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ABSTRACT The aim of this study is to compare the performances of Identity, Nominal Weights
Mean (NMW), and Circle-Arc (CA) equating methods under the Non-Equivalent
Groups Anchor-Test (NEAT) design. Synthetic equating functions (SFs) of the NWM
and CA (NWS and CAS) were also created using an equal weighting system (w = 0.5).
Different sizes of small examinee samples (n = 10, 20, 50, 100) were used to equate
new test forms to base test forms. Chained Equipercentile (CE) with bivariate log-linear
presmoothing was used as population criterion equating function to compare the
performances of the equating methods. Overall, the identity (ID) equating was the most
favorable, but the NWS method produced less equating error than the ID and Tucker
Linear (TL) equating methods under specific simulation conditions. The use of the SF
of the NWM method can be used in practice to equate the test forms with samples less
than 25 examinees. In future studies, the SFs of other existing equating methods should
be tested to determine the best performing equating method(s) for small sample
equating.

Keywords small samples, equating, synthetic functions, NEAT design.

Kiiciik orneklemlerde kullanilan bazi test esitleme yontemlerinin
DOOT deseni altinda karsilastirilmasi

0Z Bu calismanin amaci, Identity (iD), Nominal Weights Mean (NWM) ve Circle-Arc
(CA) test esitleme yontemlerinin performanslarini1 denk olmayan gruplar ve ortak soru
iceren test (DOOT) deseni altinda karsilagtirmaktir. Bu yontemlere ait yapay test
esitleme fonksiyonlart (NWS ve CAS) esit agirliklandirma sistemi (w = 0.5)
kullanilarak ayrica olusturulmus ve sonrasinda orijinal test esitleme yontemleriyle (1D,
NW ve CA) karsilastirilmistir. Yeni test formlarini, referans test formlarina esitlemek
igin farkh biiyiikliikte kii¢iik 6rneklemler (n = 10, 20, 50, 100) kullanilmistir. Chained
Equipercentile (CE) yontemi loglinear data diizeltme teknigi ile birlikte kullamlarak,
evrendeki test formlar1 arasinda fonksiyonel bir iliski kurulmustur. Testler arasinda
kurulan bu fonksiyonel iliski, ID, NWM, CA, NWS ve CAS test esitleme ydntemlerinin
performanslarini karsilastirmada bir 6l¢iit olarak kullanilmistir. Sonug olarak, ID
esitleme yOntemi en uygun yontem olarak tespit edilmistir. Ancak NWS yontemi de
bazi durumlarda ID ve TL yontemlerinden daha az hata iiretmistir. NWS yéntemi,
orneklem sayisimn  25'ten az oldugu durumlarda iD’ye alternatif olarak
kullanilabilecek niteliktedir. Sonraki ¢aligmalarda ise, var olan diger test esitleme
yontemlerinin yapay fonksiyonlar1 test edilmeli ve kiigiik orneklemler ile
kullanilabilecek en uygun yontem(ler) tespit edilmelidir.

Anahtar Kelimeler kiiciik orneklemler, test esitleme, yapay fonksiyonlar, DOOT deseni.

96

Turkish Journal of EducationTUR 2016 Volume 5, Issue 3 www.turje.org


http://www.turje.org/
http://www.turje.org/
http://dx.doi.org/10.19128/turje.16916
mailto:scaglak@ogu.edu.tr

CAGLAK; Kiigiik 6rneklemlerde kullanilan bazi test esitleme yontemlerinin DOOT deseni altinda karsilastiriimasi

GENISLETILMIS OZET

Coktan se¢meli testler bireyler hakkinda onemli karar verme siireci igerisinde pratikte yaygin olarak
kullanilmaktadir. Ornegin, adaylarin secimi ve yerlestirilmesi, yiiksekdgretime kabulii, bir kuruma
atanmalar1 ve bir ise uygunluklarmin tespiti bunlardan bazilaridir. Ozellikle Amerika Birlesik
Devleteri'nde yapilan 6gretmen alan sinavlarinda ve sertifika programlarinda ¢oktan se¢meli testler
siklikla kullanilmaktadir. Bu testleri kullanmadaki amag her ne kadar giivenilir ve gecerli sonuglar elde
etmekse de, uygulamadaki en biiyiik problemlerden birisi testlere ait materyallerin giivenliginin ve
gizliliginin saglanamamasidir. Bu problemi agmak i¢in testler farkl1 zamanlarda uygulanmakta ancak bu
durum da farkli problemlerin ortaya ¢ikmasina zemin olusturmaktadir. Ornegin, fakli zamanlarda
adaylara uygulanan smavlarm zorluk dereceleri farklilik gostermekte, bu da adaylarin test puanlarinin
adaletli bir sekilde karsilagtirilmasinin 6niine gegmektedir. Bu sebeple, testlerin zorluk derecelerinin
esitlenmesi ve sonrasinda esitlenmis test puanlarimin adaylara duyurulmasi gerekmektir. Testler
arasindaki ortalama zorluk derecelerinin istatiksel olarak esitlenmesi islemi “test esitleme” olarak
adlandirilmaktadir (Kolen ve Brennan, 2004, s. 2). Test esitleme isleminin tam olarak gergeklestirilmesi,
sinavlar1 uygulayan kurumlarin her zaman arzu ettigi bir durumdur. Ancak, testi alan aday sayisinin az
olmas1 ve/veya testin yapisina uygun olmayan test esitleme yontemlerinin kullanmasi, yanlis test
puanlarinin ortaya ¢ikmasina ve dolayisiyla da adaylarin yanlis degerlendirilmesi gibi problemlere yol
agmaktadir (Caglak, 2015).

Sinavda basarili olan adaylarin dogru tespit edilmesi gerekmektedir. Ancak psikometri uzmanlari,
testleri esitlerken kullanacaklart 6rneklem sayisinin yeterli olmamasi durumu ile karsilasabilmektedir.
Ayrica, uzmanlar bu gibi durumlarda ¢ogunlukla nasil hareket edeceklerini de bilememektedirler. Genel
olarak, pratikte iki durum ile karsilasiimaktadir; 1) sistematik hata riskini goze alip, testleri esitlemeden
adaylarin test puanlar1 agiklamak ya da 2) testlerin kiigiik 6rneklemlerle esitlenmesiyle olusan rastgele
hata miktarim1 géz ardi1 etmek (Caglak, 2015). Diger bir deyisle, alan uzmanlarinin aslinda fazla segenegi
yoktur. Ciinkii her iki durumda da hata riski ¢ok yiiksektir. Anlaml ve karsilagtirilabilir test puanlarini
elde etmek i¢in uzmanlar uygun yontemi se¢melidirler. Kisaca, kullanilacak yontemin ne ¢ok fazla
sistematik hata ne de ¢ok miktarda rastgele hata liretmesi beklenir.

Bazi aragtirmacilar kiigiik 6rneklemler ile kullanilacak esitleme yontemlerini test etmisler ve bulgularina
gore ya yeni yontemler 6nermisler ya da var olan yontemleri birlestirerek 6rneklem sayisinin azligindan
meydana gelebilecek problemlerin dniine gegmeye calismuslardir. Ornegin, Harris (1993) identity (ID)
yontemini 6rneklem sayisinin ¢ok az oldugu durumlar i¢in dnermistir. Aslinda bu yontem farkli test
kitapgigindan elde edilen puanlar1 kendi orijinal 6lgeklerinde degerlendirilmekte ve bu puanlari direkt
olarak esitlenmis gibi kabul etmektedir. Kolen ve Brennan (2004) ID yontemin psikometrik agidan bire
bir ayni1 olan testlerin esitlenmesi i¢in uygun oldugunu ifade etmislerdir. Fakat bu duruma pratikte fazla
rastlanilmamaktadir. Clinkii farkli zamanlarda uygulanan smavlar farkli sorular icerdiginden, testlerin
zorluk derecelerinin ayni olmasi beklenemez. Babcock ve arkadaslar1 (2012), Nominal Weights Mean
(NWM) adinda pratikte ¢ok kullanilan Tucker Linear (TL) yonteminin daha basit bir versiyonunu
onermiglerdir. Bu yeni yontem, TL’nin genel matematiksel esitligindeki bazi parametrelerin kiigiik
orneklemlerle dogru kestirilemeyecegini gostermektedir. Livingston ve Kim (2008) var olan test
esitleme yontemlerinin ¢ok diisiik ve ¢ok yiiksek olan test puanlar esitleme de yetersiz kaldigini 6ne
stirmiis ve bu duruma ¢6ziim olusturmak i¢in Circle-Arc (CA) adinda yeni bir yontem 6nermislerdir.
Kim ve arkadaslar1 (2008), ID metodunun kiigiik érneklemlerle iirettigi sistematik hatay1 azaltmak icin
ID’nin diger test esitleme yontemleri ile birlestirilmesi gerektigini ifade etmislerdir. Bu sebeple Kim ve
arkadaslar1 (2008), genel matematiksel bir esitlik ortaya atmiglar ve bu esitlige yapay test esitleme
fonksiyonu adin1 vermislerdir. Bu fonksiyonun avantaji, herhangi bir test esitleme yonteminin bir
agirliklandirma sistemi aracihigryla ID ile birlestirilebilir olmasidir.

Literatiirde test esitleme ile ilgili bir¢ok calisma mevcuttur. Ancak kiigiik 6rneklemler ile yapilan
caligma sayisi ¢ok azdir. Ayrica, bu yontemlere (CA ve NWM) ait yapay test esitleme fonksiyonlarini
(CAS ve NWS) inceleyen bagka bir ¢alismaya literatiirde rastlanilmamugstir. Bu g¢alismanin diger
calismalardan farki ID yontemine alternatif bir ¢6ziim 6nermesidir. Bu ¢alismada dnerilen yapay test
esitleme fonksiyonlari, dzellikle 6grenci sayisinin az oldugu durumlarda rahatlikla kullanilabilecek
niteliktedir. Pratikte siklikla kullanilan vize ve final sinavlari, ders i¢i degerlendirme faaliyetlerinde
kullanilan quizler bu gibi durumlara 6rnek olarak verilebilir.
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Onerilen yontemlerin 6zellikleri dikkate alinacak olursa, bu yontemler érneklem sayismin azligindan
kaynaklanan problemlere ¢6ziim olabilecek potansiyele sahiptirler. Bu sebeple, NWS ve CAS’m ID’den
daha az hata tiretmesi beklenmektedir. Genel olarak ¢oktan se¢gmeli ve sans basarisinin var oldugu
DOOT deseni altinda uygulanan sinavlarda gézlenen, dogru ve yanlig cevaplar1 elde etmek igin, bu
calismada ti¢ parametreli Madde Tepki Kurami (MTK) ile bilgisayar ortaminda 6grenci verileri
olusturulmustur. Belirtilen test esitleme yontemleri ve 6rneklem sayilarina ek olarak, testlerin zorluk
dereceleri ile 6grenci gruplarinin kabiliyet diizeyleri goz 6nilinde bulundurulmustur. Buna bagl olarak
da 64 farkl1 simiilasyon durumu olusturulmustur. Orneklem sayis1 yeni test icin 10, 20, 50 ve 100 olarak
belirlenmistir. Ancak, bu say1 referans testi (ilk test) i¢in 200 olarak sabit tutulmustur. Test esitleme
islemi her bir durum i¢in 1000 defa tekrarlanmis ve test esitleme yontemleri iirettikleri hatalar
bakimindan karsilagtirilmstir.

Bulgulara gore, testlerin zorluk derecelerinin ve testi alan gruplarin kabiliyet diizeylerinin birbirine
yakin oldugu durumlarda, NWS ID’den daha az hata iiretmistir. Ancak aksi durumlarda ID yontemini
kullanmak, trettigi hata agisindan NWS yontemine gore daha avantajlidir. Test edilen yontemler
simiilasyon durumunun ozelliklerine gore, irettikleri hata bakimdan degiskenlik gdstermektedir.
Urettikleri toplam hata bakimindan, yapay fonksiyonlar orijinal yontemlerden genel olarak daha az hata
tretmistir. Sonug olarak, Kiiciik 6rneklemlerde kullanilacak uygun yontemin belirlenmesinde iki temel
unsur dikkat ¢ekmektedir. Bunlar, toplam test puanlar1 arasindaki standartlastirilmig ortalama fark ile
ortak testlerden alinan test puanlar1 arasindaki standartlagtirilmis ortalama farktir. Eger bu iki fark ¢ok
biiytik ise, testleri esitlemek daha fazla hataya yol agmaktadir. Bu iki farkin kiigiik oldugu durumlarda
ise, NWS’nin ID’ye gore daha az hata iiretmektedir.
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INTRODUCTION

Standardized tests are widely used in practice for different purposes as a part of high-stakes decision
making process, such as in selection, admission, qualification, certification, placement, employment,
and so on. Even though the purpose of standardized testing is to provide reliable and valid assessments,
one of the practical problems is to maintain the test security and confidentiality of testing materials in
almost any examination program. Elimination of any potential threat to those aspects of standardized
testing is very crucial in order to obtain meaningful and fair results. Multiple versions of tests are
therefore used to prevent any threat to security and confidentiality of tests. However, their usage causes
some other problems in testing. Inaccurate score comparability, for example, becomes an outstanding
practical problem since test forms show different psychometric characteristics when multiple test forms
are used. Especially, average difficulty levels of tests may show substantial differences across multiple
versions since identical psychometric characteristics are not always observed, which simply pose a
validity threat to examinees’ test scores. For a meaningful and accurate score comparability among test
takers, test form difficulty differences must be adjusted before releasing examinees’ test scores. The
statistical procedure that is used to adjust test form difficulty differences is called “equating” (Kolen &
Brennan, 2004, p.2). Successful and accurate equating is always desired in any examination program;
however, existence of sampling fluctuations and inappropriate use of equating methods may yield
inequivalent or incompatible test scores.

True values of parameters at the population level are typically unknown. Sample statistics are therefore
used to make inferences about those parameters. It is very important for practitioners to know whether
randomly drawn samples are representative of their populations in order to make correct and defensible
statements about parameters of interest (Peterson, 2007). However, randomly drawn samples always
vary, and thus, sample statistics (e.g., mean, standard deviation, etc.) obtained from those samples differ
due to sampling fluctuations or sampling errors (Howell, 2007). Like many other statistical procedures,
test score equating is also subject to sampling variability (Livingston, 1993). Substantial change in size
of samples therefore affects the functional relationship or equating relationship between the new test
form and the base test form of tests (Kolen & Brennan, 2004; Livingston & Kim, 2011). In other words,
the estimated equating relationship can accurately represent the equating relationship at the population
level if the randomly drawn sample data is large enough. Otherwise, the equation function between the
test forms may considerably differ from that of the population (Kim, von Davier, & Haberman, 2006).

Small sample equating typically occurs in teacher certification/licensure examinations due to the low
number of teacher candidates taking specific subject area tests (Kim et al., 2006). Compared to other
examination programs, such as K-12 assessments, teacher certification examinations are administered
to very small numbers of test takers (Babcock, Albano & Raymond, 2012; Kim, Livingston, & Lewis,
2011). Since timely score release has priority among the other operational tasks in teacher licensure
programs, there is no possibility of collecting more data to equate test forms using larger samples (Kim
& Livingston, 2010). Moreover, test items are replaced with new test items periodically due to item
exposure in many testing programs. Examinees also respond to both specific unique items and common
set of items in both test forms under the non-equivalent groups anchor test design (NEAT). However,
some degree of inaccuracy still exists even though the common set of items in both test forms is used to
establish a functional relationship between the test forms (Livingston, 1993). Small sample test equating,
therefore, becomes an avoidable situation in most teacher certification examinations.

Since fail or pass status is desired for each of the teacher candidates, correct classification of the
candidates using their test scores must be the main goal of any teacher examination program. However,
practitioners have difficulties to decide what to do when the number of examinees taking the teacher
certification examinations is very small because the size of the samples is very crucial for obtaining
accurate and comparable test scores. The absence of large data forces practitioners either not to equate
test forms at the expense of getting a large equating bias or to equate the test forms at the expense of
getting a large standard error (Caglak, 2015). In other words, practitioners do not have many choices to
consider, and thus, the right choice of an appropriate equating method becomes a priority for the
practitioners in order to obtain meaningful and comparable examinee scores across different test forms.
Error in Equating

Different test forms are connected to each other using a statistically obtained linking function or more
specifically with an equating function. Some degree of error is therefore always present whenever test
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forms are equated regardless of the size of samples used in this statistical procedure. Since no unique
method exists in practice to equate test forms, the use of different equating methods may also yield
obtaining different results or some degree of bias even if same examinee samples are used to equate the
test forms. Kolen and Brennan (2004) describe two types of errors in the test score equating context:
random error and systematic error.

Random error refers to sampling error or standard error of equating (SEE). Similarly, systematic error
is attributed to equating bias (BIAS), which occurs due to violations of assumptions of test score
equating or because of using inappropriate methods to equate the test forms (Kolen & Brennan, 2004).
Briefly, sample fluctuations are the main factors affecting the magnitude of random error while the
method related concerns or problems yield equating bias. Random error can be easily quantified or
estimated using several statistical procedures (e.g., bootstrapping, delta4, etc.). However, it is very hard
for practitioners to quantify the systematic error, but it can be controlled through a careful test
development procedure and also with the use of appropriate data collection design and equating method
(Kolen & Brennan, 2004).

Small Sample Equating Methods

Identity equating

When equating is unnecessary or unwarranted, the use of the ID equating is recommended (Harris,
1993). The ID equating refers to no equating since the slope of the equating function is specified as 1
and the intercept is fixed to 0. In other words, scores in the scale of the new test form are transformed
to the scores in the scale of the base or reference test form. However, the transformed scores are still
equivalent to the scores in the original scale of the new test form. Equation 1 shows this functional
relationship between the test forms, where x is a randomly observed score on the scale of Form X (new
test form) and ey(x) is its equivalent on the scale of Form Y (base test form).

e (x) =1*x +0 1)

Since the scores are still assumed to be equivalent to the scores in their original scale, the standard error
equating is zero by definition in the ID equating (Kim et al., 2011). The use of ID equating in practice
is therefore often recommended when the number of new form test takers is less than 100 (Kolen &
Brennan, 2004). However, its use causes substantial equating bias especially when the psychometric
characteristics of the test forms are different (Kim et al., 2011).

Nominal weights mean equating

Babcock et al. (2012) introduced a simplified version of Tucker Linear (TL) equating, which is called
Nominal Weights Mean (NWM) equating. Nominal weights are used to replace the variance and
covariance terms in the TL equating with the numbers of total and anchor items and also with the
numbers of examinees taking the test. The purpose of this replacement is to simplify the equating
function due to the fact that the variance and covariance terms are not accurately estimated when the
sample size is small (Babcock et al., 2012). In NWM equating, the standard deviations of scores on both
Form X and Form Y are also assumed to be equal, and thus, the synthetic means in the TL equating are
transformed to their simplified versions as shown in equation 2 through 9. More details about the TL
equating can be found in Kolen and Brennan (2004). The advantage of using NWM equating arises
when the number of new form test takers is relatively small (such as, 10, 20, and 50) and also when
there is a high risk of obtaining large equating bias from traditional equating methods (e.g., Tucker
Linear, Chained Equipercentile, etc.).

o, (Y)
e,(X)= [X = 2, (X)]+ 1 (Y) (2
o, (X)
e, (X) =X— s (X)+ 15 (Y) ©))
ps(Y) = p(Y)+w, y [u, — a1 4)
w1 (X) = pu(X)=w, 7, [, —#,,] (5)
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O, O
Yy =—5 andy, =— (6)
\Y O-V

In NWM equating, the » terms in equations 4 and 5 are replaced with the ratio of the total test length
(K,. ) tothe anchor test length (K, ) in the both test forms. Also, w represents the ratio of the form

specific sample size over the total sample size of the examinees taking both the Form X and Form Y as
shown below:

NX
w, = and w, =

“ N, +N

X Y X

Y

+N

Y

When » and w terms are replaced with N and K terms, the synthetic means in TL equating become

NX KV

g (Y) = p(Y)+ — [, — 1,1 )
N, +N, K,
N, K

1 (X) = u(X) + . [y, — 14,1 (8)
N, +N, K,

After all of these equations are put together, the equating function of NWM equating takes its final
form as shown in equation 9.

N, K, +N,K,

[NY + NX]KV j|[:uxv _,uvv] (9)

ey(X)=X—ﬂ(X)+#(Y)+[

Circle-arc methods of equating

Livingston and Kim (2008) introduced two versions of Circle-Arc (CA) methods of equating (symmetric
and simplified) to establish a function between the test forms especially when the sample size of test
takers is less than 30 for the new test form. The difference between the two versions comes from how
the equating function is constructed. As seen on the left hand side in Figure 1, in the symmetric version,
the equating function passes through three pre-specified points. However, the equating curve is divided
into two parts in the simplified version: the linear component L(x) that connects the two pre-specified

end points and the curvilinear component that deviates from the line connecting the two end-points.

Symmetric Carcle-Arc Smaplified Circle-Arc

Test Form
&~ N
~~~ N
P .
N 'S

Base Test Form

Base

®(x. 1)

(x.5.) P .
T e . X, ¥
(x5 3) G \:)
New Test Form New Test Form

Figure 1. Symmetric and Simplified Versions of Circle-Arc Method of Equating
The pre-specified end points represent the possible minimum and maximum scores on the test, but the
middle point is determined using mean test scores on both the new and base test forms. Depending on
the data collection design, the equating method that is used to estimate the middle point varies.
Traditional mean or linear equating, for example, is preferred if the data is collected through a random
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groups test design; otherwise, the practitioners prefer using chained means or chained linear methods
when a non-equivalent groups anchor test design is employed to collect examinee data (Babcock et al.,
2012).

Simple mathematical calculations may require obtaining equating functions for both versions, but the
estimation of the geometric projection of the curve on the x-axis in the simplified version is actually a
more complex procedure while an arc of a circle is just fitted to three points in the symmetric version.
Livingston and Kim (2011) pointed out that both versions produce identical results. Hence, in this study,
the symmetric version was compared with the other chosen equating methods due to its mathematical
and conceptual simplicity. To gain more in-depth understanding of the symmetric CA method, let’s label

(x,y,), (x,,y,), and (x,,y,) as the pre-specified points as shown on the left hand side in Figure 1.
The x-axis represents the scores on the Form X and the y-axis represents the scores on the Form Y. The
lowest and highest possible scores on the both test forms are expressed by (x,y,),and (x,,y,) points.

The equating curve with a radius r and center of (x,y ) passes through (x,,y,) to connect (x,y,) with
(x,,v,). Equation 10 is used as the equating function if (x ,y,) is below the straight line connecting

(x.y,) to (x,,y,). Otherwise, equation 11 is used as the equating function to transform Form X scores
to the scores on the scale of Form Y.

e, () =y, ' ~(X-x)’ (10)

e (X) =y, +4/r' (X =x)’ (11)
The center point and the radius r of the circle-arc are computed using the equations 12 through to 14.

o O =)+ 06 +Y) (= Y) + (6 + ) (Y, — )

12
: 20X *(y, = ¥,) + %, * (Y, = V) + %, * (Y, - ¥,)] 12
3 (X HY)*(X, = X)) + (¢ + Y2 ) (% = X,) + (¢ +y2)* (X, — X))
c (13)
Z[yl*(xs _X2)+ yz*(xl_x3)+ ys*(xz _Xl)]
r=J0 %) +(¥,-V.)’ (14)

More detailed information regarding the symmetric and simplified version can be found in Livingston
and Kim (2008; 2009; 2010).

Synthetic functions

Kim et al. (2008) define the synthetic function (SF) as the weighted average of ID equating and any
chosen equating method (e.g., Tucker Linear, Circle-Arc, etc.) using a pre-specified weighting system.
The weight (1-w) given to ID equating can range between 0 and 1. Therefore, the amount of equating
error can be controlled. However, there is no universal guideline of creating SFs of equating methods,
and thus, there is always a heuristic need to further investigate which weighting system works better
than the other equating methods of interest under varying testing conditions. These testing conditions
may include different examinee sizes, various test form difficulty levels and anchor item ratios, etc.

As aforementioned, equating test forms with small samples may lead large equating error. Kim, von
Davier, and Haberman (2008) show the amount of the SEE when the SF is preferred over a regular

equating method. To exemplify, assume that the SF of e (x) is specified as follows:

esrt(y)(x) = W*ey (X) + (l_W)*elo X) (15)

Taking the variance and then the square root of both sides in equation 15 results in equation 16 as shown
below:
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SEE(e,,, (X)) =w*SEE(e, (x)) (16)

As Kim et al. (2008) indicated, the use of SF reduces the amount of the SEE one-half when the equal
weighting system is given to both the ID and chosen equating methods. However, the equating bias is
mostly introduced by ID equating under the assumption that the chosen equating method produces less
or no equating bias compared to the ID equating with the same examinee data when equal weights are
used to create the SFs (Kim et al., 2008). More detailed information about SFs can be found in Kim,
von Davier, and Haberman (2008).

Purpose and Significance of Research

Those studies (Babcock et at., 2012; Harris, 1993; Kim et al., 2008) have greatly contributed to the small
sample test equating literature. However, there is still an uncertainty for selecting the appropriate
equating method to equate the test form using very small samples (n < 50) when the average test form
difficulty and group ability differences are varied. The CA and the NWM equating methods perform
better than the other equating methods under certain conditions when the sample size is particularly
small, but including the SFs, they have not been widely investigated, yet. In addition, the use of the SF
in equating also showed better performance than the unaltered versions of chosen methods (e.g., Chained
Linear, Chained Mean, etc.), but the SFs of the CA and NWM equating methods, which are specifically
proposed for small sample equating, have never been tested. As indicated by Kim et al. (2008), the SFs
of the selected equating methods seems to have a potential to reduce the standard error of equating, but
the accuracy of equating results have not been investigated in detail. Briefly, there is a heuristic need to
further investigate behavior of the equating methods proposed especially for the small sample test score
equating. Following research questions are addressed in this study;

Are there any significant interaction effects among the study factors that influence the equating
accuracy?

Does the use of SFs of the CA and NWM equating methods (CAS and NWS) improve the accuracy of
equating results compared to the ID equating, unaltered CA and NWM equating methods across all
study conditions?

What conclusions and suggestions can be drawn regarding the choice of SFs of the NWM and CA (NWS
and CAS) equating methods in small sample test score equating?

This study took a step forward from previous studies to fill the gap in the equating literature by testing
the SFs of the identity (ID), Nominal Weights Mean (NWM), and Circle-Arc (CA) equating methods to
explore if any other equating can be used to equate test forms when the difficulty levels of the test forms
are different. To the best of my knowledge, no study exists in the literature that investigates the
performances of the ID, NWM, and CA equating methods including the SFs under the NEAT design
using very small samples. Thus, it is my belief that this study would be useful for those who need a
practical guideline to equate the test forms using these equating methods under the conditions considered
in this study.

Related Researches

There is a vast literature on test score equating; however, only few people in the field have been
conducting research on small sample equating in recent years (see, for example, Kim & Livingston,
2011; Livingston & Lewis, 2009; Kim et al., 2006). Some researchers investigated the behaviors of
equating methods mainly focusing on the size of the examinees samples (e.g. Hanson et al., 1994;
Livingston, 1993; Parshall, Du Bose, Houghton, & Kromrey, 1995). They also tested the effect of the
data smoothing techniques on equating accuracy. Findings from those studies showed that increasing
the sample size and/or smoothing the examinee score distributions both reduced the equating error, but
the larger degree of smoothing is applied to raw data, the more systematic equating error has been
observed (e.g, Livingston, 1993).

An extant small sample equating studies have been conducted after year 2005 by several researchers
(e.g. Babcock et al., 2012; Kim et al., 2011; Kim et al., 2006; Livingston & Kim, 2009, Skaggs, 2005).
Their primary focus was to either propose new equating method or integrate the existing equating
methods to overcome the sample size limitation in test score equating. Skaggs (2005) paid attention to
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the to the test form difficulty differences given in standardized mean difference (SMD) units since the
test form difficulty differences mainly affect the equating accuracy. Other researcher therefore also
considered the SMD between the test form difficulty levels to decide whether equating was necessary
or which equating method should have been used.

Kim, von Davier, and Haberman (2006), for example, compared the SF of the Chained Linear (CL)
method with the ID equating under the NEAT design. They examined the effect of external and internal
anchor items on the accuracy of equating results. Various sizes of examine samples (n = 10, 25, 50,100,
200) from a national assessment data were used. Their findings indicated that the use of the SF
performed better when the sample size was smaller than 200 in terms of total equating error, but they
recommend the use of the ID equating with examinee sample size of 25 when the test forms shows equal
or very similar difficulty levels (less than .10 SMD).

Livingston and Kim (2009) compared the CE, LL, CL, CM, and the ID equating methods using a teacher
certification examination data. Small samples were drawn to equate the test forms which showed
substantial differences in their difficulty levels (.36 SMD). The CA method performed better than the
other chosen methods especially for equating the test scores at the extreme ends on the score scale when
the SMD was less than .10 and the sample size was over 150. However, they maintained that the 1D was
the most favorable for the test forms with .10 differences when the sample size was less than 100.
Sunnassee (2011) tested the performance of the ID, CA, CL, Tucker Linear (TL), Levine Linear (LL),
presmoothed CE and Frequency Estimation (FE) methods in a simulation study. Five different sample
sizes (25, 50, 100, 200, and 400) were compared to equate the test forms of which the difficulty
differences were ranged from .0 to .75 SMD. The findings showed that all the equating methods were
capable of adjusting the test form difficulty differences when the difficulty levels of the test forms were
equal to or less than .25. However, both the CA and the ID equating methods produced large bias
especially when the ability levels of the examinees differed much on average.

Babcock, Albano, and Raymond (2012) compared the NWM, smoothed EE, TL, SF of the TL method,
CA, and the ID equating with the small examinee samples (n = 20, 50, and 80). The ability levels of the
new form examinee group were specified as less than, equal to, and larger than the ability group of
examinees taking the base test form. Test forms with different difficulty levels were also used to
compare those equating methods. Their findings indicated that the ID equating was the most accurate
among the others when the test forms were equal in their difficulty levels. However, the NWM method
was the most favorable ones when the group ability levels were not equal to each other. Both the CA
and NWM equating methods performed well when the test form difficulty levels and the group ability
levels differed much.

METHOD

The central objective of this study was to compare the performance of the chosen equating functions
and their synthetic equating functions under a variety of conditions. The relationship among those
equating methods is given in Figure 2. A series of computer simulations were therefore carried out under
a variety of testing conditions that potentially affect the performance of the equating accuracy. Several
sampling factors and psychometric properties of the test forms used in the equating procedure were
considered. Those factors were the sample size of the new form test takers, the SMD between the
examinee groups’ ability levels, and SMD between test form difficulty levels.

Sample Size

Resampling studies in the literature show that the examinee samples taking the new test form typically
range from 10 to 100 in teacher certification or licensure examinations (e.g. Babcock et al., 2012; Kim
et al., 2006; Livingston & Kim, 2009). In the present study, the sample sizes of the new form test takers
were also specified as 10, 25, 50, and 100, but it was held constant at 200 examinees taking the base test
form. Four levels of the sample sizes (A, =10,25,50,100) were therefore used to simulate the actual
testing condition. To establish the criterion equating function, 50,000 examinees’ response data were
used for each of the test forms.
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Figure 2. The Chosen Equating Methods and Associated Synthetic Functions

Group Mean Ability Levels

The group mean ability differences can be conceptualized in standardized mean differrences (SMD)
units. In this study, the examinee group taking the base or the reference test form were sampled from
the standard normal distribution for simplicity [6,,. [ N(0,1)]. For the examinee group taking the new
test form, four different group mean ability levels were chosen from the four normal distributions which
have different means, but same standard deviation. In addition, symmetric examinee distributions with
negative and positive means were specified to determine how lower and higher ability groups affect the
equating results [@, [ N(-.15,1); N(-.03,1); N(+.03,1); N(+.15,1)] .

It is important to note here that, in test score equating, the groups’ mean ability differences between
A,=.05 and A, =.1 SMD are generally considered very large, and an ability difference of .25 SMD
between the examinee groups is considered extremely large difference (Wang et al., 2008). According
to this rule of thumb, the groups’ mean ability differences (A,) were intentionally specified in SMD
units as small and large differences to investigate its effect on the equating accuracy for the methods
tested in this study.

Test form mean difficulty levels
Mean difficulty differences between test forms (A ) can be also examined in the SMD units. In Item

Response Theory (IRT), the test form difficulty level is conceptualized by the average of the item
difficulty statistics. Smaller & (delta) value, for example, is an indication of a more difficult test than its
associated base or reference form; likewise, larger ¢ (delta) value means that the new test form is less
difficult than its base test form. For the present study, the average test form difficulty level of the new
test form was specified with four different normal distributions

[0,., C N(=20,1); N(-.05,1); N(+.05,1); N(+.20,1)] while the true values of & parameter were randomly

drawn from the standard normal distribution of &, _ C N(0,1). According to Kim (2014), the SMD of .05

is considered a small difference between test forms in their average difficulty levels, but the SMD of .20
is an indication of large difference between the test form difficulty levels. With this rule of thumb, less
and more difficult new test forms than the base test forms were created to investigate the effect of change
in mean difficulty difference between the test forms on the equating accuracy for the equating methods
tested in this study.

Data Generation Procedure
A few steps were employed to generate the examinees’ item responses for each of the simulation
conditions. A total of 64 (4x4x4) conditions were established with the given ability and test form
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difficulty levels to compare the performances of five equating methods as indicated in Figure 2. As the
first step, the true item parameter values were generated from the test form difficulty distributions for a
120 item test. Those true values were then used to create the examinees’ item responses for each of the
given examinees’ ability distributions using the 3-Parameter Logistic (3-PL) IRT Model.

IRT establishes a relationship between latent variables and their manifestations using a monotonically
increasing function that is specified in a mathematical form including person and item parameters to
predict observed responses on a test item (de Ayala, 2009). IRT models can be also used to simulate
data based on the psychometric characteristics of an item (difficulty, discrimination, and guessing
parameters) and examinee’s given ability (theta) level to determine the probability of answering each
test item correctly. The mathematical expression of the 3-PL IRT Model is given in equation 17,

P(X, =1/6,,a,b,c,) 1-c) exp(a, (¢, —b)))
i = La,b,c)=c+(@0-c
ij pron : ' 1+ eXp(a.i (9] - bi )) (17)

New Test Form Base Test Form
Ahility and T est Form Difficulty Distributions Ability and T est Form Difficulty Distributions
By ~N(=0.15.1) | | &, ~ N(—0.20.1) Bpe ~ N(0.1) | | S, ~ N(0L1)
By ~ N(=0.03.1) | | &y, ~ N(-0.05.1) Bpe ~ N(0,1) | | Fgype ~ N(0.1)
By, - N(=0.03.1) || &, ~ N(0.05.1) 6o ~N(0.1) || 84, ~ N(0.1)
gy ~ N(+0.15.1) | | Sy — N(+0.20.1) Bz ~N(0.1) | | Fgg, ~ N(0,1)

i
i_.____ Sample Size Specificaion
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Figure 3. Data Generation and Test Equating Procedures

where the P(.) is the probability of correctly answering item i, which is conditioned on the ability level
(6,) of person j and the values of the discrimination parameter (a,), difficulty parameter (b), and the

guessing parameter (c,) of item i. In this study, the 3-PL IRT model was used to generate examinees’

binary item responses using R software Version 3.2.0 (R Development Core Team, 2015). R scripts
were written to equate the test forms using equate package. Different R packages were also used in the
data generation and computer simulation procedures such as matrixStats, psy, ggplot2, plotrix, and
gridExtra.

Total number of test items is typically ranged between 80 and 120 in test forms used in small sample
equating (Babcock et al., 2012; Kim et al., 2006; Livingston & Kim, 2009). Therefore, the numbers of
the items in the total test and anchor test were specified as 120 and 36 respectively in order to mimic the
actual test structure. Four new test forms and four base test forms were created using the true item
parameter distributions. Consequently, a total number of 32 pseudo test forms responses were produced
from the product of given test difficulty and ability distributions. Those examinees’ responses were then
used in the equating procedure as shown in Figure 3. The psychometric characteristics of test forms
were given in Appendix.

Evaluation of Equating Accuracy
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The accuracy of equating results under varying test conditions were evaluated by using weighted
counterparts of several measures of accuracy indices including Weighted BIAS, Weighted SEE, and
Weighted RMSE. To better compare the accuracy of each equating results in the full examinee
population, the average of those accuracy measures were weighted using the frequency distribution of
each raw score value in the new test form large group population equating. Sums of the weighted
accuracy measures for each score point were then used as the overall summary measures for each of the
equating methods tested in this study.

BIAS of an equated score [€ (x,)] is defined as the difference between the estimated average equivalent

score across R replications ([Ey(xk)] and the true equivalent score in the population [e (x,)]. Weighted

Root Mean Squared BIAS (WBIAS) is also calculated for each score point k on the score scale to prevent
the negative and positive values that cancel each other using the proportion of raw score k in the large
group criterion equating. The proportion P, provides more accurate representation of the frequency of

the new test form examinees’ scores in the large group population critierion equating. Considering all
of the score points, the WBIAS can be formulized as follows:

WBIAS[E (x,)] = Z P{BIAS[E, (x,) —e, (x I} (18)

k=0

SEE is defined as the square root of the averaged squared difference between the estimated equivalent
score [€ (x,)] in the r'" replication and the average equivalent score [€,(x)] across R replications.

Weighted SEE (WSEE) can be formulated using the proportion of raw score k in the large group criterion
equating as follows:

K 1& _
WSEE[§, (x,)] = ZR{EZ{éy(xk,)—éy(xk)}z} (19)

RMSE is defined as the squared root of the sum of the squared BIAS and the squared SEE. Weighted
RMSE (WRMSE) is obtained for a score. An equated score can be obtained using the equation 20.

WRMSE[€ (x,)]= \/(VVBIAS[éy (x)D)* + (WSEE[€, (x,)])’ (20)

Population Criterion Equating

One way to evaluate the accuracy of equating results is to compare the equated scores obtained from the
sample and the population data. In other words, a true criterion can be considered to evaluate the
equating results if the equating relationship in the population is known (Harris & Crouse, 1993). Chained
Linear (CL) or Chained Equipercentile (CE) equating methods are commonly used under the NEAT
design to establish the equating relationship between the test forms using the population data
(Livingston, Dorans, & Wright, 1990).

The equating relationship between the test forms could be unstable and inaccurate with score
distributions which contain irregular score patterns (Liou & Cheng, 1995). Thus, an application of some
sort of smoothing to the raw examinee data prior to equating is often recommended (Hanson, 1991;
Kolen & Brennan, 2004; van der Linden & Wiberg, 2010). In this study, the CE equating with 6-
univariate and 2-bivariate log-linear presmoothing were used as the crierion equating function to
evaluate the accuracy of the equating results. The fit statistics (e.g., AIC, BIC, Chi-Square, etc.) of the
presmoothed model were carefuly inspected to decide what extent the smoothing should be applied to
the raw examinees’ score data. In addition, the central tendency measures before and after smoothing
were also compared in order to make sure that the smoothing did not change the shape and location of
the raw score distributions.

Analysis of Equating Results
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This study has four factors: (1) sample size, (2) group mean ability difference, (3) test form difficulty
difference, and (4) the equating methods used to equate the test forms. Since the same data were used
to investigate the performance of the equating methods in each simulation condition, the use of Mixed-
Factorial ANOVA (MFA) was the most appropriate way to investigate the main and interaction effects
of data generation factors with repeated-measures.

Before conducting the MFA for each of the weighted accuracy measures, the data were screened to
investigate whether there was any problem in the data that may violate the ANOVA assumptions. First,
no outliers were detected in the data. Standardized residuals were approximately normally distributed
according to the non-significant Kolmogrov-Smirnov and Shapiro-Wilk tests. Quantile-by-Quantile (Q-
Q) and Stem-Leaf plots also visually confirmed that the normality assumption for the data appeared to
be satisfactory. According to the non-significant Levene’s test for each of the weighted accuracy
measures, the homogeniety of variance assumption was also appeared to be satisfactory for the data
generation factors.

F-statistics with adjusted degress of freedom (df) were used to interpret the significance level of the
main and interaction effects of the study factors due to significant Mauchly’s test of sphericity for the
equating methods or the repeated-measures. Depending on the magnitude of the correction factor (&)

reported in Mauchly’s test, the interpretations of F-statistics were made based on either Greenhouse-
Geisser’s (G-G) or Huynh-Feldt’s (H-F) corrections.

Two general themes were considered to present the results of this study: (1) The overall comparison of
the chosen equating methods; (2) The evaluation of the main and interaction effects of the study factors.

Effect size (ES) estimates (eta-squared (7)) were provided to discuss the magnitude of the main and

interaction effects, instead of reporting F-statistics directly. The ratio of the amount of the variance
explained by a main or interaction effect to the total amount of the variation was used as an effect size
measure associated with each main and interaction term in the ANOVA table. An eta-squared estimate

that was larger than .01 (’ >.01) was considered as a threshold value to classify an effect size as an

“important effect”. In other words, the main or interaction effect that accounts for at least 1% of the
total variation was considered as an important effect on the equating accuracy.

RESULT and DISCUSSION

Several study factors were considered to test the behavior of the ID, CA, CAS, NWM, and NWS
equating methods. Table 1 shows the main and interaction effects of those factors for each measure of
accuracy indices. According to the MFA results, the most important main and/or interaction effects of

the study factors for the WRMSE and WBIAS measures were A, andA;, and A *A,*A;.
Correspondingly, A, was the only between-subject factor with an important effect on the WSEE

measure, but its interaction with A_ was the most important within-subject factor, which simply means
that the chosen equating methods produce different amount of SEE when the sample size varies.

Based on the magnitudes of the effect size estimates, the interaction term of A_* A, * A explained 18%
of the total variation in the WRMSE, and 28% of the total variation in the WBIAS. Eleven percent of
the variation in the WSEE was accounted for by the interaction effect of A_* A . This means that the

total equating error (WRMSE) was affected by several factors: (a) the method used to equate the test
forms, (b) the magnitude of the ability differences between the examinee groups, (c) taking the new and
base test forms, (d) the magnitude of the test form difficulty differences, and (e) the size of the examinee

samples taking the test. More specifically, the interaction among A_*A,* A, was the main source of
the systematic error in equating (WBIAS), and the interaction between A, and
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Table 1. Mixed-Factorial ANOVA Results

WRMSE WSEE WBIAS
Source SS df MS F-ratio p ES SS df MS F-ratio p ES SS df MS F-ratio p ES
Between 8370 127 4903 127 101037 127
Factors
A, 569.22 3 18974 108201 .00 .21* 04 3 01 120 32 .00 | 69580 3 23193 113057 .00 .31*
A, 5.29 3 176 1006 .00 .00 11 3 04 310 .03 .00 7.45 3 248 12141 .00 .00
A, 14.63 3 488 2781 .00 .01*| 4746 3 1582 128360 .00 .03* 14 3 05 22 8 .00
A,*A, 225.98 9 2511 14319 .00 .08* 11 9 01 100 45 00| 28281 9 3142 15317 .00 .13*
A, *A, 2.44 9 27 155 15 .00 12 9 01 112 36 .00 93 9 10 50 .87 .00
A *A, 1.74 9 19 110 38 .00 09 9 01 8 57 .00 1.95 9 22 106 41 .00
A A A, 6.51 27 24 138 15 .00 29 27 01 8 .65 .00 8.16 27 30 147 10 .00
Error 11.22 64 18 79 64 01 00| 1313 64 21
Within Factors | 1878.91 _398.64 132522 25922 123503 396.70
A, 116858 311 37523 373150 .00 .43* | 1153.98  2.03 569.82 1018402 .00 .83* | 39481 310 127.39 136888 .00  .18*
A *A, 9346 934 1000 9948 00 .03* 57 6.08 09 167 13 00| 161.93 930 1742 18715 .00 .07*
A %A, 1596 934 171 1699 .00 .01* 114 6.08 19 337 .00 .00| 2226 930 239 2573 .00 .01*
A %A, 6597 934  7.06 7022 .00 .02*| 15699 608 2584 46181 .00 .11* 45 930 05 52 8 .00
A *A %A, | 48940 2803 1746 17364 00 .18* 77 1823 04 75 75 00| 62400 27.89 2237 24040 00  .28*
A *A*A, 955  28.03 34 339 .00 .00 98 1823 05 9 51 .00 107 2789 04 41 100 .00
A %A %A, 203 2803 07 72 85 .00 82  18.23 04 80 .70 .00 151 27.89 05 58 96 .00
A %A %A, *
i ’ 1391  84.09 17 165 .00 .01* 272 5468 05 8 68 00| 1054 8368 13 135 05 .00
A
N
Error 2004 199.32 10 7.25 129.61 06 1846 198.35 09
Total 271595 52564 1374.05 386.22 224539 523.70

*. Important Effect (ES larger than 1% or ES (77) >.01).

A, : New Group Mean Ability Difference; A : Test Form Difficulty Difference ; A : New Group Sample Size; A
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A, was the most important factor affecting the random error in equating (WSEE). Those findings are

parallel with those of Babcock et al. (2012), Livingston (1993), and Kim et al. (2006, 2008).

However, it is important for practitioners to know which equating method performs better than the others
in a specific condition. Therefore, the pairwise comparisons of the equating methods are crucial to reach
an overall conclusion about the performances of the chosen equating methods.

Table 5 shows the pairwise comparisons of the chosen equating methods under all simulation conditions.
Some of the condition-specific comparisons of the chosen equating methods are provided in Figure 4.
In addition to the WBIAS and WSEE, the WMRSE associated with each of the equating methods can
be determined using the distance from the origin to the equating method of interest since both WBIAS
and WSEE are the orthogonal components of the WRMSE (see, Equation 20). According to the post-
hoc tests results, the 1D, NW, and NWS equating methods were compatible in most of the simulation

conditions. The magnitudes and directions of A, and A played a very important role to decide which
method was the most suitable to equate the test forms.
The sum of the magnitudes of A, and A are seemed to be very helpful for deciding which equating

method should be used to equate test forms with small samples. For example, when the new group
examinee sample size is 20, the new the use of the NWS method is preferable to the ID equating because

the sum of the A (=.05 SMD) and A, (=.03 SMD) is equal to .02 SMD due to the same mathematical

sign. In other words, if the directional shape of the examinee score distributions are same, the use of the
NWS method is preferable to the ID equating when the sum of the SMDs are equal to or smaller than
.08. For the conditions, the sum of the SMDs are in between 0.10 and 0.15, the use of the NWM equating
is the most favorite even with the samples of 10. On the other hand, not equating is more appropriate
when the sum of the SMDs is in between .20 and .35 due to the amount of total error produced by the
ID equating. Those findings are comparable with those in Skaggs (2005) and Heh (2007). However, the
use of the NWS now became an alternative to the ID method for equating the test forms with samples
less than 50 under the NEAT design according to the findings, which has never been suggested in any
other study so far.

As can be seen in Figure 4, the standard error associated with the ID equating O across all conditions.
However, the magnitude of the systematic error or the equating bias was quite substantial. For all the
equating methods, except for the ID equating, the magnitude of the standard error was reduced while
the sample size increased. Similar patterns were also observed when the size of the examinee samples
got larger. This result is parallel with those from Babcock et al. (2012) and Kim et al. (2008). Similar to
the findings in Skaggs (2005), the magnitude of the equating bias got smaller when the magnitude of

the SMD in test form difficulty levels and group ability levels got smaller (A4 +0.05 and A, = +0.03).

CONCLUSION

One of the requirements in test score equating is to have large sample in order to obtain accurate results,
but this may not be the case in real classroom settings or in teacher certification/ licensure examination
programs. In the present study, | tested and compared the performance of several equating methods
under varying testing conditions that may represent a real testing scenario where some of the factors that
influence the equating accuracy were manipulated. More specifically, the SFs with an equal weighting
system were used to form a compromise between the ID equating and the CA and NWM equating
methods, respectively.

The findings show that the use of the ID equating or the SF of the NW method is preferable to the use
of the unaltered version of the NW and CA even with samples less than 50, but with the test forms that
are similar in their psychometric characteristics. The use of a traditional equating method with very
small samples would be extremely harmful than the use of the 1D equating due to the effect of the small
samples on the random equating error (WSEE). However, the use of the NWS or the ID equating
methods produced more accurate results in terms of the total equating error (WRMSE) for the conditions
in which the difference between the test forms or the difference in the shape of their respective score
distributions was not substantial.
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Table 2. Pairwise Comparison of the WRMSE Estimates of the Chosen Equating Methods

A, A, Ay AM* A, As AM*
-15 -.20 NW <NWS<ID <CAS<CA .03 -.20 ID < NWS < CAS <NW < CA
-.15 -.05 NW < NWS < ID <CAS <CA .03 -.05 ID < NWS <NW =CAS < CA
-.15 .05 ID < NWS <CAS=NW < CA .03 .05 NWS = ID < NW < CAS < CA
-.15 .20 ID < NWS < CAS<NW < CA .03 .20 NWS =ID <CAS<NW<CA
10 -.03 -.20 NWS = ID < CAS = NW < CA 15 -.20 ID < NWS <CAS =NW < CA
-.03 -.05 NWS = ID < NW < CAS < CA 15 -.05 ID < NWS <NW < CAS < CA
-.03 .05 ID <NWS <CAS<NW < CA 15 .05 NW < NWS < ID =CAS <CA
-.03 .20 ID < NWS < CAS <NW < CA 15 .20 NW <NWS <CAS=1ID <CA
-15 -.20 NW <NWS<CAS=CA=ID .03 -.20 ID < NWS <CAS<NW < CA
-15 -.05 NW < NWS < ID=CAS<CA .03 -.05 ID <NWS <CAS=NW < CA
-15 .05 ID <NWS <CAS=NW < CA .03 .05 NWS < ID < NW < CAS<CA
20 -15 .20 ID < NWS < CAS <NW < CA .03 .20 NWS < ID < CAS <NW < CA
-.03 -.20 NWS < ID < CAS <NW < CA 15 -.20 ID <NWS <CAS=NW < CA
-.03 -.05 NWS < ID < NW < CAS < CA 15 -.05 ID <NWS <NW < CAS <CA
-.03 .05 ID < NWS < CAS<NW < CA 15 .05 NW < NWS < ID =CAS <CA
-.03 .20 ID <NWS <CAS<NW < CA 15 .20 NW <NWS < CAS<CA<ID
-.15 -.20 NW <NWS<CA=CAS=ID .03 -.20 ID < NWS = CAS <NW < CA
-15 -.05 NW < NWS < ID=CAS<CA .03 -.05 ID <NWS =CAS=NW < CA
-.15 .05 ID < NWS < CAS<NW < CA .03 .05 NWS <CAS=ID=NW <CA
-15 .20 ID < NWS < CAS < NW < CA .03 .20 NWS < ID < CAS <NW =CA
50 -.03 -.20 NWS <CAS=ID <NW =CA 15 -20 ID < NWS < CAS =NW < CA
-.03 -.05 NWS = ID < NW = CAS < CA 15 -.05 ID < NWS <NW < CAS<CA
-.03 .05 ID <NWS <CAS<NW < CA 15 .05 NW < NWS < ID =CAS <CA
-.03 .20 ID < NWS < CAS<NW < CA 15 .20 NW <NWS<CA=CAS=ID
-15 -.20 NW <NWS<CAS=CA=ID .03 -.20 ID < NWS =CAS <NW =CA
-15 -.05 NW < NWS < ID=CAS<CA .03 -.05 ID <NWS =CAS=NW < CA
-15 .05 ID <NWS <CAS=NW < CA .03 .05 NWS <CAS=ID =NW < CA
100 -.15 .20 ID < NWS <CAS<NW < CA .03 .20 NWS < ID < CAS<NW =CA
-.03 -.20 NWS =CAS=ID<NW =CA 15 -20 ID < NWS <NW < CAS<CA
-.03 -.05 NWS <NW < CAS=1ID =CA 15 -.05 ID < NWS <NW < CAS<CA
-.03 .05 ID < NWS <CAS<NW < CA 15 .05 NW <NWS < ID =CAS =CA
-.03 .20 ID < NWS < CAS<NW < CA 15 .20 NW <NWS<CA=CAS=ID
* The 4™ and 7" columns show the equating methods produced the smallest WRMSE. “ = sign indicates no statistical difference between the equating methods;

otherwise, “ < ” sign shows a statistical difference between the equating methods according to pairwise comparisons of the equating methods.
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For example, when the magnitudes of A, and A; were small (e.g.,A, =+ .03and A; =+ .05) and the

difference in the shape of the score distributions on the test forms were similar, the NWS produced
smaller equating error (WRMSE) compared to the unaltered NWM equating method. The SF of the

CA method always produced smaller equating error than its original version, regardless of the simulation
condition in which they were tested. In addition, equating the test forms using the CA method also
resulted with a substantial equating error (WRMSE) in all the simulation conditions. For the extreme

conditions (e.g., A, =+.15,A; =+.20), the use of the ID or the NWM equating methods was more

appropriate due to the amount of the total equating error.

The ANOVA results show that the systematic error (WBIAS) is mainly affected by the interaction effect
of the chosen equating method, the magnitude of the group mean ability and test form difficulty
differences. Correspondingly, the main source of the random equating error is the sampling fluctuations
as indicated in the Table 1. As Kolen and Brennan (2004) suggest, the systematic error can be controlled
with a careful test development process and also with the use of the appropriate method to equate the
test forms. Even though increasing the examinee sample size would reduce the random equating error
at some degree, it is very difficult for practitioners to collect more data in a certain time interval since
the timely score release is one of the main goals of any examination programs after the tests
administrations.

Recommendations for Practitioners

A careful test development process may eliminate the effect of test form difficulty differences on the
examinee test scores to expose the examinees™ ability differences. However, if the practitioners still have
a concern about the test form difficulty differences after the careful test development process, then there
will be a need for equating the test forms at the expense of potentially getting large equating error in
small sample equating. Within the context of this study, | recommend practitioners consider two
statistical measures and their mathematical signs to decide which equating method(s) or score
transformation procedure(s) should be used while practicing small sample equating under the NEAT
design. The first measure is the SMD on the anchor tests (see, Appendix). SMD, is used as a measure

of groups ability difference on the test since the anchor tests are taken by the two groups. The second
measure is the SMD on the total test scores. SMD, _ is the combined measure of both group ability and

test form difficulty levels to decide whether equating is necessary or which equating method should be
used to equate the test forms. The SF versions of the chosen or any other equating methods can be a
solution under certain conditions when the psychometric characteristics of the test forms for equating
are not much different from each other. Based on the simulation conditions established in this study,
Table 3 provides a basic guideline for the use of the equating method that may help while practicing test
equating with small samples.

Limitations and Future Research

In this study, the computer-based simulated data, which was assumed to be normally distributed, with a
limited number of factors were used. Therefore, the findings of this study should be cautiously used to
make comparisons with other existing studies. Different test administration procedures may exist for
each specific testing program based on the characteristics of the subject area examinations and the
examinee population of interest; thus, the findings from this study should not be directly used for any
specific testing program to equate the test forms using small samples. Extreme cut scores on scale score
distributions were not considered in this study. Three between-subjects factors and one within-subject
(as repeated measures) with a limited number of levels were investigated. The variances of the data
generation factors were kept constant with a variance of 1.0 across all of simulation conditions. The
SEEs of each equating method were estimated using 1000 bootstrapped samples within each simulation
replication.

Further studies should be conducted using real-data from a teacher certification/ licensure examination.
Also, effectiveness of the proposed equating methods should be investigated by considering different
psychometric characteristics of test forms (e.g. different test lengths with varying anchor/total item ratio,
internal and external anchor cases, test with low and high reliability levels, examinee groups with
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varying degree of ability levels, different equating methods, mixture of different examinee score
distributions, and varying sample sizes).
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APPENDIXES
Appendix 1. The Psychometric Characteristics of Pseudo Test Forms
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The new group examinee ability difference used to generate the pseudo-population data.

The new form test difficulty difference used to generate the pseudo-population data.

Form X is the new test form and Form Y is the reference (base) form in all equating procedures.
The standard deviation of Form X and Form Y test scores.

The ratio between the standard deviations of total test scores on Form X and Form Y.

The standard deviation of Form X and Form Y anchor (common) test scores.

The ratio between the standard deviations of anchor (common) test scores on Form X and Form Y.
The standardized mean difference (SMD) between the total test scores on Form X and Form Y.
The standardized mean difference (SMD) between the anchor (common) test scores on Form X and Form Y.
10 . The correlation between the total and anchor (common) test scores.

11, Standard Error of Measurement.

12 Cronbach’s Alpha reliability estimate for the total test.
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