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ABSTRACT: Selection of input variables of the empirical models has vital effect on the prediction 

performance, reduced overfitting and reduced computational load. Various trials and error and sequential 

methods in the literature to deal with input selection for artificial neural networks (ANNs). However, 

these methods are not considered as automatic and systematic. This study proposes a novel and efficient 

mixed integer nonlinear programming-based approach to handle optimal input selection and the ANN 

training simultaneously for classification problems. Such selection uses binary (0-1) variables to represent 

the presence of the input variables and trains traditional continuous network weights simultaneously. 

Two classification case studies are given to demonstrate the advantages by using widely used data sets 

and statistical measures. The first data set is related to the characterization of the type of a tumor related 

to breast cancer, the second data set is about predicting the type of a biotechnological product using 

different features, the last one is related to heart failure prediction. Results show that better test 

performance can be achieved with optimally selected inputs, resulting in reduced overfitting. The 

proposed approach delivers a significant advantage during the design and training of the ANNs and is 

also applicable to other empirical models. 
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Kesikli ve Sürekli Optimizasyon Kullanarak Yapay Sinir Ağları için Sistematik Girdi Seçimi 

Yöntemi 

 

ÖZ: Ampirik modellerin girdi değişkenlerinin seçimi, tahmin performansı, azaltılmış fazla uydurma ve 

hesaplama yükünün azaltılması üzerinde önemli etkiye sahiptir. Literatürde yapay sinir ağları (YSA) için 

girdi seçimi ile ilgili çeşitli deneme yanılma yöntemleri mevcuttur ancak bu metodlar sistematik ve 

otomatik olarak kabul edilmemektedir. Bu çalışma, sınıflandırma problemleri için optimal girdi seçimi ve 

YSA eğitimini aynı anda ele almak için yeni ve verimli bir karma tamsayılı doğrusal olmayan 

programlama tabanlı bir yaklaşım önermektedir. Bu seçim, girdi değişkenlerinin varlığını temsil etmek 

için ikili (0-1) değişkenleri kullanır ve geleneksel sürekli ağ ağırlıklarını veya parametrelerini aynı anda 

eğitir. Yaygın olarak kullanılan veri setleri ve istatistiksel ölçümler kullanarak avantajları göstermek 

amacıyla üç sınıflandırma vaka çalışması sunulmuştur. Birinci veri seti meme kanseri ile ilgili tümörün 

tipin-in karakterizasyonu ile ilgili olup, ikinci veri seti ise farklı özellikler kullanılarak bir biyoteknolojik 

ürünün tipinin tahmin edilmesi ile ilgilidir, son veri seti ise kalp sağlığı ile ilgilidir. Sonuçlar, optimal 

olarak seçilen girdiler ile düşük fazla uydurma sayesinde daha iyi test performansının elde edilebileceğini 

göstermektedir. Önerilen yaklaşım, YSA'ların tasarımı ve eğitimi sırasında önemli bir avantaj sağlar ve 

diğer ampirik modellere de uygulanabilir. 
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1. INTRODUCTION 

Modeling of complex processes are primarily handled through mechanistic or empirical models. The 

mechanistic models contain mathematical expressions with the actual physical dynamics. Thus, such 

models have a more trustable nature to extrapolation. On the other hand, the derivation of such models is 

a challenging task due to experimental challenges and the theoretical issues related to knowledge on 

underlying mechanism. 

Empirical models, with a high number of varieties, deliver an alternative to mechanistic models once 

the data are abundant and the processing conditions are similar or within an acceptable extrapolation 

region although they are constructed on tailored black-box mathematical formulations with no physical 

background. 

ANNs are one type of empirical models and have obtained gradually obtained more attention over 

the past decades both due to increased computational power and data availability. Feedforward ANNs 

propagate the input information, which is represented by a vector for a particular sample, to succeeding 

layers through linear and nonlinear operations, which incorporate the elements of input vector with 

different weights. Traditionally, all ANN variables interact in a fully connected sense. 

ANNs have found different application areas both due to their flexibility to represent complex 

interactions and theoretical modifications resulting in a different terminology despite underlying logic is 

based on regression. In (Mutlu and Yucel 2018), artificial intelligence based methods have been used for 

the prediction of biomass gasification reaction. (Akdag, Komur, and Ozguc 2009), used ANNs for the 

calculation of heat transfer related parameters from an experimental apparatus. Furthermore, ANNs have 

found significant applications in time-series data both from the manufacturing processes and economics. 

In (Kocak and Un 2014) , gold price estimations were considered. An application on environmental studies 

can be found in (Yetilmezsoy, Ozkaya, and Cakmakci 2011) . Electricity consumption using ANNs is 

applied by (Azadeh, Ghaderi, and Sohrabkhani 2008) . 

A major problem with the ANN is the scalability and the management in real time when high number 

of inputs are candidates for the model development since measurements and advanced sensor technology 

provide a significant amount of different data, some of which are redundant or correlated. There are 

various trial and error and sequential input selection methods for the ANNs (Castellano and Fanelli 2000; 

Leahy, Kiely, and Corcoran 2008; Verikas and Bacauskiene 2002) combine the tools from optimization and 

statistics. 

In theory, higher number of inputs, especially when they are redundant or do not carry additional 

statistical insight, contribute to famous overfitting problem by introducing more weights to the 

architecture and bringing about significant computational load with parameter identifiability issues 

(Schittkowski 2007). A representative input subset selection has been a focus for the development of more 

efficient and accurate predicting ANN architectures with improved computational performance. 

In (Verikas and Bacauskiene 2002), an input reduction method is implemented on publicly available 

benchmark problems and provides a similar performance with smaller input subspace. The input selection 

might in turn delivering a better or a similar performance in the test data despite reduced training 

performance. Such a performance drop in training is theoretically intuitive as less parameters are included 

in the optimization problem with fewer inputs. However, the impact on the test instances is beneficial for 

many cases (Ledesma et al. 2008; Sildir, Aydin, and Kavzoglu 2020).  

There are various input selection algorithms in the literature (Castellano and Fanelli 2000; Van De Wal 

and De Jager n.d.). Those methods usually handle the input reduction in a computationally simplified 

domain by excluding the non-convex and non-smooth optimization problem, focusing on statistical 

significance among variables or straightforward interactions between inputs and outputs. Next, the 

resulting input subset is used for the development of ANNs. A major theoretical challenge with such 

approaches is the compatibility of the inputs for the ANN development although they are obtained from 

a simplified set of interactions rather than the actual ANN formulation during the selection. In addition, 

those inputs are selected using a sequential manner, which requires the successive and recursive process 

in which only one input is removed per iteration. Thus, any theoretical potential from the co-existence of 
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inputs can not be exploited due to the heuristic nature of the approach. On the other hand, such sequential 

input selection algorithms have found significant applications (Rückstieß, Osendorfer, and Smagt 2011) 

due to its practical usage and satisfactory performances once the data do not contain significant 

nonlinearity and complexity. With many variations (Aha and Bankert 1996), the cross-validation score is 

a popular approach to eliminate or add an input (Ferri et al. 1994). The method is also used in this study 

for the comparison purposes. 

One more typical solution to cope with overfitting is to include a regularization term to penalize larger 

values of ANN parameters during the NLP (Non-linear programming) solution, which unfortunately 

cannot regularize the hyper parameters (Manngård, Kronqvist, and Böling 2018). Dropout regularization 

is an alternative and efficient method to include structure detection element into ANNs, using random 

sampling based techniques (Poernomo and Kang 2018). Another recent advancement related to feature 

selection includes Bayesian optimization-based methods. These methods are not non-parallelizable, but 

also often converge to suboptimal local solutions, which in turn brings about poor performance for feature 

selection. On the other hand, efficient decomposition algorithms are present for larger search spaces, 

integrating the derivate-based and blackbox optimization approaches for the solution of mixed integer 

nonlinear programming (MINLP), (Diaz et al. 2017; Feurer and Hutter 2019; Stamoulis et al. 2018). 

This study focuses on the development of an MINLP formulation for the simultaneous design and the 

training of feedforward ANNs by representing the selection of the inputs by a binary decision variable in 

addition to traditional continuous ANN weights. This approach obtains the structure and the weights of 

the ANN automatically and simultaneously, unlike sequential feature algorithms. Thus, resulting best 

features are selected considering the ANN architecture, in addition to traditional concerns such as 

accuracy, and ensures a satisfactory performance with the subset. Furthermore, in theory, MINLP 

problems can be solved to global optimum in theory, guaranteeing to achieve the best possible feature 

selection (Sahinidis 1996). Finally, the decomposable structure of the resulting mathematical optimization 

formulations also increases the potential of the proposed methods for large-scale data sets, unlike the 

cutting-edge Bayesian optimization or sequential feature selection methods. 

The rest of the paper is organized as follows: Section 2 includes the theoretical background of the 

approach. Section 3 provides the results and comparison to ANNs with all inputs. The last section 

concludes the study. 

2. Methodology 

2.1 Theoretical Background 

Traditional feedforward ANN applications comprise of fully connected networks where all inputs, 

hidden layer neurons and outputs are connected completely, in a fully-connected manner. These ANNs 

are typically defined as follows: 

 

 𝑦 = 𝑓𝑂𝐿(𝑊𝑂𝐿 ∙ 𝑓𝐻𝐿(𝑊𝐻𝐿 ∙ 𝑢 + 𝐵𝐻𝐿) + 𝐵𝑂𝐿) (1) 

 

where y is the vector of outputs; WHL and BHL are the matrices of hidden layer weights and bias vector 

respectively; WOL and BOL are the matrices of output layer weights and bias vector respectively; u is the 

vector of inputs or features; fHL and fOL are hidden layer and output layer activation functions respectively. 

The mathematical representation given by Eq. 1 represents a fully connected feedforward artificial neural 

network (FC-ANN) which transforms the information in input, u, to the succeeding layers, and eventually 

to the output vector, y. The dimensions of ANN weights in Eq. 1 depend on the number of inputs, outputs 

and number of neurons (a hyper parameter), which are determined manually before training. In general, 

as the dimensions get larger, higher number of connections and parameters are introduced, which in turn 

provides higher capability of fitting to the training data. More parameters can also be introduced by 
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adding more hidden layers, and thus connections. This task lies within the concept of deep learning, 

providing beneficial application pathways in the literature (Alom et al. 2019). 

2.2 Proposed Method 

The hyperparameter management of ANNs is a challenging task since it requires significant number 

of trials. The common approach to especially decide on which input to select through ANN training is 

trial and error, where sequential selection and training steps are followed. In practice, those 

hyperparameters include the number of neurons, selection of inputs, and selection of activation functions. 

For instance, fHL has a wide range of functions to address the different dataset and training algorithm 

needs, unlike fOL, which is restricted to some form of normalization function once the classification is under 

consideration. In this case, a softmax activation used to calculate the probabilities of the outputs. Using the 

softmax function, the probability of jth output, yj, based on a particular vector, v, is calculated from: 

 

 
𝑦𝑗 =

𝑒𝑣𝑗

∑ 𝑒𝑣𝑖𝑀
𝑖=1

 (2) 

 

where M is the number of outputs. In ANN applications, the vector v for the calculation of the output 

probabilities are delivered by the hidden layer, due to feedforward information flow throughout the 

network. 

ANNs are traditionally trained using nonlinear optimization methods where the sum of squared 

errors, or similar metrics, is minimized. As a result, optimal network parameters are obtained. Such a 

nonlinear optimization problem assumes a fixed ANN architecture including all the inputs in the dataset, 

in general.  

In this study, the main idea is to represent the existence of the features using a binary variable and 

embed the selection procedure into the training algorithm, which in turn results in an MINLP problem. 

Accordingly, the training problem can be utilized simultaneously with the feature selection in a rigorous 

way, unlike many other sequential feature selection methods. The MINLP problem formulated to address 

both the input selection and training is given by: 

 

 
min𝑊𝑂𝐿,𝑊𝐻𝐿,𝐵𝑂𝐿,𝐵𝐻𝐿,𝑢𝑠

 𝑧 = ∑ ∑ −𝑦𝑖𝑗
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ∙ 𝑙𝑛(𝑦𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 

s.t. 

𝑦𝑖 = 𝑓𝑂𝐿(𝑊𝑂𝐿 ∙ 𝑓𝐻𝐿(𝑊𝐻𝐿 ∙ 𝑢𝑖 + 𝐵𝐻𝐿) + 𝐵𝑂𝐿), ∈ {1, … , 𝑁} 

𝑊𝐻𝐿
𝑖𝑗

≤ 𝑊𝐻𝐿
𝑚𝑎𝑥 ∙ 𝑢𝑠

𝑗
, 𝑖 ∈ {1, … , 𝑛𝑒𝑢𝑟𝑜𝑛}, 𝑗 ∈ {1, … , 𝑖𝑛𝑝𝑢𝑡𝑠} 

𝑊𝐻𝐿
𝑖𝑗

≤ 𝑊𝐻𝐿
𝑚𝑎𝑥 ∙ 𝑢𝑠

𝑗
, 𝑖 ∈ {1, … , 𝑛𝑒𝑢𝑟𝑜𝑛}, 𝑗 ∈ {1, … , 𝑖𝑛𝑝𝑢𝑡𝑠} 

∑ 𝑢𝑠,𝑖

𝑈

𝑖=1

= 𝑢𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

𝑢𝑠 ∈ {0,1} 

(3) 

 

where z is the cross-entropy function, us is the binary vector includes the decision variable to select a 

particular input to account for in the ANN architecture; where ui is the vector of ith inputs; yi is the vector 

of ith output. This way, the most statistically major inputs can be selected while minimizing the traditional 

cross-entropy formulation. Please note that the major difference of Eq.3 to Eq.1 is the inclusion of the 
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binary input selection vector, us, embedded into the ANN equation. This way, the optimization detects 

whether or not to use the information from the particular feature value while training the ANN. 

Computation of the output variable given by Eq. 3 for a particular input sample, u, requires both the value 

of continuous weights (or parameters) and bias values, and binary input selection decision variables to be 

computed during training. Thus, to detect the optimal inputs and train the ANN network systematically 

and in a simultaneous fashion, a mixed-integer nonlinear optimization problem is formulated. Additional 

linking constrains given by Eq. 3 ensure setting the weights for the columns, which correspond to the 

eliminated inputs, to zero. On the other hand, the same constraints ensure the weight limits of the columns, 

tightening the search space to favor computational efficiency. To the best of the author’s knowledge, 

formulation of the presented method as a mixed-integer nonlinear programming for classification 

problems in a systematic, where the nonlinearity of the ANN networks are considered, is still a scarce 

subject. Eq.3, on the other hand, represents a highly non-convex mixed-integer nonlinear programming 

problem, whose solution to global optimality is a quite challenging task. Solving MINLP problems 

requires branching on binary variables and solving the corresponding NLP relaxations at the same time. 

Derivative-based and derivative-free methods are available for the solution of the problem. For this work, 

a derivative-based local MINLP solver (DICOPT) is used, but evolutionary algorithms (e.g. genetic 

algorithm) may turn out to be useful for identifying a heuristic or initial solution. The major contribution 

of this study includes the development of Eq. 3 to address the simultaneous input selection and ANN 

training using rigorous optimization formulation, rather than evolutionary algorithms. Suggested 

formulation is applied in PYOMO language and the related MINLP problem is solved using the DICOPT 

solver (Hart, Watson, and Woodruff 2011; Kocis and Grossmann 1989). PYOMO is an internationally 

recognized open-source algebraic optimization modeling language which provides a user-friendly 

environment. Several useful open-source MINLP solvers can also be integrated in PYOMO (Kronqvist et 

al. 2019). Optimal results were obtained in less than 30 seconds for all of the cases given in results section. 

For detailed explanation of MINLP problems and related solution algorithms, the reader is referred 

to (Kronqvist et al. 2019). Finally, a flowchart of the proposed method is represented below: 

 

 
Figure 1:  Flowchart of the solution of the MINLP problem using Outer Approximation (Duran and 

Grossmann 1986). 
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Here, y represents the set of binary variables comprised of the candidate features and the NLP subproblem 

represents the standard ANN training. zU and zL are the upper and the lower bounds of the objective 

function for the problem defined by Eq.3, respectively. MILP Master Problem stands for the linearized 

version of the original MINLP problem and in this solution setting, the training problem and the MILP 

Master problem are solved iteratively until the optimal values of both problems approach close to each 

other. Convergence is assured by automatically including integer cuts to the training problem, which 

stands for the optimal selection of the features or inputs, represented by the feature selection vector as 

mentioned before. As opposed to selecting the features randomly and sequentially, the addition of the 

integer cuts ensures the selection of the best features while training the ANN. 

3. RESULTS 

This section compares the training and the test performance of ANNs for all inputs and selected inputs 

obtained from the proposed optimization problem. The application includes three commonly used 

datasets. All datasets are publicly available classification benchmarks but in addition to that, the first case 

study also justifies the use of machine learning techniques for medical applications which is a relatively 

new area. The second application is also associated with chemical engineering and biotechnology, which 

is again a unique and interesting application area for engineering and the last dataset is related to heart 

failure detection. 

The performance criterion is the confusion matrix for the training and the test data. 50% training ratio 

is used for two cases after shuffling the data randomly. Traditional fully connected ANN (FC-ANN) which 

utilizes all the available inputs, without any input selection algorithm, is the first architecture for 

performance evaluation. Secondly, SIS-ANN (Sequential Input Selection based ANN) results are 

presented in which ANN is trained using selected inputs from sequential input selection algorithm. 

Finally, MIP-ANN (Mixed Integer Programming based ANN) results, which demonstrate the 

performance obtained the mixed-integer formulation in Eq. 3, is presented. All architectures use 

hyperbolic tangent activation functions in two hidden layer neurons. 

 
Figure 2: Different ANN methodologies which are used for comparison 

 

3.1. Breast Cancer Dataset 

The breast cancer dataset is a popular classification benchmark which found significant attention from 

the literature (Agarap 2018; Benbrahim, Hachimi, and Amine 2019; Lavanya and Rani 2011). The dataset 

contains mean, standard deviation and worst values for 10 different structural properties to diagnose a 

patient as cancer or not. The problem requires the measurement of high number of input variables once 

the input reduction is not applied. On the other hand, the determination of an optimal subset is a 
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challenging task with high number of combinations, hindering the use of trial and error procedures. Table 

1 provides the available inputs from which dark market entries are selected based on the corresponding 

algorithm. Note that, FC-ANN inputs are not included in Table 1 since all of them are used for the method. 

In this case, a significant input reduction is required from the algorithms to observe the theoretical 

contributions more clearly. Both sequential input selection and mixed-integer based approach focuses on 

the worst values of particular inputs for diagnosis. Unlike sequential input selection algorithm, which uses 

perimeter and symmetry for the decision making, mixed-integer formulation uses radius and concavity 

to calculate the cancer status. 

 

Table 1. Selected inputs for Case 1 
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Table 2 includes the training and the test performances for FC-ANN, SIS-ANN and MIP-ANN. The 

former delivers the best training performance, thanks to high number of weights in the ANN architecture. 

However, a significant test performance drop is obtained for the FC-ANN architecture, which is not 

desired in many cases and considered a measure of overfitting. SIS-ANN delivers a reduced test 

performance compared to FC-ANN using two inputs shown in Table 1. However, overfitting is decreased, 

as well, since a perfect classification is not observed in the training. 

 

Table 2. Classification comparison of different ANN approaches for Case 1 

  FC-ANN SIS-ANN MIP -ANN 

  C1 C2 C1 C2 C1 C2 

T
ra

in
 C1 109 0 103 6 97 12 

C2 0 175 4 171 0 175 

Accuracy 1.000 0.965 0.957 

T
es

t C1 94 9 89 14 84 19 

C2 10 172 13 169 1 181 

Accuracy 0.933 0.905 0.930 

 

MIP-ANN delivers a similar test performance, compared to FC-ANN, with a convenient training 

performance. Such similarity is an indication of eliminated overfitting. In addition, despite poor 

performance compared to both FC-ANN and SIS-ANN in the training data, MIP-ANN outperforms in 

test. Such a performance is possible due to tailored formulation in Eq. 3, which accounts for the ANN 

architecture and the impact of the inputs simultaneously during the ANN development. As a major 

practical advantage, only two measurements for real-time applications would deliver a satisfactory 

performance besides its computational advantages, when a new prediction or model update is required. 



A Systematic And Efficient Input Selection Method for Artificial Neural Networks Using  769 

Mixed-Integer Nonlinear Programming   

 

3.2. Wine Dataset 

Wine dataset contains 178 samples of 13 inputs which are used for the prediction of 3 classes. The 

dataset has found significant applications in the literature (Bredensteiner and Bennett 1999; Zhong and 

Fukushima 2007). The available and selected inputs are presented in Table 3. 

 

Table 3. Selected inputs for Case 2 
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Four input samples out of 13 were selected using sequential input selection and mixed- integer based 

selection algorithm. The last input is selected by both algorithms; however, other selected inputs are 

different for the two approaches. 

Table 4 includes the performances of FC-ANN, SIS-ANN and MIP-ANN based on the confusion 

matrices. 

Table 4. Classification comparison of different ANN approaches for Case 2 

  FC-ANN SIS-ANN MIP -ANN 

  C1 C2 C3 C1 C2 C3 C1 C2 C3 

T
ra

in
 C1 26 0 0 26 0 0 24 2 0 

C2 0 37 0 0 37 0 2 35 0 

C3 0 0 26 0 0 26 0 0 26 

Accuracy 1.000 1.000 0.955 

T
es

t 

C1 32 1 0 32 1 0 32 1 0 

C2 7 26 1 3 31 0 1 32 1 

C3 0 1 21 3 3 16 0 0 22 

Accuracy 0.887 0.887 0.966 

 

FC-ANN and SIS-ANN have similar training and test performances, despite different samples are 

misclassified in the test. Both ANN architectures have a similar performance drop based on their training 

and test accuracies. The performance drop in the FC-ANN clearly stems from the overfitting problem since 

all the available information is already present in the training. However, SIS-ANN suffers from the 

selection of an inefficient input subset. MIP-ANN delivers a similar training and test performance. In 

addition, the latter is the superior among three ANN architectures. 

3.3. Heart Failure Clinical Records Dataset 

Heart failure clinical records dataset (Chicco and Jurman 2020) includes 299 measurements, which 

enable the prediction of death event under follow-up period based on 12 important and potential 

indicators of current health status of a human. Unlike other cases, in order to show the superiority of the 

proposed methodology under relatively small training ratio, only 10% randomly selected data of the data 

set is used for the training. Such a small training ratio is also useful to demonstrate the generalization 

capability of the method, which is an important and highly-encountered concern when data are limited 

or measurements are challenging. Table 5 shows the selected inputs based on the methods. 



770                                                                                                                                                   H. SILDIR, E. AYDIN

  

 

 

Table 5. Selected inputs for Case 3 

 

 
ag

e 

an
em

ia
 

h
ig

h
 b

lo
o

d
 p

re
ss

u
re

 

cr
ea

ti
n

in
e 

p
h

o
sp

h
o

k
in

as
e 

d
ia

b
et

es
 

ej
ec

ti
o

n
 f

ra
ct

io
n

 

p
la

te
le

ts
 

se
x

 

 
se

ru
m

 c
re

at
in

in
e 

se
ru

m
 s

o
d

iu
m

 

sm
o

k
in

g
 

ti
m

e  

SIS-ANN             

MIP -ANN             

 

The impact of the input selection is observed on the prediction performance both from the point 

selection of actual indicator, which drives or leads the complex and highly-nonlinear nature of the existing 

interactions in the human body, and the reduction in overfitting thanks to eliminated connections from 

the particular inputs to the hidden layer. The impact of the overfitting is observed on FC-ANN, which 

suffers from significant performance difference in training and test despite all inputs are available in the 

training set. On the other hand, SIS-ANN, although significant amount of connections and related weights 

are removed from the ANN structure due to feature selection, delivers a relatively-low prediction 

accuracy since a better input selection could not be performed with a simple input selection algorithm 

without considering the architecture of the ANN formulation explicitly.   

 

Table 6. Classification comparison of different ANN approaches for Case 3 

  FC-ANN SIS-ANN MIP -ANN 

  C1 C2 C1 C2 C1 C2 

T
ra

in
 C1 17 0 14 3 17 0 

C2 0 12 3 9 5 7 

Accuracy 1.000 0.793 0.827 

T
es

t C1 133 53 132 54 174 12 

C2 32 52 31 53 55 29 

Accuracy 0.685 0.685 0.751 

 

4. CONCLUSION 

ANNs are empirical models with high number of tuning parameters. They have flexible structure 

which requires the pre-specification of inputs, neuron number, activation functions, training algorithm, 

training data selection and many other issues with high theoretical complexity. In addition, the approach 

to deal with such issues are usually data and case dependent; thus generalization of ANN design and 

training methods is a challenging task. A major and commonly encountered issue is overfitting, which is 

caused by the selection of high number of inputs and hidden neuron number in addition to lack of 

statistically meaningful dataset.  

This study focuses on the selection of the optimal inputs through an MINLP formulation and does not 

explicitly address other aforementioned considerations during training of the ANN development. The 

impact of the proposed approach is implemented on three publicly available and widely used datasets, 

showing the contribution of the approach. The method delivers statistically sufficient and meaningful 
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input subset, resulting in a desired training performance and good prediction performance despite 

significant reduction in total number of inputs. This has several advantages over the traditional trial and 

error based and sequential approaches. Once the number of features (or inputs) is decreased, the ANN 

number of parameters for training also decreases together with the training computational load without 

causing underfitting. In addition, model update when a new measurement becomes available gets faster. 

Once those ANNs are implemented on actual implementations with real-time prediction, a smaller input 

space would enable a more robust functionality over ANNs considering all inputs. At the same time, 

please note that some inputs obtained from the sensors are exposed to failures in daily operation. 

A particular input might be eliminated from input space both due to its correlation with other inputs 

and its irrelevance to the output. The former consideration may show the multiplicity in ANNs which is 

beyond the scope of this paper. In practice there are many less-dependent input subset combinations 

among a dependent input set. Here, the optimization algorithm has a major role over the subset selection 

among the correlated inputs. The solution of MINLPs is usually computationally expensive task for larger 

networks and datasets. 

Many other hyper-parameter related performance influencing architectural decisions exist in the 

ANN formulation. Activation function selection, number of hidden neurons, optimization algorithm 

tuning parameters, training ratio, scaling of the data and initialization of the optimization are only some 

of those. Thus, a more comprehensive and ultimate comparison is out of the scope of the paper and limited 

to the input selection only. 

Our future works include the development of reformulations, which decompose the problem into 

smaller and easier-to-solve problems for handling large datasets. 
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