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Generalized eigenvectors of linear operators and biorthogonal
systems
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ABSTRACT. The notions of a set of generalized eigenvalues and a set of generalized eigenvectors of a linear operator
in Euclidean space are introduced. In addition, we provide a method to find a biorthogonal system of a subsystem of
eigenvectors of some linear operators in a Hilbert space whose systems of canonical eigenvectors are over-complete.
Related to our problem, we will show an example of a linear differential operator that is formally adjoint to Bessel-type
differential operators. We also investigate the basic properties (completeness, minimality, basicity) of the systems of
generalized eigenvectors of this differential operator.
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1. INTRODUCTION

Let H be an Euclidean space with inner product 〈·; ·〉 : H ×H → C, N0 = N ∪ {0}, m ∈ N0,
n;m = [n;m] ∩ N0 and n;m = ∅ if n > m. Suppose that a certain linear operator A : H →
H has a countable set of simple eigenvalues {λk : k ∈ N} and a corresponding system of
eigenvectors {ψk : k ∈ N} that is complete and minimal after removing, for example, the
first m ∈ N members, or the adjoint operator of A has no eigenvalues. Such operators arise
naturally in the study of some boundary value problems (see, for example, [3, 4, 10, 14, 16]
and the reference therein), for instance, in the study of boundary value problems for Bessel’s
equation (see [8, 12, 13, 18, 19, 25, 26]). The problem is how to find a biorthogonal system
(Un : n ∈ N\1;m). Such a biorthogonal system will be found if we can find the vectors Un such
that 〈ψk;Un〉 = 0 for all k ∈ N\1;m and n ∈ N\1;m.

Finding such biorthogonal systems often faces certain difficulties (see [3, 4, 8, 12, 13, 18, 19,
25, 26]). Sometimes, in the case of simple eigenvalues, such vectors Un can be found by using
a notion of a set of generalized eigenvectors which we propose in this paper (see Section 2).
There are different methods to introduce the generalized eigenvectors with access to a wider
space (for details, see [2, 3, 4, 5, 9]). The peculiarity of our interpretation of a set of generalized
eigenvectors of a linear operator B : H → H with domain D(B) is that the generalized eigen-
vectors belong toH and the difference of eigenvectors belong toD(B). We show an example of
a linear differential operator Bν : Hν → Hν in some Hilbert spaceHν that has no eigenvectors,
but has the generalized eigenvectors (see Section 3). In Sections 4 and 5, we will prove that
this operator, Bν , is formally adjoint to Bessel-type differential operators Ãν : Hν → Hν and
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Aν : Hν → Hν whose systems of canonical eigenvectors are over-complete. We also inves-
tigate the basic properties (completeness, minimality, basicity) of the systems of generalized
eigenvectors of an operator Bν .

The introduced notions of the sets of generalized eigenvalues and eigenvectors probably are
of interest in some sense for spectral theory.

2. GENERALIZED EIGENVECTORS

Let Ω ⊆ N be some non-empty set.

Definition 2.1. The set M(B) = {µj : j ∈ Ω} is called a set of generalized eigenvalues of a linear
operator B : H → H with domain D(B) in a vector (linear) space H if there exists a set U(B) = {Uj :
j ∈ Ω} of nonzero elements Uj ∈ H such that Un − Uk ∈ D(B) and B(Un − Uk) = µnUn − µkUk
for every n ∈ Ω and k ∈ Ω. In this case, the set U(B) is called a set of generalized eigenvectors of an
operator B.

We say that an operator B : H → H is a formally adjoint of an operator A : H → H in a
Euclidean spaceH with inner product 〈·; ·〉 : H×H → C, if 〈Aψ;u〉 = 〈ψ;Bu〉 for all ψ ∈ D(A)
and u ∈ D(B).

Theorem 2.1. Suppose thatA : H → H be a linear operator with domainD(A) in a Euclidean spaceH
with inner product 〈·; ·〉 : H×H → C having a set of eigenvalues {λj : j ∈ Ω} and a set of eigenvectors
{ψj : j ∈ Ω}. Let each µj = λj be a generalized eigenvalue of an operator B : H → H that is a
formally adjoint of A, and let {Uj : j ∈ Ω} be a set of generalized eigenvectors of B. Then 〈ψk;Un〉 = 0
if λk 6= λn.

Proof. Indeed,

λk〈ψk;Un〉 = λk〈ψk;Un − Uk〉+ λk〈ψk;Uk〉 = 〈Aψk;Un − Uk〉+ λk〈ψk;Uk〉
= 〈ψk;B(Un − Uk)〉+ λk〈ψk;Uk〉 = 〈ψk;µnUn − µkUk〉+ λk〈ψk;Uk〉
= 〈ψk;µnUn〉 − 〈ψk;µkUk〉+ λk〈ψk;Uk〉 = 〈ψk;µnUn〉
= λn〈ψk;Un〉,

whence the theorem follows. Theorem 2.1 is proved. �

A linear operator can has several sets of generalized eigenvalues. The union of two such sets
may not be a set of generalized eigenvalues. Every set of eigenvalues is a set of generalized
eigenvalues. If for some b ∈ H and each j ∈ Ω, and the numbers µj , the equationB(u) = µju+b
has a nonzero solution uj ∈ D(B), then the set M(B) = {µj : j ∈ Ω} is a set of generalized
eigenvalues of an operator B : H → H. If D(B) = H and the set M(B) = {µj : j ∈ Ω} is a
set of generalized eigenvalues of an operator B : H → H, then there exists b ∈ H such that
for every k ∈ Ω the equation B(u) = µku + b has a nonzero solution uk ∈ H. In this case,
b = B(Un) − µnUn and n ∈ Ω is arbitrary. If D(B) 6= H, then a linear operator B : H → H can
has generalized eigenvectors of other kinds.

Definition 2.2. Let m ∈ N0 and Ω = N\1;m. The set M(B) = {µj : j ∈ Ω} of generalized
eigenvalues of a linear operator B : H → H is called a set of generalized eigenvalues of width m (with
respect to an operator B̂) if there exists a vector space Ĥ and a linear operator B̂ : Ĥ → Ĥ with domain
D(B̂) that has a countable set of eigenvalues {µk : k ∈ N} and a set of eigenvectors {ûk : k ∈ N} such
that Ĥ ∩ H 6= ∅, Un − Uk ∈ D(B̂), B(Un − Uk) = B̂(Un − Uk) for any n ∈ Ω and k ∈ Ω, and

Us := ûs +
∑
i∈1;m

ωi,sûi ∈ H, ωi,s := (µs − µi)−1, s ∈ Ω.
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In this case, the set U(B) = {Uj : j ∈ Ω} is called a set of generalized eigenvectors of width m.

Theorem 2.2. Assume that m ∈ N0, Ω = N\1;m, B : H → H be a linear operator in a vector space
H, and {Uj : j ∈ Ω} be some set of nonzero elements of the spaceH. Let there exist a vector space Ĥ and
a linear operator B̂ : Ĥ → Ĥ with a countable set of eigenvalues {µk : k ∈ N} and a set of eigenvectors
{ûk : k ∈ N} satisfying Ĥ ∩ H 6= ∅,

Us := ûs +
∑
i∈1;m

1

µs − µi
ûi ∈ H, s ∈ Ω,

and Un − Uk ∈ D(B̂), B(Un − Uk) = B̂(Un − Uk) for every n ∈ Ω and k ∈ Ω. Then M(B) = {µj :
j ∈ Ω} is a set of generalized eigenvalues of width m of an operator B, and U(B) = {Uj : j ∈ Ω} is a
set of generalized eigenvectors of width m.

Proof. Indeed, we have

B(Un − Uk) = B̂(Un − Uk)

= µnûn +
∑
i∈1;m

µi
µn − µi

ûi − µkûk −
∑
i∈1;m

µi
µk − µi

ûi

= µn

ûn +
∑
i∈1;m

1

µn − µi
ûi

− µk
ûk +

∑
i∈1;m

1

µk − µi
ûi


+
∑
i∈1;m

µk − µi
µk − µi

ûi +
∑
i∈1;m

µi − µn
µn − µi

ûi

= µnUn − µkUk.

Theorem 2.2 is proved. �

Remark 2.1. Due to Theorem 2.2, if Uk and Un are the generalized eigenvectors of width m of an
operator B : H → H, then∑

i∈1;m

((ωi,n − ωi,k)µiûi − (ωi,nµn − ωi,kµk)ûi) = 0

for every k ∈ Ω and n ∈ Ω, because

B(Un − Uk) = B̂(Un − Uk)

= B̂

ûn +
∑
i∈1;m

ωi,nûi − ûk −
∑
i∈1;m

ωi,kûi


= µnûn − µkûk +

∑
i∈1;m

(ωi,n − ωi,k)µiûi,

µnUn − µkUk = µn

ûn +
∑
i∈1;m

ωi,nûi

− µk
ûk +

∑
i∈1;m

ωi,kûi

 .

Theorems 2.1 and 2.2 indicate the method of finding a biorthogonal system that can be used
in certain cases. In this paper, for illustrative purposes, we shall prove that there exists an
operator Bν : Hν → Hν in some Hilbert spaceHν that has no eigenvalues, but has generalized
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eigenvalues and corresponding eigenvectors of width m ∈ {0; 1; 2} (see Theorem 3.3). We also
study the properties of this operator Bν (see Theorems 4.4 and 5.5).

To prove Theorems 3.3, 4.4 and 5.5, we need some preliminaries.

3. OPERATOR Bν

Let C(∆) be a vector space of continuous functions f : ∆ → C on the interval ∆ ⊂ C, and
C(k)(∆) be a set of functions f ∈ C(∆) with f (k) ∈ C(∆). Let α ∈ R and L2((0; 1);xαdx)
be the space of measurable functions f : (0; 1) → C such that tα/2f(t) ∈ L2(0; 1); the inner
product and the norm in L2((0; 1);xαdx) are given by 〈f1; f2〉 =

∫ 1

0
tαf1(t)f2(t) dt and ‖f‖ =√∫ 1

0
tα|f(t)|2 dt, respectively. Let also

Jν(x) =

∞∑
k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)

be a Bessel function of the first kind of index ν ∈ R, where Γ is the gamma function. The
function Jν is a solution (see, for instance, [1, 17, 27]) of the equation y′′+y′/x+(1−ν2/x2)y = 0,
the function y(x) = Jν(xs) is a solution of the equation −y′′ − y′/x + yν2/x2 = s2y, and the
functions y(x) =

√
xsJ±ν(xs) satisfy the equation

−y′′ + ν2 − 1/4

x2
y = s2y.

For ν > −1, the function Jν has (see [1, p. 59], [17, p. 350], [27, p. 483]) an infinite set {s̃k : k ∈ Z}
of real zeros, among them s̃k, k ∈ N, are the positive zeros and s̃−k := −s̃k, k ∈ N, are the
negative zeros. All zeros are simple except, perhaps, the zero s̃0 = 0. For ν > 1, the function
J−ν has (see [1, p. 59], [27, p. 483]) an infinity of real zeros and also 2[ν] pairwise conjugate
complex zeros, among them two pure imaginary zeros when [ν] is an odd integer. Let sk,
k ∈ N, be the zeros of the function J−ν for which Im sk > 0 if sk ∈ C or sk > 0 if sk ∈ R.

Let ν = l + 1/2 with l ∈ N, Hν := L2((0; 1);x2ν−1dx) and Bν is the operator generated by
the formal differential operator

`∗ν(u) := −u′′ − 2(2ν − 1)
1

x
u′ − 3((ν − 1)2 − 1/4)

1

x2
u

with domainD(Bν) consisting of all functions u ∈ C(2)(0; 1] satisfying the boundary conditions

(3.1) u(x) = O(x−ν+5/2), x→ 0+,

(3.2) u(1) = 0,

and the asymptotic equality (3.1) can be twice differentiated termwise. Then `∗ν(u) = O(x−ν+1/2)

as x → 0+, and Bν(u) ∈ Hν if u ∈ D(Bν). Let also Ĥ = C(0; 1] and B̂ν is the operator gen-
erated by the formal differential operator `∗ν(u) with domain D(B̂ν) consisting of all functions
u ∈ C(2)(0; 1] satisfying the boundary condition (3.2). Then B̂ν(u) ∈ Ĥ if u ∈ D(B̂ν).

In this section, we shall prove the following theorem.

Theorem 3.3. Let l ∈ N and ν = l + 1/2. Then the operator Bν has no eigenvalues. In this case,
M̃(Bν) = {µ̃k : k ∈ N}, µ̃k = s̃2k, where s̃k are the zeros of Jν , is the set of generalized eigenvalues of
width m = 0 of an operator Bν that corresponds to the operator B̂ν , and

Ũk,ν(x) :=

√
xs̃kJν(xs̃k)

s̃
ν+1/2
k x2ν−1

, k ∈ N
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are the generalized eigenfunctions of width m = 0 of the operator Bν . Besides, the set M(B3/2) = {µk :

k ∈ N \ {1}}, µk = s2k, where sk are the zeros of J−ν , is a set of generalized eigenvalues of width m = 1

of the operator B3/2 which correspond to the operator B̂3/2, and

Uk,3/2(x) :=
sk
√
xskJ−3/2(xsk)− s1

√
xs1J−3/2(xs1)

x2(s21 − s2k)
, k ∈ N \ {1}

are the generalized eigenfunctions of width m = 1 of B3/2. In addition, the set M(B5/2) = {µk :

k ∈ N \ {1; 2}}, µk = s2k, is a set of generalized eigenvalues of width m = 2 of an operator B5/2 that
corresponds to the operator B̂5/2, and

Uk,5/2(x) :=
s2k
√
xskJ−5/2(xsk)− s21

√
xs1J−5/2(xs1)

x4(s2k − s21)

−
s2k
√
xskJ−5/2(xsk)− s22

√
xs2J−5/2(xs2)

x4(s2k − s22)
, k ∈ N \ {1; 2}

are the generalized eigenfunctions of width m = 2 of the operator B5/2.

To prove Theorem 3.3, we need some auxiliary lemmas.

Lemma 3.1. Let l ∈ N and ν = l + 1/2. Then the operator Bν has no eigenvalues.

Proof. In fact, in the case s = 0, the functions u1(x) = x−ν+3/2 and u2(x) = x−3ν+3/2 are the
linearly independent solutions of the equation u′′ + 2(2ν − 1)x−1u′ + 3((ν − 1)2 − 1/4)x−2u =
−s2u. In the case s 6= 0, the linearly independent solutions of this equation are the functions
v1(x) = x−2ν+1

√
xsJν(xs) and v2(x) = x−2ν+1

√
xsJ−ν(xs). Using relation (see [15, p. 226], [17,

p. 346], [27, p. 43])

Jν(x) =
xν

2νΓ(ν + 1)
+O(xν+2), x→ 0,

we obtain

(3.3)
√
xsJν(xs)

x2ν−1
=

sν+1/2

2νΓ(ν + 1)
x−ν+3/2 +O(x−ν+7/2), x→ 0+,

(3.4)
√
xsJ−ν(xs)

x2ν−1
=
∑
k∈0;ν

(−1)ks−ν+2k+1/2x−3ν+2k+3/2

2−ν+2kk!Γ(−ν + k + 1)
+O(x−3ν+2[ν]+7/2), x→ 0 + .

In view of this, every nonzero linear combination of these functions cannot satisfy (3.1), and
hence this operator has no eigenfunctions. Lemma 3.1 is proved. �

Let l ∈ N, ν = l + 1/2, Ĥ = C(0; 1] and B̂ν is the operator generated by the formal differen-
tial operator `∗ν(u) with domain D(B̂ν) consisting of all functions u ∈ C(2)(0; 1] satisfying the
boundary condition (3.2). Then B̂ν(u) ∈ Ĥ if u ∈ D(B̂ν).

Lemma 3.2. Let l ∈ N and ν = l + 1/2. Then M̃(Bν) = {µ̃k : k ∈ N}, µ̃k = s̃2k, where s̃k are the
zeros of Jν , is the set of generalized eigenvalues of width m = 0 of an operator Bν which correspond to
the operator B̂ν , and Ũk,ν(x), k ∈ N, are the generalized eigenfunctions of width m = 0 of Bν .

Proof. Indeed, the numbers µ̃k = s̃2k are the eigenvalues of the operator B̂ν , and ûk,ν(x) =

Ũk,ν(x) = s̃
−ν−1/2
k x−2ν+1

√
xs̃kJν(xs̃k) are the eigenfunctions of this operator. Further, Ũk,ν ∈

Hν , by using (3.3)

Ũk,ν(x) =
1

2νΓ(ν + 1)
x−ν+3/2 +O(x−ν+7/2), x→ 0 + .



Generalized eigenvectors of linear operators and biorthogonal systems 65

Besides,
Ũk,ν(x)− Ũn,ν(x) = O(x−ν+7/2) = O(x−ν+5/2), x→ 0 + .

Therefore, Ũk,ν − Ũn,ν ∈ D(Bν) and Ũk,ν − Ũn,ν ∈ D(B̂ν). In addition,

Bν(Ũk,ν − Ũn,ν) = B̂ν(Ũk,ν − Ũn,ν) = `∗ν(ûk,ν − ûn,ν) = s̃2kûk,ν − s̃2nûn,ν = s̃2kŨk,ν − s̃2nŨn,ν .

Hence, M̃(Bν) = {µ̃k : k ∈ N} is a set of generalized eigenvalues of width m = 0 of the
operator Bν , and Ũ(Bν) = {Ũk,ν : k ∈ N} is the set of generalized eigenfunctions of width
m = 0. Lemma 3.2 is proved. �

Lemma 3.3. Let sk, k ∈ N be the zeros of the function J−ν . Then M(B3/2) = {µk : k ∈ N \ {1}},
µk = s2k, is a set of generalized eigenvalues of width m = 1 of the operator B3/2 which correspond to the
operator B̂3/2, and Uk,3/2(x), k ∈ N \ {1}, are the generalized eigenfunctions of width m = 1 of B3/2.

Proof. Indeed, the numbers µk = s2k are the eigenvalues of the operator B̂3/2, and the functions
ûk,3/2(x) = x−2(s21 − s2k)−1sk

√
xskJ−3/2(xsk), k 6= 1, and û1,3/2(x) = x−2s1

√
xs1J−3/2(xs1) are

their corresponding eigenfunctions. Moreover, Uk,3/2(x) = ûk,3/2(x) + ω1,kû1,3/2(x) if ω1,k =

(s2k − s21)−1. Using (3.4), we obtain

Uk,3/2(x) =
1√
2πx

+O(x), x→ 0 + .

Therefore, Uk,3/2 ∈ H3/2. Besides, Uk,3/2(x) − Un,3/2(x) = O(x) as x → 0+. Hence, Uk,3/2 −
Un,3/2 ∈ D(B3/2), Uk,3/2 − Un,3/2 ∈ D(B̂3/2), and

B3/2(Uk,3/2 − Un,3/2) = B̂3/2(Uk,3/2 − Un,3/2)

= `∗3/2(Uk,3/2 − Un,3/2)

= `∗3/2(ûk,3/2 + ω1,kû1,3/2 − ûn,3/2 − ω1,nû1,3/2)

= s2kûk,3/2 + ω1,ks
2
1û1,3/2 − s2nûn,3/2 − ω1,ns

2
1û1,3/2

= s2k(ûk,3/2 + ω1,kû1,3/2)− s2n(ûn,3/2 + ω1,nû1,3/2)

+ (s21(ω1,k − ω1,n)− (ω1,ks
2
k − ω1,ns

2
n))û1,3/2

= s2kUk,3/2 − s2nUn,3/2.

Thus, M(B3/2) = {µk : k ∈ N \ {1}} is the set of generalized eigenvalues of the operator B3/2,
and U(B3/2) = {Uk,3/2 : k ∈ N \ {1}} is a set of generalized eigenfunctions of width m = 1.
Lemma 3.3 is proved. �

Lemma 3.4. Let sk, k ∈ N, be the zeros of the function J−ν . Then M(B5/2) = {µk : k ∈ N \ {1; 2}},
µk = s2k, is a set of generalized eigenvalues of width m = 2 of an operator B5/2 which corresponds to
the operator B̂5/2, and Uk,5/2(x), k ∈ N \ {1; 2}, are the generalized eigenfunctions of width m = 2 of
B5/2.

Proof. In fact, the numbers µk = s2k are the eigenvalues of the operator B̂5/2, and the functions

ûk,5/2(x) =
s2k(s21 − s22)

√
xskJ−5/2(xsk)

x4(s2k − s21)(s2k − s22)
, k ∈ N \ {1; 2},

û1,5/2(x) = −x−4s21
√
xs1J−5/2(xs1) and û2,5/2(x) = x−4s22

√
xs2J−5/2(xs2) are their corre-

sponding eigenfunctions. Moreover, Uk,5/2(x) = ûk,5/2(x) + ω1,kû1,5/2(x) + ω2,kû2,5/2(x) if
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ωi,k = (s2k − s2i )−1, i ∈ {1; 2}. Using (3.4), we get

Uk,5/2(x) =
s21 − s22
4
√

2πx2
+O(1), x→ 0 + .

Therefore, Uk ∈ H5/2. Furthermore, Uk,5/2(x) − Un,5/2(x) = O(1) as x → 0+. Hence, Uk,5/2 −
Un,5/2 ∈ D(B5/2), Uk,5/2 − Un,5/2 ∈ D(B̂5/2) and

B5/2(Uk,5/2 − Un,5/2) = B̂5/2(Uk,5/2 − Un,5/2)

= `∗5/2(Uk,5/2 − Un,5/2)

= `∗5/2(ûk,5/2 + ω1,kû1,5/2 + ω2,kû2,5/2 − ûn,5/2 − ω1,nû1,5/2 − ω2,nû2,5/2)

= s2kûk,5/2 + ω1,ks
2
1û1,5/2 + ω2,ks

2
2û2,5/2 − s2nûn,5/2 − ω1,ns

2
1û1,5/2 − ω2,ns

2
2û2,5/2

= s2k(ûk,5/2 + ω1,kû1,5/2 + ω2,kû2,5/2)− s2n(ûn,5/2 + ω1,nû1,5/2 + ω2,nû2,5/2)

+ (s21(ω1,k − ω1,n)− (ω1,ks
2
k − ω1,ns

2
n))û1,5/2 + (s22(ω2,k − ω2,n)

− (ω2,ks
2
k − ω2,ns

2
n))û2,5/2

= s2kUk,5/2 − s2nUn,5/2.

Thus, M(B5/2) is the set of generalized eigenvalues of an operator B5/2, and Uk,5/2 are the
generalized eigenfunctions of width m = 2. Lemma 3.4 is proved. �

Remark 3.2. Uk,ν − Ũn,ν /∈ D(Bν) if ν = 3/2 or ν = 5/2. Lemmas 3.2–3.4 are leaving aside the
existence of other sets of generalized eigenvalues. We have not been able to extend Lemma 3.4 to an
arbitrary ν = l + 1/2 with l ∈ N.

Theorem 3.3 is an immediate consequence of Lemmas 3.1–3.4.

4. OPERATOR Ãν AND APPROXIMATION PROPERTIES OF THE SYSTEM (Ũk : k ∈ N)

LetH be a Hilbert space andH∗ its dual space, i.e., the space of linear continuous functionals
on H. The system of elements (ek : k ∈ N) is called complete ([11, p. 4258]) in H if span (ek :
k ∈ N) = H. The system of elements (ek : k ∈ N

)
is said to be minimal ([11, p. 4258]) in H if

ek0 /∈ span (ek : k ∈ N \ {k0}) for each k0 ∈ N. The system (ek : k ∈ N) is called ([11, p. 4258]) a
basis for the space H if, for every f ∈ H, there exists a unique series with respect to the system

(ek : k ∈ N) which converges to f (in H): f =
∞∑
k=1

dkek, dk ∈ C. Minimality of the system

(ek : k ∈ N) in H is equivalent (see [11, p. 4258]) to the existence of the system of conjugate
functionals (fk : k ∈ N) ∈ H∗, i.e., fk(en) = δkn, where δkn is the Kronecker delta. The system
(fk : k ∈ N) is also called a biorthogonal system with respect to the system (ek : k ∈ N). A system
(ek : k ∈ N) is said to be uniformly minimal ([11, p. 4258]) in H if there exists δ > 0 such that for
every n ∈ N the distance of en to the closure of the linear span of the system (ek : k ∈ N\{n}) is
greater than δ‖un‖. A complete system (ek : k ∈ N) that has a biorthogonal system (fk : k ∈ N)
is uniformly minimal if and only if (see [11, p. 4258])

lim sup
k→∞

‖ek‖2‖fk‖2 < +∞.

Every basis is uniformly minimal system (see [11, p. 4258]).
Let ν = l + 1/2 with l ∈ N, Hν = L2((0; 1);x2ν−1dx), and Ãν is the operator generated by

the formal differential operator `ν(ψ) := −ψ′′ + (ν2 − 1/4)x−2ψ with domain D(Ãν) consisting
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of those functions ψ ∈ C(2)[0; 1] which satisfy the boundary conditions ψ(0) = ψ(1) = 0. Then
`ν(ψ) = O(x−1) as x→ 0+, and Ãν(ψ) ∈ Hν if ψ ∈ D(Ãν).

In this section, we prove that the operator Bν : Hν → Hν is formally adjoint in Hν of an
operator Ãν : Hν → Hν . We also investigate completeness, minimality and basicity of the
system (Ũk : k ∈ N) of generalized eigenfunctions of width m = 0 of a operator Bν .

Lemma 4.5. Let l ∈ N and ν = l+ 1/2. Then, the operator Bν is formally adjoint in Hν of an operator
Ãν .

Proof. Let a0 = (ν2 − 1/4)x2ν−3, a2 = −x2ν−1 and ˜̀ν(ψ) = a2ψ
′′ + a0ψ. Then ˜̀∗ν(u) = (a2u)′′ +

a0u is formally adjoint operator of the operator ˜̀ν(ψ) (see [9, p. 97]). Moreover, ˜̀ν(ψ) =

−x2ν−1ψ′′+(ν2−1/4)x2ν−3ψ = x2ν−1`ν(ψ) and ˜̀∗ν(u) = a2u
′′+2a′2u

′+(a0+a′′2)u = −x2ν−1u′′−
2(2ν−1)x2ν−2u′−3((ν−1)2−1/4)x2ν−3u = x2ν−1`∗ν(u). Furthermore, according to the Lagrange
identity (see [9, p. 97]), for every ψ ∈ D(Ãν) and u ∈ D(Bν),

x2ν−1(`ν(ψ)u− ψ`∗ν(u)) = ˜̀
ν(ψ)u− ψ˜̀∗ν(u)

=
d

dx
((a2ψ

′ − ψa′2)u− ψa2u′)

=
d

dx
((−xψ′ + (2ν − 1)ψ)x2ν−2u+ x2ν−1ψu′).

(4.5)

Hence, ∫ 1

0

x2ν−1`ν(ψ)u dx =

∫ 1

0

x2ν−1ψ`∗ν(u) dx.

Lemma 4.5 is proved. �

Lemma 4.6 ([21, 6, 7]). Let l ∈ N and ν = l + 1/2. Then the system (Ũk,ν : k ∈ N), Ũk,ν(x) =

s̃
−ν−1/2
k x−2ν+1

√
xs̃kJν(xs̃k) is complete in the space H̃ν := L2((0; 1);x4ν−4dx).

Lemma 4.7. Let l ∈ N and ν = l + 1/2. Then, the system (Ũk,ν : k ∈ N) in the space Hν has a
biorthogonal system (γ̃k,ν : k ∈ N) that is formed by the functions

γ̃k,ν(x) :=
2s̃
ν−1/2
k

J2
ν+1(s̃k)

√
xs̃kJν(xs̃k).

The system (γ̃k,ν : k ∈ N) is a system of eigenfunctions of an operator Ãν which correspond to their
eigenvalues µ̃k = s̃2k, where s̃k are the zeros of Jν .

Proof. Since (see [17, p. 347], [27, p. 482])∫ 1

0

xJν(xs̃k)Jν(xs̃n) dx =

{
1

2
J2
ν+1(s̃n), k = n,

0, k 6= n,

it follows that∫ 1

0

x2ν−1Ũk,ν(x)γ̃n,ν(x) dx =
2
√
s̃ks̃ns̃

ν−1/2
n

s̃
ν+1/2
k J2

ν+1(s̃n)

∫ 1

0

xJν(xs̃k)Jν(xs̃n) dx

=

{
1, k = n,
0, k 6= n.
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Furthermore, since `ν(γ̃k,ν) = s̃2kγ̃k,ν and Jν(x) = O(xν) as x → 0, we conclude that the num-
bers µ̃k = s̃2k are the eigenvalues of an operator Ãν , and γ̃k,ν(x), k ∈ N are the corresponding
eigenfunctions of this operator. Lemma 4.7 is proved. �

Lemma 4.8. Let l ∈ N and ν = l + 1/2. Then, the system (γ̃k,ν : k ∈ N) is complete in the spaceHν .

Proof. Assume the contrary. Then, according to the Hahn-Banach theorem ([11, p. 4258]), there
exists a nonzero function h ∈ Hν such that

2s̃
ν−1/2
k

J2
ν+1(s̃k)

∫ 1

0

x2ν−1
√
xs̃kJν(xs̃k)h(x) dx = 0, k ∈ N.

Let q(x) = x2ν−1h(x). Then q ∈ L2(0; 1) and, therefore, the system (γ̃k,ν : k ∈ N) is incom-
plete in the space L2(0; 1). We have a contradiction, because it is well known that the system
(
√
xJν(xs̃k) : k ∈ N) is complete in L2(0; 1) (see [15, p. 223], [17, p. 357]). Thus, the system

(γ̃k,ν : k ∈ N) is complete inHν . Lemma 4.8 is proved. �

We remark that Lemma 4.7 also follows from Lemmas 4.5, 4.8, 3.2 and Theorem 2.1.

Lemma 4.9. Let l ∈ N and ν = l+ 1/2. Then, the system (γ̃k,ν : k ∈ N) is not a basis in the spaceHν .

Proof. Using relations (see [15, p. 226], [17, pp. 346, 352], [27, pp. 43, 618])

Jν(x) =

√
2

πx
cos
(
x− π

2
ν − π

4

)
+O

(
x−3/2

)
, x→∞,

Jν(x) = O(xν), x→ 0, s̃k = πk +
πν

2
− π

4
+O(k−1)

and
|
√
s̃kJν+1(s̃k)| =

√
2/π(1 +O(k−1)) as k →∞,

we get

‖Ũk,ν‖2Hν‖γ̃k,ν‖2Hν =
4

J4
ν+1(s̃k)

∫ 1

0

x|Jν(xs̃k)|2 dx
∫ 1

0

x2ν |Jν(xs̃k)|2 dx

=
O(s̃4νk )

J4
ν+1(s̃k)

= O(s̃4ν+2
k ) −→ +∞, k →∞.

Hence, the system (γ̃k,ν : k ∈ N) is not uniformly minimal in the space Hν and therefore is not
a basis in this space. �

From Lemmas 4.5–4.9, we obtain the following assertion.

Theorem 4.4. Let l ∈ N and ν = l + 1/2. Then, the system (Ũk,ν : k ∈ N) of the generalized
eigenfunctions of width m = 0 of an operator Bν is complete in the space H̃ν and minimal in Hν .
Moreover, the operator Bν is formally adjoint in Hν of an operator Ãν : Hν → Hν which has a
complete and minimal system of eigenfunctions (γ̃k,ν : k ∈ N) such that is not a basis inHν .

Remark 4.3. Basis properties (completeness, minimality, basicity) of more general systems (Θk,ν,p :

k ∈ N) with Θk,ν,p(x) = x−p−1
√
xs̃kJν(xs̃k) in the space L2((0; 1);x2pdx), where ν ≥ 1/2, p ∈ R

and (s̃k)k∈N is a sequence of distinct nonzero complex numbers, have been studied in [6, 7, 20, 21, 22,
23, 24].
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5. OPERATOR Aν

Let ν = l+ 1/2 with l ∈ N,Hν = L2((0; 1);x2ν−1dx), and Aν is the operator generated by the
formal differential operator `ν(ψ) and the boundary conditions

(5.6) ψ(1) = 0,

(5.7) ψ(x) =
∑
j∈0;ν

cjx
−ν+2j+1/2 + o(xν+1/2), x→ 0+

for some constants cj ∈ C, j ∈ 0; ν. Suppose that the domain D(Aν) consists of those functions
ψ ∈ C(2)(0; 1] that satisfy these boundary conditions and the asymptotic equality (5.7) can be
twice differentiated termwise. Then `ν(ψ) = 4c1(−1 + ν)x−ν+1/2 + o(x−ν+1/2) + o(xν−3/2) =

O(x−ν+1/2) as x→ 0+, and Aν(ψ) ∈ Hν if ψ ∈ D(Aν).
In this section, we show that the operator Bν : Hν → Hν is formally adjoint in Hν of an

operator Aν : Hν → Hν whose systems of canonical eigenfunctions are over-complete. We also
remark about basis properties of the systems of generalized eigenfunctions of width m ∈ {1; 2}
of an operator Bν .

Lemma 5.10 ([26]). Let l ∈ N and ν = l + 1/2. The operator Aν has a finite set {µk : k ∈ N}
of eigenvalues, where µk = s2k and sk are the zeros of the function J−ν . Moreover, the functions
ψk,ν(x) := s

ν−1/2
k

√
xskJ−ν(xsk), k ∈ N, are the eigenfunctions of this operator.

Lemma 5.11 ([13]). Let l ∈ N and ν = l + 1/2. Then, the system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) is
complete inHν .

Lemma 5.12. Let l ∈ N and ν = l+ 1/2. The operator Bν is formally adjoint inHν of an operator Aν .

Proof. Using relations (3.1), (3.2), (5.6), (5.7) and

ψ′(x) =
∑
j∈0;ν

cj(−ν + 2j + 1/2)x−ν+2j−1/2 + o(xν−1/2), x→ 0+,

from (4.5), it follows that ∫ 1

0

x2ν−1`ν(ψ)u dx =

∫ 1

0

x2ν−1ψ`∗ν(u) dx.

Lemma 5.12 is proved. �

Remark 5.4. From Lemmas 3.3, 5.10, 5.12 and Theorem 2.1, it follows that 〈ψk,3/2;Un,3/2〉 = 0, if k 6=
n, k ∈ N\{1} and n ∈ N\{1}. By direct calculations, we get 〈ψn,3/2;Un,3/2〉 = 1 (see also [18, 19, 25]).
Lemma 5.11 implies that the system (ψk,3/2 : k ∈ N \ {1}) is complete in the space H3/2. Moreover,
in [25, 26] the authors proved that this system is minimal and is not a basis in H3/2. Furthermore, the
biorthogonal system is formed by the functions gk,3/2(x) = πs−4k (1 + s2k)(s21 − s2k)Uk,3/2(x). In [19],
it was shown that the system (gk,3/2 : k ∈ N \ {1}) is also complete in H3/2. In addition, in [19] it
has been established that the system (Uk,3/2 : k ∈ N \ {1}) has in the spaceH3/2 a biorthogonal system
(γk,3/2 : k ∈ N \ {1}) that is formed by the functions γk,3/2(x) = πs−4k (1 + s2k)(s21 − s2k)ψk,3/2(x).
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Since sk = πk − 1
πk + o(k−3) as k →∞ (see [1, 27]), and

‖Uk,3/2‖2H3/2‖γk,3/2‖2H3/2

=
π2(1 + s2k)2

s9k

∫ sk

0

|t
√
tJ−3/2(t)|2 dt

∫ 1

0

|sk
√
tskJ−3/2(tsk)− s1

√
ts1J−3/2(ts1)|2

t2
dt

=
π(1 + s2k)2

9s3k
(1 + o(1)) −→ +∞, k →∞,

the system (Uk,3/2 : k ∈ N \ {1}) is not uniformly minimal in H3/2 and, hence, is not a basis in this
space. Lemma 5.11 implies that the system (ψk,5/2 : k ∈ N\{1; 2}) is complete in the spaceH5/2. From
Lemmas 3.4, 5.10, 5.12 and Theorem 2.1, it follows that 〈ψk,5/2;Un,5/2〉 = 0 if k 6= n, k ∈ N \ {1; 2}
and n ∈ N \ {1; 2}. In [12], it was proven by some other method that the system (ψk,5/2 : k ∈ N) has in
H5/2 a biorthogonal system (Uk,5/2 : k ∈ N \ {1; 2}). However, the problem of finding a biorthogonal
system (Uk,ν : k ∈ N \ {1; 2; . . . ; l}) to the system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) for an arbitrary
ν = l + 1/2 with l ∈ N \ {1; 2} remains open.

From Lemmas 5.10–5.12 and Remark 5.4, we obtain the following statement.

Theorem 5.5. Let l ∈ N and ν = l + 1/2. Then the system (Uk,3/2 : k ∈ N \ {1}) of the generalized
eigenfunctions of width m = 1 of an operator B3/2 is complete, minimal and is not a basis in the space
H3/2. The biorthogonal system (γk,3/2 : k ∈ N \ {1}) also is complete in H3/2. Furthermore, the
system (Uk,5/2 : k ∈ N \ {1; 2}) of the generalized eigenfunctions of width m = 2 of an operator B5/2

is minimal in the spaceH5/2, and its biorthogonal system (ψk,5/2 : k ∈ N \ {1; 2}) is complete inH5/2.
Moreover, the operator Bν is also formally adjoint in Hν of an operator Aν : Hν → Hν whose system
of eigenfunctions (ψk,ν : k ∈ N) is complete after removing a finite number of eigenfunctions, i.e., the
system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) is complete inHν .

Remark 5.5. Let f ∈ H3/2 and dk =
∫ 1

0
t2f(t)gk,3/2(t) dt. Since the system (gk,3/2 : k ∈ N \ {1}) is

complete in the spaceH3/2, the numbers dk determine the function f ∈ H3/2 uniquely. But, the series
∞∑
k=2

dkψk,3/2(x), ψk,3/2(x) = sk
√
xskJ−3/2(xsk)

does not converge for each function f ∈ H3/2 in H3/2 to the function f . We do not know whether
it converges in some sense, for example, whether a given series converges in H3/2 to f in the sense of
Cesàro. Similar questions arise for the other series that can be constructed by using the above considered
biorthogonal systems.

6. CONCLUDING REMARKS

In this paper, the notions of a set of generalized eigenvalues and a set of generalized eigen-
vectors of a linear operator in an Euclidean space are introduced. A method is described to
find a biorthogonal system of a subsystem of eigenvectors of linear operators in a Hilbert space
whose systems of canonical eigenvectors are over-complete. This is illustrated by an example of
a linear differential operator that is formally adjoint to Bessel-type differential operators. Also,
basic properties of the systems of generalized eigenvectors of those differential operators are
studied. Those results can be used for the investigations in spectral theory and nonharmonic
analysis.

Remark that there are other points of view on how to study similar problems (see, for exam-
ple, [2, 3, 4, 5, 9, 10, 16] and the bibliography in them).
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