

[ee]

Bor _L
X{ff(x—z,y—r,t—u)e%e 4“2’72dr}dn dudz,

where0 < a < 1.

If « = 1, then

|z 2 Bai)* 2
exp| -7 s+a w2+a +vya
Bz

_ 1
U(x, w,, t) =5 fg‘(x—z,a)z)e a dz

1 _
+— f F(x —z,w,,8)e a dz.
2a

The inverse Laplace transform gives

1 r Bz 1 —<a (w2+62> +ya2>t _z|?
u(x, wy, t) = —— g(x —z,w,)e a | —e e 4a’t |dz
G 0) = = fg( ) <ﬁ

o) t i\ 2
1z ~(a2(w,+82¢ 2 |z|2
f ﬁ_ff(x —Z,wy,t —U) ie (a (w2+ a) e )ue_4a2u dudz.
0 \/H

And lastly, the Fourier transform inversion with respect to w, yields exact solution where a = 1,

Za\/_
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1 [ Bz _l2?_ o2t ‘ B2z __T_
ulx,y,t) = ———— J-e a e saZt ¥ J-g(x—z,y—r)e a e 4a’tdr |dz
a?tV8m
e [e9) t %
b | S e
ea | —e e 4a%u
a? 8 J u

5. Conclusion

The joint transform method is a popular method for solving linear wave and diffusion equations in an infinite or semi-
infinite spatial domain and with specified initial conditions. The general procedure is as follows: We use the Laplace
transform to eliminate the temporal dependence while we apply a Fourier transform in the spatial dimension. These
results in an algebraic or ordinary and partial differential equation which we solve to obtain the joint transform. We then
compute the inverses. Whether we invert the Laplace or the spatial transform first is usually dictated by the nature of the
joint transform [8,9]. The Laplace and Fourier transforms are very useful for solving differential or integral equations
for the following reasons. First, these equations are replaced by simple algebraic equations, which enable us to find the
solution of the transform function. The solution of the given equation is then obtained in the original variables by
inverting the transform solution. Second, the Fourier transform of the elementary source term is used for determination
of the fundamental solution that illustrates the basic ideas behind the construction and implementation of Green’s
functions. Third, the transform solution combined with the convolution theorem provides an elegant representation of
the solution for the boundary value and initial value problems.
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