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Abstract: In this paper, numerical solution of Fractional Differential–Algebraic Equations (FDAEs) is studied. Firstly Fractional 

Differential–Algebraic Equations (FDAEs) have been converted to power series and then numerical solution of Fractional 

Differential–Algebraic Equations (FDAEs) is obtained. 
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1.  Introduction  

Fractional d ifferential equations have gained importance and popularity during the past three decades because of its 

powerful potential applications. The applications of ordinary fractional d ifferential equations or fractional d ifferential -

algebraic equations (FDAE) used in many fields such as electrical networks, control theo ry of dynamical systems, 

probability and statistics, chemical physics, electrochemistry, optics, polymer physics and signal processing can be 

successfully modelled by linear or nonlinear fractional d ifferential equations. Meanwhile, some rich fractional 

dynamical motion which reflect the inherent nature of realistic physical systems are observed. In short, fractional 

calculus and fractional differential equations have played more and more important role in almost all the scientific fields. 

[1,4,5,8,12,13] 

In this paper, the method is applied to solve FDAEs of the form with the initial conditions [11] 
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2. Basic definitions 

There are several definit ions of a fract ional derivative of order α > 0 [6], for example. Riemann-Liouville, Grunwald-

Letnikow, Caputo and the generalized functions approach. The most commonly used definitions are those of Riemann -

Liouville and Caputo. We give some basic definitions and properties of fractional calculus theory used in this paper.  

Definition 2.1. A real function 𝑓(𝑥), 𝑥 < 0. is said to be in the space 𝐶𝜇 , 𝜇 ∈ 𝑅 if there exists a real number 𝑝 > 𝜇 such 

that 𝑓(𝑥) = 𝑥𝑃𝑓𝐼
(𝑥) , where 𝑓𝐼

(𝑥) ∈ 𝐶[0,∞). Clearly, 𝐶𝜇 ⊂ 𝐶𝛽 if 𝛽 < 𝜇. 

Definition 2.2. A function 𝑓(𝑥) , 𝑥 < 0. is said to be in the space 𝐶𝜇
𝑚,𝑚 ∈ 𝑁 ∪ {0} if 𝑓(𝑚) ∈ 𝐶𝜇 . 
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Definition 2.3. The Riemann-Liouville fractional integral operator of o rder 𝛼 ≥ 0 of a function, 𝑓 ∈ 𝐶𝜇 ,𝜇 ≥ −1,  is 

defined as [4]. 

𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡

𝑥

0

, 𝛼 > 0, 𝑥 > 0   (2.1) 

 

𝐽0𝑓(𝑥) = 𝑓(𝑥) (2.2) 
 

The properties of the operator 𝑓𝛼  can be found in [6, 7]: we mention only the following. 

For 𝑓 ∈ 𝐶𝜇 ,𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1: 

𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥) (2.3) 
 

𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥) (2.4) 
 

𝐽𝛼𝑥𝛾 =
𝛤(𝛾 + 1)

𝛤(𝛼 + 𝛾 + 1)
𝑥𝛼+𝛾 (2.5) 

 

The Riemann- Liouville derivative has certain disadvantages when trying to model real -word phenomena using 

fractional d ifferential equations. Therefore, we will introduce a modified fractional differential operato r 𝐷∗
𝛼r  proposed 

by Caputo’s work on the theory of viscoelasticity [10]. 

Definition 2.4. The fractional derivative of 𝑓(𝑥) in the Caputo sense is defined as  

𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑥) =

1

𝛤(𝑚 − 𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼 −1𝑓(𝑚) (𝑡)𝑑𝑡

𝑥

0

, (2.6) 

 

for 𝑚 − 1 < 𝛼 ≤ 𝑚,    𝑚 ∈ 𝑁,   𝑥 > 0,    𝑓 ∈ 𝐶−1
𝑚 . 

Also, we give two basic properties of its in here. [4]. 

Lemma 2.1. If 𝑚 − 1 < 𝑚, 𝑚 ∈ 𝑁  and 𝑓 ∈ 𝐶𝜇
𝑚, 𝑚 ≥ −1, then  

𝐷∗
𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥) (2.7) 

 

𝐽𝛼𝐷∗
𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓

(𝑘) (0+ )
𝑥𝑘

𝑘!
,      𝑥 > 0

𝑚 −1

𝑘 =0
.   (2.8) 

 

3. Our Method 

Consider the differential-algebraic equations (DAEs) 

( , , ) 0F t x x   
(3.1) ( 

with the initial condition 

0 0( )x t x  
 

where F  and x  are vector functions. The solutions of (3.1) can be assumed that  

0x x et   
(3.2) ( 

where e  is a vector function. Substitute (3.2) into (3.1) and neglect bigger order term. We have the linear equation of  

e  in the form 
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Ae B  
(3.3) ( 

where A  and B  are constant matrices. Solv ing this (3.3), the coefficients of e  in (3.2) can be found. Repeating the 

above procedure for bigger terms, we can obtain the arbitrary order power series of the solutions for (3.1) [1,2,3,9].  

4. Power series of solution for DAEs 

We determine another type of power series in the form 

2

0 1 2 1 1( ) ( ) n

n m mf t f f t f t f p e p e t         (4.1) ( 

where 
1 2, , , mp p p  are constants. 

1 2, , , me e e  are bases of vector e , m  is the size of vector e .  x  is a vector with  

m  elements in (3.2). Every element can be written by the power series in (4.1). 

2

,0 ,1 ,2

n

i i i i ix x x t x t e t      (4.2) ( 

where 
ix  is the i th  element of x . Substituting (4.2) into (3.1), we can get the following expression: 

1

, ,1 1 ,( ) ( )n j n j

i i n i i m mf f p e p e t O t        
(4.3) ( 

where 
if  is  the i th element of ( , , )f t x x in (3.1) and j  is 0  if  ( , , )f t x x  have x , 1 if do not. From (4.3) and (3.3), 

we can determine the linear equation in (3.3) as follows: 

, ,i j i jA P  
(4.4a) 

 

,i i nB f   
(4.4b) 

solving this linear equation, we have  ( 1, , )ie i m . Substituting 
ie  into (4.2), we have  ( 1, , )ix i m  polynomials 

of degree n . Repeating this procedure from (4.4), we can get the arbitrary order power series of the solution for FDAEs 

in (1.1). If we repeat the above procedure, we have numerical solution of FDAEs in (1.1). 

5. Numerical Examples 

To express the effectiveness of the method, we consider the following fractional d ifferential-algebraic equations. All the 

results were calculated by using the Maple software. 

Example 5.1. We consider the following fractional differential-algebraic equation. 

* ( ) ( ) ( ) (1 ) ( ) 0, 0 1,

( ) sin 0

D x t ty t x t t y t

y t t

       

 
 

(5.1) ( 

with initial conditions (0) 1 , (0) 0x y   and exact solutions ( ) sin , ( ) sintx t e t t y t t   when 1.    

From initial condition, the solutions of (5.1) can be supposed as  

0 1 1

0 2 2

( ) ( ) 1

( ) ( )

x t x e t x t e t

y t y e t y t e t

    

   
 

(5.2) ( 

Substituting (5.2) into (5.1) and neglecting higher order terms, we have 
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1

2

2

1 ( ) 0

( 1 ) ( ) 0

e O t

e t O t

  

   
 

(5.3) ( 

These formulae correspond to (4.3). The linear equation that corresponds (4.4) can be given in the following: 

,Ae B  
(5.4) ( 

Where; 

1

2

1 0 1

0 1 1

e
A B e

e

     
       
     

 
 

From Eq. (5.4) we have linear equation 

1

2

1 0 1

0 1 1

e

e

    
    

    
 

 

Solving this linear equation, we have 

1

1
e

 
  
 

 
 

and  

( ) 1

( )

x t t

y t t

 


 

(5.5) ( 

from (5.5) the solutions of (5.1) can be supposed as  

2

1

2

2

( ) 1

( )

x t t e t

y t t e t

  

 
 

(5.6) ( 

In like manner substituting (5.6) into (5.1) and neglecting higher order terms, we have 

2

1

2 3

2

( 3 2 ) ( ) 0

( ) 0

e t O t

e t O t

   

  
 

(5.7) ( 

where 

1

2

2 0 3

0 1 0

e
A B e

e

    
       

     
 

 

From Eq. (5.7) we have linear equation 

1

2

2 0 3

0 1 0

e

e

    
    

    
 

 

By solving this linear equation, we have 

3 / 2

0
e

 
  
 

 
 

Therefore 
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2( ) 1 3 / 2

( )

x t t t

y t t

  


 

 

Repeating the above procedure, we have 

2 3 4 5

6 7

8 5 9

* 1 1.500000000 0.1666666667 0.1250000000 0.0083333333333

0.009722222222 0.00001984126984

            0.0001736111111 0.2755731922 10

( ) t t t t t

t t

t t

x t



     

 

 

 

 

 

3 5 7 5 9* 0.1666666667 0.0083333333333 0.00001984126984 0.2755731922 10( )y t t t t tt    

  

Table 1. Numerical results of the solution in Example 5.1 

 0.5   0.75   1   

t  * ( )x t  * ( )x t  * ( )x t  ( )exactx t  

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76429238 0.84929941 0.91482085 0.91482076 

0.2 0.75450959 0.80166956 0.85846473 0.85846462 

0.3 0.79031612 0.79789989 0.82947437 0.82947428 

0.4 0.85249500 0.82508727 0.82608746 0.82608739 

0.5 0.93232467 0.87601449 0.84624350 0.84624343 

0.6 1.02420517 0.94545816 0.88759718 0.88759712 

0.7 1.12379061 1.02907565 0.94753775 0.94753768 

0.8 1.22732913 1.12295936 1.02321382 1.02321384 

0.9 1.33139163 1.22343656 1.11156381 1.11156388 

1.0 1.43275528 1.32697596 1.20935035 1.20935043 

 

Table 1 shows the approximate solutions for Eq. (5.1) obtained for different values of  using our method. The results 

are in good agreement with the results of the exact solutions. 

Example 5.2: Consider the following fractional differential-algebraic equation. 

*

( ) ( ) sin

( ) ( ) ( ) sin , 0 1,

tx t y t e t

D x t x t y t t 

  

     
 

(5.8) ( 

with initial conditions (0) 1 , (0) 0x y   and exact solutions in this case  ( ) , ( ) sintx t e y t t  when 1.   

Repeating the above procedure, we have obtained the numerical results shown in Table 2 by using Maple 15 software.  
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Table 2. Numerical results of the solution in Example 5.2 

 0.5   0.75   1   

t  * ( )x t  * ( )x t  * ( )x t  ( )exactx t  

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76089099 0.83739311 0.90483738 0.90483741 

0.2 0.69092614 0.74943903 0.81873062 0.81873075 

0.3 0.63965013 0.68161285 0.74081815 0.74081822 

0.4 0.59708770 0.62503221 0.67031998 0.67032004 

0.5 0.55999258 0.57601215 0.60653064 0.60653065 

0.6 0.52688938 0.53262381 0.54881712 0.54881163 

0.7 0.49696401 0.49371280 0.49658769 0.49658530 

0.8 0.46970221 0.45851976 0.44932904 0.44932896 

0.9 0.44474480 0.42650762 0.40656968 0.40656965 

1.0 0.42182078 0.39727365 0.36787945 0.36787944 

 

Table 2 shows the approximate solutions for Eq. (5.2) obtained for different values of  using our method. The results 

are in good agreement with the results of the exact solutions. 

6. Conclusion 

In this study, the present method has been extended to solve fractional differential-algebraic equations (FDAEs). Two 

examples are given to demonstrate to powerfulness of the method. The results obtained by the method are in good -

agreement with the exact solutions. The study shows that the method is a reliable technique to solve fractional 

differential–algebraic equations, and offer notable advantages from the points of applicability, computational costs, and 

accuracy. 
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