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ABSTRACT The aim of this study is to compare the performances of Identity, Nominal Weights 

Mean (NMW), and Circle-Arc (CA) equating methods under the Non-Equivalent 

Groups Anchor-Test (NEAT) design. Synthetic equating functions (SFs) of the NWM 

and CA (NWS and CAS) were also created using an equal weighting system (w = 0.5). 

Different sizes of small examinee samples (n = 10, 20, 50, 100) were used to equate 

new test forms to base test forms. Chained Equipercentile (CE) with bivariate log-linear 

presmoothing was used as population criterion equating function to compare the 

performances of the equating methods. Overall, the identity (ID) equating was the most 

favorable, but the NWS method produced less equating error than the ID and Tucker 

Linear (TL) equating methods under specific simulation conditions. The use of the SF 

of the NWM method can be used in practice to equate the test forms with samples less 

than 25 examinees. In future studies, the SFs of other existing equating methods should 

be tested to determine the best performing equating method(s) for small sample 

equating. 
Keywords small samples, equating, synthetic functions, NEAT design. 

 

Küçük örneklemlerde kullanılan bazı test eşitleme yöntemlerinin 

DOOT deseni altında karşılaştırılması 

 
ÖZ Bu çalışmanın amacı, Identity (İD), Nominal Weights Mean (NWM) ve Circle-Arc 

(CA) test eşitleme yöntemlerinin performanslarını denk olmayan gruplar ve ortak soru 

içeren test (DOOT) deseni altında karşılaştırmaktır. Bu yöntemlere ait yapay test 

eşitleme fonksiyonları (NWS ve CAS) eşit ağırlıklandırma sistemi (w = 0.5) 

kullanılarak ayrıca oluşturulmuş ve sonrasında orijinal test eşitleme yöntemleriyle (İD, 

NW ve CA) karşılaştırılmıştır. Yeni test formlarını, referans test formlarına eşitlemek 

için farklı büyüklükte küçük örneklemler (n = 10, 20, 50, 100) kullanılmıştır. Chained 

Equipercentile (CE) yöntemi loglinear data düzeltme tekniği ile birlikte kullanılarak, 

evrendeki test formları arasında fonksiyonel bir ilişki kurulmuştur. Testler arasında 

kurulan bu fonksiyonel ilişki, İD, NWM, CA, NWS ve CAS test eşitleme yöntemlerinin 

performanslarını karşılaştırmada bir ölçüt olarak kullanılmıştır. Sonuç olarak, İD 

eşitleme yöntemi en uygun yöntem olarak tespit edilmiştir. Ancak NWS yöntemi de 

bazı durumlarda İD ve TL yöntemlerinden daha az hata üretmiştir. NWS yöntemi, 

örneklem sayısının 25`ten az olduğu durumlarda İD’ye alternatif olarak 

kullanılabilecek niteliktedir. Sonraki çalışmalarda ise, var olan diğer test eşitleme 

yöntemlerinin yapay fonksiyonları test edilmeli ve küçük örneklemler ile 

kullanılabilecek en uygun yöntem(ler) tespit edilmelidir. 

 

Anahtar Kelimeler küçük örneklemler, test eşitleme, yapay fonksiyonlar, DOOT deseni. 
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GENİŞLETİLMİŞ ÖZET 

 

Çoktan seçmeli testler bireyler hakkında önemli karar verme süreci içerisinde pratikte yaygın olarak 

kullanılmaktadır. Örneğin, adayların seçimi ve yerleştirilmesi, yükseköğretime kabulü, bir kuruma 

atanmaları ve bir işe uygunluklarının tespiti bunlardan bazılarıdır. Özellikle Amerika Birleşik 

Devleteri`nde yapılan öğretmen alan sınavlarında ve sertifika programlarında çoktan seçmeli testler 

sıklıkla kullanılmaktadır. Bu testleri kullanmadaki amaç her ne kadar güvenilir ve geçerli sonuçlar elde 

etmekse de, uygulamadaki en büyük problemlerden birisi testlere ait materyallerin güvenliğinin ve 

gizliliğinin sağlanamamasıdır. Bu problemi aşmak için testler farklı zamanlarda uygulanmakta ancak bu 

durum da farklı problemlerin ortaya çıkmasına zemin oluşturmaktadır. Örneğin, faklı zamanlarda 

adaylara uygulanan sınavların zorluk dereceleri farklılık göstermekte, bu da adayların test puanlarının 

adaletli bir şekilde karşılaştırılmasının önüne geçmektedir. Bu sebeple, testlerin zorluk derecelerinin 

eşitlenmesi ve sonrasında eşitlenmiş test puanlarının adaylara duyurulması gerekmektir. Testler 

arasındaki ortalama zorluk derecelerinin istatiksel olarak eşitlenmesi işlemi “test eşitleme” olarak 

adlandırılmaktadır (Kolen ve Brennan, 2004, s. 2). Test eşitleme işleminin tam olarak gerçekleştirilmesi, 

sınavları uygulayan kurumların her zaman arzu ettiği bir durumdur. Ancak, testi alan aday sayısının az 

olması ve/veya testin yapısına uygun olmayan test eşitleme yöntemlerinin kullanması, yanlış test 

puanlarının ortaya çıkmasına ve dolayısıyla da adayların yanlış değerlendirilmesi gibi problemlere yol 

açmaktadır (Caglak, 2015). 

Sınavda başarılı olan adayların doğru tespit edilmesi gerekmektedir. Ancak psikometri uzmanları, 

testleri eşitlerken kullanacakları örneklem sayısının yeterli olmaması durumu ile karşılaşabilmektedir. 

Ayrıca, uzmanlar bu gibi durumlarda çoğunlukla nasıl hareket edeceklerini de bilememektedirler. Genel 

olarak, pratikte iki durum ile karşılaşılmaktadır; 1) sistematik hata riskini göze alıp, testleri eşitlemeden 

adayların test puanları açıklamak ya da 2) testlerin küçük örneklemlerle eşitlenmesiyle oluşan rastgele 

hata miktarını göz ardı etmek (Caglak, 2015). Diğer bir deyişle, alan uzmanlarının aslında fazla seçeneği 

yoktur. Çünkü her iki durumda da hata riski çok yüksektir. Anlamlı ve karşılaştırılabilir test puanlarını 

elde etmek için uzmanlar uygun yöntemi seçmelidirler. Kısaca, kullanılacak yöntemin ne çok fazla 

sistematik hata ne de çok miktarda rastgele hata üretmesi beklenir. 

Bazı araştırmacılar küçük örneklemler ile kullanılacak eşitleme yöntemlerini test etmişler ve bulgularına 

göre ya yeni yöntemler önermişler ya da var olan yöntemleri birleştirerek örneklem sayısının azlığından 

meydana gelebilecek problemlerin önüne geçmeye çalışmışlardır. Örneğin, Harris (1993) identity (İD) 

yöntemini örneklem sayısının çok az olduğu durumlar için önermiştir. Aslında bu yöntem farklı test 

kitapçığından elde edilen puanları kendi orijinal ölçeklerinde değerlendirilmekte ve bu puanları direkt 

olarak eşitlenmiş gibi kabul etmektedir. Kolen ve Brennan (2004) İD yöntemin psikometrik açıdan bire 

bir aynı olan testlerin eşitlenmesi için uygun olduğunu ifade etmişlerdir. Fakat bu duruma pratikte fazla 

rastlanılmamaktadır. Çünkü farklı zamanlarda uygulanan sınavlar farklı sorular içerdiğinden, testlerin 

zorluk derecelerinin aynı olması beklenemez. Babcock ve arkadaşları (2012), Nominal Weights Mean 

(NWM) adında pratikte çok kullanılan Tucker Linear (TL) yönteminin daha basit bir versiyonunu 

önermişlerdir. Bu yeni yöntem, TL’nin genel matematiksel eşitliğindeki bazı parametrelerin küçük 

örneklemlerle doğru kestirilemeyeceğini göstermektedir. Livingston ve Kim (2008) var olan test 

eşitleme yöntemlerinin çok düşük ve çok yüksek olan test puanları eşitleme de yetersiz kaldığını öne 

sürmüş ve bu duruma çözüm oluşturmak için Circle-Arc (CA) adında yeni bir yöntem önermişlerdir. 

Kim ve arkadaşları (2008), İD metodunun küçük örneklemlerle ürettiği sistematik hatayı azaltmak için 

İD’nin diğer test eşitleme yöntemleri ile birleştirilmesi gerektiğini ifade etmişlerdir. Bu sebeple Kim ve 

arkadaşları (2008), genel matematiksel bir eşitlik ortaya atmışlar ve bu eşitliğe yapay test eşitleme 

fonksiyonu adını vermişlerdir. Bu fonksiyonun avantajı, herhangi bir test eşitleme yönteminin bir 

ağırlıklandırma sistemi aracılığıyla İD ile birleştirilebilir olmasıdır. 

Literatürde test eşitleme ile ilgili birçok çalışma mevcuttur. Ancak küçük örneklemler ile yapılan 

çalışma sayısı çok azdır. Ayrıca, bu yöntemlere (CA ve NWM) ait yapay test eşitleme fonksiyonlarını 

(CAS ve NWS) inceleyen başka bir çalışmaya literatürde rastlanılmamıştır. Bu çalışmanın diğer 

çalışmalardan farkı İD yöntemine alternatif bir çözüm önermesidir. Bu çalışmada önerilen yapay test 

eşitleme fonksiyonları, özellikle öğrenci sayısının az olduğu durumlarda rahatlıkla kullanılabilecek 

niteliktedir. Pratikte sıklıkla kullanılan vize ve final sınavları, ders içi değerlendirme faaliyetlerinde 

kullanılan quizler bu gibi durumlara örnek olarak verilebilir. 
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Önerilen yöntemlerin özellikleri dikkate alınacak olursa, bu yöntemler örneklem sayısının azlığından 

kaynaklanan problemlere çözüm olabilecek potansiyele sahiptirler. Bu sebeple, NWS ve CAS’ın İD’den 

daha az hata üretmesi beklenmektedir. Genel olarak çoktan seçmeli ve şans başarısının var olduğu 

DOOT deseni altında uygulanan sınavlarda gözlenen, doğru ve yanlış cevapları elde etmek için, bu 

çalışmada üç parametreli Madde Tepki Kuramı (MTK) ile bilgisayar ortamında öğrenci verileri 

oluşturulmuştur. Belirtilen test eşitleme yöntemleri ve örneklem sayılarına ek olarak, testlerin zorluk 

dereceleri ile öğrenci gruplarının kabiliyet düzeyleri göz önünde bulundurulmuştur. Buna bağlı olarak 

da 64 farklı simülasyon durumu oluşturulmuştur. Örneklem sayısı yeni test için 10, 20, 50 ve 100 olarak 

belirlenmiştir. Ancak, bu sayı referans testi (ilk test) için 200 olarak sabit tutulmuştur. Test eşitleme 

işlemi her bir durum için 1000 defa tekrarlanmış ve test eşitleme yöntemleri ürettikleri hatalar 

bakımından karşılaştırılmıştır. 

Bulgulara göre, testlerin zorluk derecelerinin ve testi alan grupların kabiliyet düzeylerinin birbirine 

yakın olduğu durumlarda, NWS İD’den daha az hata üretmiştir. Ancak aksi durumlarda İD yöntemini 

kullanmak, ürettiği hata açısından NWS yöntemine göre daha avantajlıdır. Test edilen yöntemler 

simülasyon durumunun özelliklerine göre, ürettikleri hata bakımdan değişkenlik göstermektedir. 

Ürettikleri toplam hata bakımından, yapay fonksiyonlar orijinal yöntemlerden genel olarak daha az hata 

üretmiştir. Sonuç olarak, küçük örneklemlerde kullanılacak uygun yöntemin belirlenmesinde iki temel 

unsur dikkat çekmektedir. Bunlar, toplam test puanları arasındaki standartlaştırılmış ortalama fark ile 

ortak testlerden alınan test puanları arasındaki standartlaştırılmış ortalama farktır. Eğer bu iki fark çok 

büyük ise, testleri eşitlemek daha fazla hataya yol açmaktadır. Bu iki farkın küçük olduğu durumlarda 

ise, NWS’nin İD’ye göre daha az hata üretmektedir. 
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INTRODUCTION 

 

Standardized tests are widely used in practice for different purposes as a part of high-stakes decision 

making process, such as in selection, admission, qualification, certification, placement, employment, 

and so on. Even though the purpose of standardized testing is to provide reliable and valid assessments, 

one of the practical problems is to maintain the test security and confidentiality of testing materials in 

almost any examination program. Elimination of any potential threat to those aspects of standardized 

testing is very crucial in order to obtain meaningful and fair results. Multiple versions of tests are 

therefore used to prevent any threat to security and confidentiality of tests. However, their usage causes 

some other problems in testing. Inaccurate score comparability, for example, becomes an outstanding 

practical problem since test forms show different psychometric characteristics when multiple test forms 

are used. Especially, average difficulty levels of tests may show substantial differences across multiple 

versions since identical psychometric characteristics are not always observed, which simply pose a 

validity threat to examinees’ test scores. For a meaningful and accurate score comparability among test 

takers, test form difficulty differences must be adjusted before releasing examinees’ test scores. The 

statistical procedure that is used to adjust test form difficulty differences is called “equating” (Kolen & 

Brennan, 2004, p.2). Successful and accurate equating is always desired in any examination program; 

however, existence of sampling fluctuations and inappropriate use of equating methods may yield 

inequivalent or incompatible test scores.  

True values of parameters at the population level are typically unknown. Sample statistics are therefore 

used to make inferences about those parameters. It is very important for practitioners to know whether 

randomly drawn samples are representative of their populations in order to make correct and defensible 

statements about parameters of interest (Peterson, 2007). However, randomly drawn samples always 

vary, and thus, sample statistics (e.g., mean, standard deviation, etc.) obtained from those samples differ 

due to sampling fluctuations or sampling errors (Howell, 2007). Like many other statistical procedures, 

test score equating is also subject to sampling variability (Livingston, 1993). Substantial change in size 

of samples therefore affects the functional relationship or equating relationship between the new test 

form and the base test form of tests (Kolen & Brennan, 2004; Livingston & Kim, 2011). In other words, 

the estimated equating relationship can accurately represent the equating relationship at the population 

level if the randomly drawn sample data is large enough. Otherwise, the equation function between the 

test forms may considerably differ from that of the population (Kim, von Davier, & Haberman, 2006).  

Small sample equating typically occurs in teacher certification/licensure examinations due to the low 

number of teacher candidates taking specific subject area tests (Kim et al., 2006). Compared to other 

examination programs, such as K-12 assessments, teacher certification examinations are administered 

to very small numbers of test takers (Babcock, Albano & Raymond, 2012; Kim, Livingston, & Lewis, 

2011). Since timely score release has priority among the other operational tasks in teacher licensure 

programs, there is no possibility of collecting more data to equate test forms using larger samples (Kim 

& Livingston, 2010). Moreover, test items are replaced with new test items periodically due to item 

exposure in many testing programs. Examinees also respond to both specific unique items and common 

set of items in both test forms under the non-equivalent groups anchor test design (NEAT). However, 

some degree of inaccuracy still exists even though the common set of items in both test forms is used to 

establish a functional relationship between the test forms (Livingston, 1993). Small sample test equating, 

therefore, becomes an avoidable situation in most teacher certification examinations. 

Since fail or pass status is desired for each of the teacher candidates, correct classification of the 

candidates using their test scores must be the main goal of any teacher examination program. However, 

practitioners have difficulties to decide what to do when the number of examinees taking the teacher 

certification examinations is very small because the size of the samples is very crucial for obtaining 

accurate and comparable test scores. The absence of large data forces practitioners either not to equate 

test forms at the expense of getting a large equating bias or to equate the test forms at the expense of 

getting a large standard error (Caglak, 2015). In other words, practitioners do not have many choices to 

consider, and thus, the right choice of an appropriate equating method becomes a priority for the 

practitioners in order to obtain meaningful and comparable examinee scores across different test forms. 

Error in Equating 

Different test forms are connected to each other using a statistically obtained linking function or more 

specifically with an equating function. Some degree of error is therefore always present whenever test 
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forms are equated regardless of the size of samples used in this statistical procedure. Since no unique 

method exists in practice to equate test forms, the use of different equating methods may also yield 

obtaining different results or some degree of bias even if same examinee samples are used to equate the 

test forms. Kolen and Brennan (2004) describe two types of errors in the test score equating context: 

random error and systematic error.  

Random error refers to sampling error or standard error of equating (SEE). Similarly, systematic error 

is attributed to equating bias (BIAS), which occurs due to violations of assumptions of test score 

equating or because of using inappropriate methods to equate the test forms (Kolen & Brennan, 2004). 

Briefly, sample fluctuations are the main factors affecting the magnitude of random error while the 

method related concerns or problems yield equating bias. Random error can be easily quantified or 

estimated using several statistical procedures (e.g., bootstrapping, delta4, etc.). However, it is very hard 

for practitioners to quantify the systematic error, but it can be controlled through a careful test 

development procedure and also with the use of appropriate data collection design and equating method 

(Kolen & Brennan, 2004). 

 

Small Sample Equating Methods 

Identity equating 

When equating is unnecessary or unwarranted, the use of the ID equating is recommended (Harris, 

1993). The ID equating refers to no equating since the slope of the equating function is specified as 1 

and the intercept is fixed to 0. In other words, scores in the scale of the new test form are transformed 

to the scores in the scale of the base or reference test form. However, the transformed scores are still 

equivalent to the scores in the original scale of the new test form. Equation 1 shows this functional 

relationship between the test forms, where x is a randomly observed score on the scale of Form X (new 

test form) and ey(x) is its equivalent on the scale of Form Y (base test form). 
 

    1*   0
y

e x x   (1) 

 

Since the scores are still assumed to be equivalent to the scores in their original scale, the standard error 

equating is zero by definition in the ID equating (Kim et al., 2011). The use of ID equating in practice 

is therefore often recommended when the number of new form test takers is less than 100 (Kolen & 

Brennan, 2004). However, its use causes substantial equating bias especially when the psychometric 

characteristics of the test forms are different (Kim et al., 2011). 

 

Nominal weights mean equating  

Babcock et al. (2012) introduced a simplified version of Tucker Linear (TL) equating, which is called 

Nominal Weights Mean (NWM) equating. Nominal weights are used to replace the variance and 

covariance terms in the TL equating with the numbers of total and anchor items and also with the 

numbers of examinees taking the test. The purpose of this replacement is to simplify the equating 

function due to the fact that the variance and covariance terms are not accurately estimated when the 

sample size is small (Babcock et al., 2012). In NWM equating, the standard deviations of scores on both 

Form X and Form Y are also assumed to be equal, and thus, the synthetic means in the TL equating are 

transformed to their simplified versions as shown in equation 2 through 9. More details about the TL 

equating can be found in Kolen and Brennan (2004). The advantage of using NWM equating arises 

when the number of new form test takers is relatively small (such as, 10, 20, and 50) and also when 

there is a high risk of obtaining large equating bias from traditional equating methods (e.g., Tucker 

Linear, Chained Equipercentile, etc.). 
 

( )
( ) [ ( )] ( )

( )

S

y S S

S

Y
e x x X Y

X


 


    (2) 

( ) ( ) ( )
y S S

e x x X Y   

 

(3) 

( ) ( ) [ ]
S X Y XV YV

Y Y w      
 

(4) 

( ) ( ) [ ]
S Y X XV YV

X X w      
 

(5) 
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2

YV

Y

V





  and

2

XV

X

V







 
(6) 

 

In NWM equating, the
  terms in equations 4 and 5 are replaced with the ratio of the total test length 

;
( )

X Y
K  to the anchor test length ( )

V
K  in the both test forms.  Also, w  represents the ratio of the form 

specific sample size over the total sample size of the examinees taking both the Form X and Form Y as 

shown below: 

X

X

X Y

N
w

N N



 and Y

Y

X Y

N
w

N N



 

 

When  and w  terms are replaced with N and K terms, the synthetic means in TL equating become 

 

( ) ( ) [ ]X Y

S XV YV

X Y V

N K
Y Y

N N K
     


 (7) 

( ) ( ) [ ]Y X

S XV YV

X Y V

N K
X X

N N K
     


 

(8) 

 

After all of these equations are put together, the equating function of NWM equating takes its final 

form as shown in equation 9. 
 

( ) ( ) ( ) [ ]
[ ]

X Y Y X

y XV YV

Y X V

N K N K
e x x X Y

N N K
   


    



 
 
 

 (9) 

 

Circle-arc methods of equating 

Livingston and Kim (2008) introduced two versions of Circle-Arc (CA) methods of equating (symmetric 

and simplified) to establish a function between the test forms especially when the sample size of test 

takers is less than 30 for the new test form. The difference between the two versions comes from how 

the equating function is constructed. As seen on the left hand side in Figure 1, in the symmetric version, 

the equating function passes through three pre-specified points. However, the equating curve is divided 

into two parts in the simplified version: the linear component  L x  that connects the two pre-specified 

end points and the curvilinear component that deviates from the line connecting the two end-points.  
 

 
 

Figure 1. Symmetric and Simplified Versions of Circle-Arc Method of Equating 

The pre-specified end points represent the possible minimum and maximum scores on the test, but the 

middle point is determined using mean test scores on both the new and base test forms. Depending on 

the data collection design, the equating method that is used to estimate the middle point varies. 

Traditional mean or linear equating, for example, is preferred if the data is collected through a random 
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groups test design; otherwise, the practitioners prefer using chained means or chained linear methods 

when a non-equivalent groups anchor test design is employed to collect examinee data (Babcock et al., 

2012). 

Simple mathematical calculations may require obtaining equating functions for both versions, but the 

estimation of the geometric projection of the curve on the x-axis in the simplified version is actually a 

more complex procedure while an arc of a circle is just fitted to three points in the symmetric version. 

Livingston and Kim (2011) pointed out that both versions produce identical results. Hence, in this study, 

the symmetric version was compared with the other chosen equating methods due to its mathematical 

and conceptual simplicity. To gain more in-depth understanding of the symmetric CA method, let’s label 

 
1 1
, ,x y   

2 2
, ,x y  and  

3 3
,x y  as the pre-specified points as shown on the left hand side in Figure 1. 

The x-axis represents the scores on the Form X and the y-axis represents the scores on the Form Y. The 

lowest and highest possible scores on the both test forms are expressed by  
1 1
, ,x y and  

3 3
,x y  points. 

The equating curve with a radius r and center of  ,
c c

x y  passes through  
2 2
,x y  to connect  

1 1
,x y  with

 
3 3
,x y . Equation 10 is used as the equating function if  

2 2
,x y  is below the straight line connecting 

 
1 1
,x y  to  

3 3
,x y . Otherwise, equation 11 is used as the equating function to transform Form X scores 

to the scores on the scale of Form Y. 
 

2 2
( ) ( )

y c c
e x y r X x     (10) 

2 2
( ) ( )

y c c
e x y r X x   

 
(11) 

 

The center point and the radius r  of the circle-arc are computed using the equations 12 through to 14. 
 

 

2 2 2 2 2 2

1 1 3 2 2 2 1 3 3 3 2 1

1 3 2 2 1 3 3 2 1

( ) * ( ) ( ) * ( ) ( ) * ( )

2 * ( ) * ( ) * ( )
c

x y y y x y y y x y y y
x

x y y x y y x y y

       


    
 (12) 

 

2 2 2 2 2 2

1 1 3 2 2 2 1 3 3 3 2 1

1 3 2 2 1 3 3 2 1

( ) * ( ) ( ) * ( ) ( ) * ( )

2 * ( ) * ( ) * ( )
c

x y x x x y x x x y x x
y

y x x y x x y x x

       


    
 

(13) 

2 2

1 1
( ) ( )

c c
r x x y y   

 

(14) 

 

More detailed information regarding the symmetric and simplified version can be found in Livingston 

and Kim (2008; 2009; 2010). 

 

Synthetic functions 

Kim et al. (2008) define the synthetic function (SF) as the weighted average of ID equating and any 

chosen equating method (e.g., Tucker Linear, Circle-Arc, etc.) using a pre-specified weighting system. 

The weight  1 w  given to ID equating can range between 0 and 1. Therefore, the amount of equating 

error can be controlled. However, there is no universal guideline of creating SFs of equating methods, 

and thus, there is always a heuristic need to further investigate which weighting system works better 

than the other equating methods of interest under varying testing conditions. These testing conditions 

may include different examinee sizes, various test form difficulty levels and anchor item ratios, etc.  

As aforementioned, equating test forms with small samples may lead large equating error. Kim, von 

Davier, and Haberman (2008) show the amount of the SEE when the SF is preferred over a regular 

equating method. To exemplify, assume that the SF of  
y

e x  is specified as follows: 

 

       
( )

  *   1 *
ySF y ID

e x w e x w e x    (15) 

 

Taking the variance and then the square root of both sides in equation 15 results in equation 16 as shown 

below: 
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   
( )

) = )( * (
F y yS

SEE e x w SEE e x  (16) 

 

As Kim et al. (2008) indicated, the use of SF reduces the amount of the SEE one-half when the equal 

weighting system is given to both the ID and chosen equating methods. However, the equating bias is 

mostly introduced by ID equating under the assumption that the chosen equating method produces less 

or no equating bias compared to the ID equating with the same examinee data when equal weights are 

used to create the SFs (Kim et al., 2008). More detailed information about SFs can be found in Kim, 

von Davier, and Haberman (2008).  

 

Purpose and Significance of Research 

Those studies (Babcock et at., 2012; Harris, 1993; Kim et al., 2008) have greatly contributed to the small 

sample test equating literature. However, there is still an uncertainty for selecting the appropriate 

equating method to equate the test form using very small samples (n < 50) when the average test form 

difficulty and group ability differences are varied. The CA and the NWM equating methods perform 

better than the other equating methods under certain conditions when the sample size is particularly 

small, but including the SFs, they have not been widely investigated, yet. In addition, the use of the SF 

in equating also showed better performance than the unaltered versions of chosen methods (e.g., Chained 

Linear, Chained Mean, etc.), but the SFs of the CA and NWM equating methods, which are specifically 

proposed for small sample equating, have never been tested. As indicated by Kim et al. (2008), the SFs 

of the selected equating methods seems to have a potential to reduce the standard error of equating, but 

the accuracy of equating results have not been investigated in detail. Briefly, there is a heuristic need to 

further investigate behavior of the equating methods proposed especially for the small sample test score 

equating. Following research questions are addressed in this study; 

Are there any significant interaction effects among the study factors that influence the equating 

accuracy?  

Does the use of SFs of the CA and NWM equating methods (CAS and NWS) improve the accuracy of 

equating results compared to the ID equating, unaltered CA and NWM equating methods across all 

study conditions? 

What conclusions and suggestions can be drawn regarding the choice of SFs of the NWM and CA (NWS 

and CAS) equating methods in small sample test score equating? 

This study took a step forward from previous studies to fill the gap in the equating literature by testing 

the SFs of the identity (ID), Nominal Weights Mean (NWM), and Circle-Arc (CA) equating methods to 

explore if any other equating can be used to equate test forms when the difficulty levels of the test forms 

are different. To the best of my knowledge, no study exists in the literature that investigates the 

performances of the ID, NWM, and CA equating methods including the SFs under the NEAT design 

using very small samples. Thus, it is my belief that this study would be useful for those who need a 

practical guideline to equate the test forms using these equating methods under the conditions considered 

in this study. 

 

Related Researches 

There is a vast literature on test score equating; however, only few people in the field have been 

conducting research on small sample equating in recent years (see, for example, Kim & Livingston, 

2011; Livingston & Lewis, 2009; Kim et al., 2006). Some researchers investigated the behaviors of 

equating methods mainly focusing on the size of the examinees samples (e.g. Hanson et al., 1994; 

Livingston, 1993; Parshall, Du Bose, Houghton, & Kromrey, 1995). They also tested the effect of the 

data smoothing techniques on equating accuracy. Findings from those studies showed that increasing 

the sample size and/or smoothing the examinee score distributions both reduced the equating error, but 

the larger degree of smoothing is applied to raw data, the more systematic equating error has been 

observed (e.g, Livingston, 1993).  

An extant small sample equating studies have been conducted after year 2005 by several researchers 

(e.g. Babcock et al., 2012; Kim et al., 2011; Kim et al., 2006; Livingston & Kim, 2009, Skaggs, 2005). 

Their primary focus was to either propose new equating method or integrate the existing equating 

methods to overcome the sample size limitation in test score equating. Skaggs (2005) paid attention to 
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the to the test form difficulty differences given in standardized mean difference (SMD) units since the 

test form difficulty differences mainly affect the equating accuracy. Other researcher therefore also 

considered the SMD between the test form difficulty levels to decide whether equating was necessary 

or which equating method should have been used.    

Kim, von Davier, and Haberman (2006), for example, compared the SF of the Chained Linear (CL) 

method with the ID equating under the NEAT design. They examined the effect of external and internal 

anchor items on the accuracy of equating results. Various sizes of examine samples (n = 10, 25, 50,100, 

200) from a national assessment data were used. Their findings indicated that the use of the SF 

performed better when the sample size was smaller than 200 in terms of total equating error, but they 

recommend the use of the ID equating with examinee sample size of 25 when the test forms shows equal 

or very similar difficulty levels (less than .10 SMD).   

Livingston and Kim (2009) compared the CE, LL, CL, CM, and the ID equating methods using a teacher 

certification examination data. Small samples were drawn to equate the test forms which showed 

substantial differences in their difficulty levels (.36 SMD). The CA method performed better than the 

other chosen methods especially for equating the test scores at the extreme ends on the score scale when 

the SMD was less than .10 and the sample size was over 150. However, they maintained that the ID was 

the most favorable for the test forms with .10 differences when the sample size was less than 100.  

Sunnassee (2011) tested the performance of the ID, CA, CL, Tucker Linear (TL), Levine Linear (LL), 

presmoothed CE and Frequency Estimation (FE) methods in a simulation study. Five different sample 

sizes (25, 50, 100, 200, and 400) were compared to equate the test forms of which the difficulty 

differences were ranged from .0 to .75 SMD. The findings showed that all the equating methods were 

capable of adjusting the test form difficulty differences when the difficulty levels of the test forms were 

equal to or less than .25. However, both the CA and the ID equating methods produced large bias 

especially when the ability levels of the examinees differed much on average.  

Babcock, Albano, and Raymond (2012) compared the NWM, smoothed EE, TL, SF of the TL method, 

CA, and the ID equating with the small examinee samples (n = 20, 50, and 80). The ability levels of the 

new form examinee group were specified as less than, equal to, and larger than the ability group of 

examinees taking the base test form. Test forms with different difficulty levels were also used to 

compare those equating methods. Their findings indicated that the ID equating was the most accurate 

among the others when the test forms were equal in their difficulty levels. However, the NWM method 

was the most favorable ones when the group ability levels were not equal to each other. Both the CA 

and NWM equating methods performed well when the test form difficulty levels and the group ability 

levels differed much. 

 

METHOD 

 

The central objective of this study was to compare the performance of the chosen equating functions 

and their synthetic equating functions under a variety of conditions. The relationship among those 

equating methods is given in Figure 2. A series of computer simulations were therefore carried out under 

a variety of testing conditions that potentially affect the performance of the equating accuracy. Several 

sampling factors and psychometric properties of the test forms used in the equating procedure were 

considered. Those factors were the sample size of the new form test takers, the SMD between the 

examinee groups’ ability levels, and SMD between test form difficulty levels.  

 

Sample Size 

Resampling studies in the literature show that the examinee samples taking the new test form typically 

range from 10 to 100 in teacher certification or licensure examinations (e.g. Babcock et al., 2012; Kim 

et al., 2006; Livingston & Kim, 2009). In the present study, the sample sizes of the new form test takers 

were also specified as 10, 25, 50, and 100, but it was held constant at 200 examinees taking the base test 

form. Four levels of the sample sizes ( 10, 25, 50,100)
N

   were therefore used to simulate the actual 

testing condition. To establish the criterion equating function, 50,000 examinees’ response data were 

used for each of the test forms.  
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Figure 2. The Chosen Equating Methods and Associated Synthetic Functions 

 

Group Mean Ability Levels 

The group mean ability differences can be conceptualized in standardized mean differrences (SMD) 

units. In this study, the examinee group taking the base or the reference test form were sampled from 

the standard normal distribution for simplicity [ (0,1)]
Base

N . For the examinee group taking the new 

test form, four different group mean ability levels were chosen from the four normal distributions which 

have different means, but same standard deviation. In addition, symmetric examinee distributions with 

negative and positive means were specified to determine how lower and higher ability groups affect the 

equating results [ ( .15,1); ( .03,1); ( .03,1); ( .15,1)]
New

N N N N     . 

It is important to note here that, in test score equating, the groups’ mean ability differences between 

.05


 
 
and .1


 

 
SMD are generally considered very large, and an ability difference of .25 SMD 

between the examinee groups is considered extremely large difference (Wang et al., 2008).  According 

to this rule of thumb, the groups’ mean ability differences ( )


  were intentionally specified in SMD 

units as small and large differences to investigate its effect on the equating accuracy for the methods 

tested in this study. 

 

Test form mean difficulty levels 

Mean difficulty differences between test forms ( )


 can be also examined in the SMD units. In Item 

Response Theory (IRT), the test form difficulty level is conceptualized by the average of the item 

difficulty statistics. Smaller  (delta) value, for example, is an indication of a more difficult test than its 

associated base or reference form; likewise, larger  (delta) value means that the new test form is less 

difficult than its base test form. For the present study, the average test form difficulty level of the new 

test form was specified with four different normal distributions 

[ ( .20,1); ( .05,1); ( .05,1); ( .20,1)]
New

N N N N      while the true values of   parameter were randomly 

drawn from the standard normal distribution of (0,1).
Base

N  According to Kim (2014), the SMD of .05 

is considered a small difference between test forms in their average difficulty levels, but the SMD of .20 

is an indication of large difference between the test form difficulty levels. With this rule of thumb, less 

and more difficult new test forms than the base test forms were created to investigate the effect of change 

in mean difficulty difference between the test forms on the equating accuracy for the equating methods 

tested in this study.  

 

Data Generation Procedure 

A few steps were employed to generate the examinees’ item responses for each of the simulation 

conditions. A total of 64 (4x4x4) conditions were established with the given ability and test form 
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difficulty levels to compare the performances of five equating methods as indicated in Figure 2. As the 

first step, the true item parameter values were generated from the test form difficulty distributions for a 

120 item test. Those true values were then used to create the examinees’ item responses for each of the 

given examinees’ ability distributions using the 3-Parameter Logistic (3-PL) IRT Model.  

IRT establishes a relationship between latent variables and their manifestations using a monotonically 

increasing function that is specified in a mathematical form including person and item parameters to 

predict observed responses on a test item (de Ayala, 2009). IRT models can be also used to simulate 

data based on the psychometric characteristics of an item (difficulty, discrimination, and guessing 

parameters) and examinee’s given ability (theta) level to determine the probability of answering each 

test item correctly. The mathematical expression of the 3-PL IRT Model is given in equation 17, 
 

exp( ( ))
( 1 | , , , ) (1 )

1 exp( ( ))

i j i

ij j i i i i i

i j i

a b
P X a b c c c

a b







   

 
 (17) 

 

 
Figure 3. Data Generation and Test Equating Procedures 

 

where the (.)P  is the probability of correctly answering item i, which is conditioned on the ability level 

( )
j

 of person j and the values of the discrimination parameter ( )
i

a , difficulty parameter ( )
i

b , and the 

guessing parameter ( )
i

c  of item i. In this study, the 3-PL IRT model was used to generate examinees’ 

binary item responses using R software Version 3.2.0 (R Development Core Team, 2015). R scripts 

were written to equate the test forms using equate package. Different R packages were also used in the 

data generation and computer simulation procedures such as matrixStats, psy, ggplot2, plotrix, and 

gridExtra. 

Total number of test items is typically ranged between 80 and 120 in test forms used in small sample 

equating (Babcock et al., 2012; Kim et al., 2006; Livingston & Kim, 2009). Therefore, the numbers of 

the items in the total test and anchor test were specified as 120 and 36 respectively in order to mimic the 

actual test structure. Four new test forms and four base test forms were created using the true item 

parameter distributions. Consequently, a total number of 32 pseudo test forms responses were produced 

from the product of given test difficulty and ability distributions. Those examinees’ responses were then 

used in the equating procedure as shown in Figure 3. The psychometric characteristics of test forms 

were given in Appendix. 

 

Evaluation of Equating Accuracy 
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The accuracy of equating results under varying test conditions were evaluated by using weighted 

counterparts of several measures of accuracy indices including Weighted BIAS, Weighted SEE, and 

Weighted RMSE. To better compare the accuracy of each equating results in the full examinee 

population, the average of those accuracy measures were weighted using the frequency distribution of 

each raw score value in the new test form large group population equating. Sums of the weighted 

accuracy measures for each score point were then used as the overall summary measures for each of the 

equating methods tested in this study.    

BIAS of an equated score ˆ[ ( )]
y k

e x  is defined as the difference between the estimated average equivalent 

score across R replications ( ˆ[ ( )]
y k

e x  and the true equivalent score in the population [ ( )].
y k

e x Weighted 

Root Mean Squared BIAS (WBIAS) is also calculated for each score point k on the score scale to prevent 

the negative and positive values that cancel each other using the proportion of raw score k in the large 

group criterion equating. The proportion 
k

P  provides more accurate representation of the frequency of 

the new test form examinees’ scores in the large group population critierion equating. Considering all 

of the score points,  the WBIAS can be formulized as follows: 
 

2

0

ˆ ˆ[ ( )] { [ ( ) ( )]}
K

y k k y k y k

k

WBIAS e x P BIAS e x e x


   (18) 

 

SEE is defined as the square root of the averaged squared difference between the estimated equivalent 

score ˆ[ ( )]
y kr

e x  in the rth replication and the average equivalent score ˆ[ ( )]
y k

e x across R replications. 

Weighted SEE (WSEE) can be formulated using the proportion of raw score k in the large group criterion 

equating as follows: 
 

2

0 1

1
ˆ ˆ ˆ[ ( )] { { ( ) ( )} }

K R

y k k y kr y k

k r

WSEE e x P e x e x
R 

    (19) 

 

RMSE is defined as the squared root of the sum of the squared BIAS and the squared SEE. Weighted 

RMSE (WRMSE) is obtained for a score. An equated score can be obtained using the equation 20. 
 

2 2
ˆ ˆ ˆ[ ( )] ( [ ( )]) ( [ ( )])

y k y k y k
WRMSE e x WBIAS e x WSEE e x   (20) 

 

Population Criterion Equating  

One way to evaluate the accuracy of equating results is to compare the equated scores obtained from the 

sample and the population data. In other words, a true criterion can be considered to evaluate the 

equating results if the equating relationship in the population is known (Harris & Crouse, 1993). Chained 

Linear (CL) or Chained Equipercentile (CE) equating methods are commonly used under the NEAT 

design to establish the equating relationship between the test forms using the population data 

(Livingston, Dorans, & Wright, 1990). 

The equating relationship between the test forms could be unstable and inaccurate with score 

distributions which contain irregular score patterns (Liou & Cheng, 1995). Thus, an application of some 

sort of smoothing to the raw examinee data prior to equating is often recommended (Hanson, 1991; 

Kolen & Brennan, 2004; van der Linden & Wiberg, 2010). In this study, the CE equating with 6-

univariate and 2-bivariate log-linear presmoothing were used as the crierion equating function to 

evaluate the accuracy of the equating results. The fit statistics (e.g., AIC, BIC, Chi-Square, etc.) of the 

presmoothed model were carefuly inspected to decide what extent the smoothing should be applied to 

the raw examinees’ score data. In addition, the central tendency measures before and after smoothing 

were also compared in order to make sure that the smoothing did not change the shape and location of 

the raw score distributions.  

 

Analysis of Equating Results 
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This study has four factors: (1) sample size, (2) group mean ability difference, (3) test form difficulty 

difference, and (4) the equating methods used to equate the test forms. Since the same data were used 

to investigate the performance of the equating methods in each simulation condition, the use of Mixed-

Factorial ANOVA (MFA) was the most appropriate way to investigate the main and interaction effects 

of data generation factors with repeated-measures.  

Before conducting the MFA for each of the weighted accuracy measures, the data were screened to 

investigate whether there was any problem in the data that may violate the ANOVA assumptions. First, 

no outliers were detected in the data. Standardized residuals were approximately normally distributed 

according to the non-significant Kolmogrov-Smirnov and Shapiro-Wilk tests. Quantile-by-Quantile (Q-

Q) and Stem-Leaf plots also visually confirmed that the normality assumption for the data appeared to 

be satisfactory. According to the non-significant Levene’s test for each of the weighted accuracy 

measures, the homogeniety of variance assumption was also appeared to be satisfactory for the data 

generation factors.   

F-statistics with adjusted degress of freedom (df) were used to interpret the significance level of the 

main and interaction effects of the study factors due to significant Mauchly’s test of sphericity for the 

equating methods or the repeated-measures. Depending on the magnitude of the correction factor ( )  

reported in Mauchly’s test, the interpretations of F-statistics were made based on either Greenhouse-

Geisser’s (G-G) or Huynh-Feldt’s (H-F) corrections.  

Two general themes were considered to present the results of this study: (1) The overall comparison of 

the chosen equating methods; (2) The evaluation of the main and interaction effects of the study factors. 

Effect size (ES) estimates (eta-squared 
2

( )
T

 ) were provided to discuss the magnitude of the main and 

interaction effects, instead of reporting F-statistics directly. The ratio of the amount of the variance 

explained by a main or interaction effect to the total amount of the variation was used as an effect size 

measure associated with each main and interaction term in the ANOVA table. An eta-squared estimate 

that was larger than .01
2

( .01)
T

   was considered as a threshold value to classify an effect size as an 

“important effect”.  In other words, the main or interaction effect that accounts for at least 1% of the 

total variation was considered as an important effect on the equating accuracy. 

  

RESULT and DISCUSSION 

 

Several study factors were considered to test the behavior of the ID, CA, CAS, NWM, and NWS 

equating methods. Table 1 shows the main and interaction effects of those factors for each measure of 

accuracy indices. According to the MFA results, the most important main and/or interaction effects of 

the study factors for the WRMSE and WBIAS measures were   and  , and E *  *  . 

Correspondingly, 
N

 was the only between-subject factor with an important effect on the WSEE 

measure, but its interaction with 
E

  was the most important within-subject factor, which simply means 

that the chosen equating methods produce different amount of SEE when the sample size varies.  

Based on the magnitudes of the effect size estimates, the interaction term of 
E

 *


 *   explained 18% 

of the total variation in the WRMSE, and 28% of the total variation in the WBIAS. Eleven percent of 

the variation in the WSEE was accounted for by the interaction effect of 
E

 *
N

 . This means that the 

total equating error (WRMSE) was affected by several factors: (a) the method used to equate the test 

forms, (b) the magnitude of the ability differences between the examinee groups, (c) taking the new and 

base test forms, (d) the magnitude of the test form difficulty differences, and (e) the size of the examinee 

samples taking the test. More specifically, the interaction among 
E

 *


 * 
  was the main source of 

the systematic error in equating (WBIAS), and the interaction between 
E

  and  
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Table 1. Mixed-Factorial ANOVA Results  

 WRMSE WSEE WBIAS 

Source SS      df  MS F-ratio   p ES SS    df    MS F-ratio   p ES
 

SS      df MS F-ratio   p  
ES

 

Between 

Factors 
837.0 127        49.03 127         1010.37 127         


  569.22 3 189.74 1082.01 .00 .21* .04 3 .01 1.20 .32 .00 695.80 3 231.93 1130.57 .00 .31* 


  5.29 3 1.76 10.06 .00 .00 .11 3 .04 3.10 .03 .00 7.45 3 2.48 12.11 .00 .00 

N
  14.63 3 4.88 27.81 .00 .01* 47.46 3 15.82 1283.60 .00 .03* .14 3 .05 .22 .88 .00 


 *


  225.98 9 25.11 143.19 .00 .08* .11 9 .01 1.00 .45 .00 282.81 9 31.42 153.17 .00 .13* 


 *

N
  2.44 9 .27 1.55 .15 .00 .12 9 .01 1.12 .36 .00 .93 9 .10 .50 .87 .00 


 *


  1.74 9 .19 1.10 .38 .00 .09 9 .01 .85 .57 .00 1.95 9 .22 1.06 .41 .00 


 *


 *

N
  6.51 27 .24 1.38 .15 .00 .29 27 .01 .86 .65 .00 8.16 27 .30 1.47 .10 .00 

Error 11.22 64 .18    .79 64 .01   .00 13.13 64 .21      

Within Factors 1878.91 398.64        1325.22 259.22         1235.03 396.70         

E
  1168.58 3.11 375.23 3731.50 .00 .43* 1153.98 2.03 569.82 10184.02 .00 .83* 394.81 3.10 127.39 1368.88 .00 .18* 

E
 *


  93.46 9.34 10.00 99.48 .00 .03* .57 6.08 .09 1.67 .13 .00 161.93 9.30 17.42 187.15 .00 .07* 

E
 *


  15.96 9.34 1.71 16.99 .00 .01* 1.14 6.08 .19 3.37 .00 .00 22.26 9.30 2.39 25.73 .00 .01* 

E
 *

N
  65.97 9.34 7.06 70.22 .00 .02* 156.99 6.08 25.84 461.81 .00 .11* .45 9.30 .05 .52 .86 .00 

E
 *


 *


  489.40 28.03 17.46 173.64 .00 .18* .77 18.23 .04 .75 .75 .00 624.00 27.89 22.37 240.40 .00 .28* 

E
 *


 *

N
  9.55 28.03 .34 3.39 .00 .00 .98 18.23 .05 .96 .51 .00 1.07 27.89 .04 .41 1.00 .00 

E
 *


 *

N
  2.03 28.03 .07 .72 .85 .00 .82 18.23 .04 .80 .70 .00 1.51 27.89 .05 .58 .96 .00 

E
 *


 *


 *

N
  

13.91 84.09 .17 1.65 .00 .01* 2.72 54.68 .05 .89 .68 .00 10.54 83.68 .13 1.35 .05 .00 

Error 20.04 199.32 .10      7.25 129.61 .06       18.46 198.35 .09       

Total 2715.95 525.64     1374.25 386.22     2245.39 523.70     

*. Important Effect (ES larger than 1% or 2 ( ) .01tES   ). 

  : New Group Mean Ability Difference;   : Test Form Difficulty Difference ; N  : New Group Sample Size; E  : Equating Methods 
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N
  was the most important factor affecting the random error in equating (WSEE). Those findings are 

parallel with those of Babcock et al. (2012), Livingston (1993), and Kim et al. (2006, 2008). 

However, it is important for practitioners to know which equating method performs better than the others 

in a specific condition. Therefore, the pairwise comparisons of the equating methods are crucial to reach 

an overall conclusion about the performances of the chosen equating methods.    

Table 5 shows the pairwise comparisons of the chosen equating methods under all simulation conditions. 

Some of the condition-specific comparisons of the chosen equating methods are provided in Figure 4. 

In addition to the WBIAS and WSEE, the WMRSE associated with each of the equating methods can 

be determined using the distance from the origin to the equating method of interest since both WBIAS 

and WSEE are the orthogonal components of the WRMSE (see, Equation 20). According to the post-

hoc tests results, the ID, NW, and NWS equating methods were compatible in most of the simulation 

conditions. The magnitudes and directions of   and   
played a very important role to decide which 

method was the most suitable to equate the test forms.  

The sum of the magnitudes of   and   are seemed to be very helpful for deciding which equating 

method should be used to equate test forms with small samples. For example, when the new group 

examinee sample size is 20, the new the use of the NWS method is preferable to the ID equating because 

the sum of the   (= .05 SMD) and  (=.03 SMD) is equal to .02 SMD due to the same mathematical 

sign. In other words, if the directional shape of the examinee score distributions are same, the use of the 

NWS method is preferable to the ID equating when the sum of the SMDs are equal to or smaller than 

.08. For the conditions, the sum of the SMDs are in between 0.10 and 0.15, the use of the NWM equating 

is the most favorite even with the samples of 10. On the other hand, not equating is more appropriate 

when the sum of the SMDs is in between .20 and .35 due to the amount of total error produced by the 

ID equating. Those findings are comparable with those in Skaggs (2005) and Heh (2007). However, the 

use of the NWS now became an alternative to the ID method for equating the test forms with samples 

less than 50 under the NEAT design according to the findings, which has never been suggested in any 

other study so far.       

As can be seen in Figure 4, the standard error associated with the ID equating 0 across all conditions. 

However, the magnitude of the systematic error or the equating bias was quite substantial. For all the 

equating methods, except for the ID equating, the magnitude of the standard error was reduced while 

the sample size increased. Similar patterns were also observed when the size of the examinee samples  

got larger. This result is parallel with those from Babcock et al. (2012) and Kim et al. (2008). Similar to 

the findings in Skaggs (2005), the magnitude of the equating bias got smaller when the magnitude of 

the SMD in test form difficulty levels and group ability levels got smaller 0.05(    and 0.03).    

 

CONCLUSION 

 

One of the requirements in test score equating is to have large sample in order to obtain accurate results, 

but this may not be the case in real classroom settings or in teacher certification/ licensure examination 

programs. In the present study, I tested and compared the performance of several equating methods 

under varying testing conditions that may represent a real testing scenario where some of the factors that 

influence the equating accuracy were manipulated. More specifically, the SFs with an equal weighting 

system were used to form a compromise between the ID equating and the CA and NWM equating 

methods, respectively.  

The findings show that the use of the ID equating or the SF of the NW method is preferable to the use 

of the unaltered version of the NW and CA even with samples less than 50, but with the test forms that 

are similar in their psychometric characteristics. The use of a traditional equating method with very 

small samples would be extremely harmful than the use of the ID equating due to the effect of the small 

samples on the random equating error (WSEE). However, the use of the NWS or the ID equating 

methods produced more accurate results in terms of the total equating error (WRMSE) for the conditions 

in which the difference between the test forms or the difference in the shape of their respective score 

distributions was not substantial.  
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Table 2. Pairwise Comparison of the WRMSE Estimates of the Chosen Equating Methods  

N


      
*

M
      

*

M
  

10 

-.15 -.20 NW < NWS < ID < CAS < CA .03 -.20 ID < NWS < CAS < NW < CA 

-.15 -.05 NW < NWS < ID < CAS < CA .03 -.05 ID < NWS < NW = CAS < CA 

-.15 .05 ID < NWS < CAS = NW < CA .03 .05 NWS = ID < NW < CAS < CA 

-.15 .20 ID < NWS < CAS < NW < CA .03 .20 NWS = ID  < CAS < NW < CA 

-.03 -.20 NWS = ID < CAS = NW < CA .15 -.20 ID < NWS < CAS = NW < CA 

-.03 -.05 NWS = ID < NW < CAS < CA  .15 -.05 ID < NWS < NW < CAS < CA 

-.03 .05 ID < NWS < CAS < NW < CA  .15 .05 NW < NWS < ID = CAS < CA  

-.03 .20 ID < NWS < CAS < NW < CA .15 .20 NW < NWS < CAS = ID < CA 

20 

-.15 -.20 NW < NWS < CAS = CA = ID .03 -.20 ID < NWS < CAS < NW < CA 

-.15 -.05 NW < NWS < ID = CAS < CA .03 -.05 ID < NWS < CAS = NW < CA 

-.15 .05 ID < NWS < CAS = NW < CA .03 .05 NWS < ID < NW < CAS < CA 

-.15 .20 ID < NWS < CAS < NW < CA .03 .20 NWS < ID < CAS < NW < CA 

-.03 -.20 NWS < ID < CAS < NW < CA .15 -.20 ID < NWS < CAS = NW < CA 

-.03 -.05 NWS < ID < NW < CAS < CA .15 -.05 ID < NWS < NW < CAS < CA 

-.03 .05 ID < NWS < CAS < NW < CA .15 .05 NW < NWS < ID = CAS < CA 

-.03 .20 ID < NWS < CAS < NW < CA  .15 .20 NW < NWS < CAS < CA < ID 

50 

-.15 -.20 NW < NWS < CA = CAS = ID .03 -.20 ID < NWS = CAS < NW < CA 

-.15 -.05 NW < NWS < ID = CAS < CA .03 -.05 ID < NWS = CAS = NW < CA 

-.15 .05 ID < NWS < CAS < NW < CA  .03 .05 NWS < CAS = ID = NW < CA 

-.15 .20 ID < NWS < CAS < NW < CA .03 .20 NWS < ID < CAS < NW = CA 

-.03 -.20 NWS < CAS = ID < NW = CA .15 -.20 ID < NWS < CAS = NW < CA 

-.03 -.05 NWS = ID < NW = CAS < CA .15 -.05 ID < NWS < NW < CAS < CA  

-.03 .05 ID < NWS < CAS < NW < CA .15 .05 NW < NWS < ID = CAS < CA 

-.03 .20 ID < NWS < CAS < NW < CA  .15 .20 NW < NWS < CA = CAS = ID  

100 

-.15 -.20 NW < NWS < CAS = CA = ID .03 -.20 ID < NWS = CAS < NW = CA 

-.15 -.05 NW < NWS < ID = CAS < CA .03 -.05 ID < NWS = CAS = NW < CA  

-.15 .05 ID < NWS < CAS = NW < CA .03 .05 NWS < CAS = ID = NW < CA 

-.15 .20 ID < NWS < CAS < NW < CA .03 .20 NWS < ID < CAS < NW = CA  

-.03 -.20 NWS = CAS = ID < NW = CA .15 -.20 ID < NWS < NW < CAS < CA 

-.03 -.05 NWS < NW < CAS = ID = CA .15 -.05 ID < NWS < NW < CAS < CA  

-.03 .05 ID < NWS < CAS < NW < CA .15 .05 NW < NWS < ID = CAS = CA 

-.03 .20 ID < NWS < CAS < NW < CA  .15 .20 NW < NWS < CA = CAS = ID  

*. The 4th and 7th columns show the equating methods produced the smallest WRMSE. “ = ” sign indicates no statistical difference between the equating methods; 

otherwise, “ < ” sign shows a statistical difference between the equating methods according to pairwise comparisons of the equating methods. 
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Figure 4. Some of the Condition Specific Comparisons of the Equating Methods 
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Figure 4 Cont. Some of the Condition Specific Comparisons of the Equating Methods 
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For example, when the magnitudes of   
and   were small (e.g.,  .03   and  .05   ) and the 

difference in the shape of the score distributions on the test forms were similar, the NWS produced 

smaller equating error (WRMSE) compared to the unaltered NWM equating method. The SF of the  

CA method always produced smaller equating error than its original version, regardless of the simulation 

condition in which they were tested. In addition, equating the test forms using the CA method also 

resulted with a substantial equating error (WRMSE) in all the simulation conditions. For the extreme 

conditions (e.g., .15   , .20   ), the use of the ID or the NWM equating methods was more 

appropriate due to the amount of the total equating error.  

The ANOVA results show that the systematic error (WBIAS) is mainly affected by the interaction effect 

of the chosen equating method, the magnitude of the group mean ability and test form difficulty 

differences. Correspondingly, the main source of the random equating error is the sampling fluctuations 

as indicated in the Table 1. As Kolen and Brennan (2004) suggest, the systematic error can be controlled 

with a careful test development process and also with the use of the appropriate method to equate the 

test forms. Even though increasing the examinee sample size would reduce the random equating error 

at some degree, it is very difficult for practitioners to collect more data in a certain time interval since 

the timely score release is one of the main goals of any examination programs after the tests 

administrations.  

 

Recommendations for Practitioners  

A careful test development process may eliminate the effect of test form difficulty differences on the 

examinee test scores to expose the examinees` ability differences. However, if the practitioners still have 

a concern about the test form difficulty differences after the careful test development process, then there 

will be a need for equating the test forms at the expense of potentially getting large equating error in 

small sample equating. Within the context of this study, I recommend practitioners consider two 

statistical measures and their mathematical signs to decide which equating method(s) or score 

transformation procedure(s) should be used while practicing small sample equating under the NEAT 

design. The first measure is the SMD on the anchor tests (see, Appendix). 
-

X Y
A A

SMD is used as a measure 

of groups` ability difference on the test since the anchor tests are taken by the two groups. The second 

measure is the SMD on the total test scores. 
-

X Y
T T

SMD is the combined measure of both group ability and 

test form difficulty levels to decide whether equating is necessary or which equating method should be 

used to equate the test forms. The SF versions of the chosen or any other equating methods can be a 

solution under certain conditions when the psychometric characteristics of the test forms for equating 

are not much different from each other. Based on the simulation conditions established in this study, 

Table 3 provides a basic guideline for the use of the equating method that may help while practicing test 

equating with small samples. 

 

Limitations and Future Research 

In this study, the computer-based simulated data, which was assumed to be normally distributed, with a 

limited number of factors were used. Therefore, the findings of this study should be cautiously used to 

make comparisons with other existing studies. Different test administration procedures may exist for 

each specific testing program based on the characteristics of the subject area examinations and the 

examinee population of interest; thus, the findings from this study should not be directly used for any 

specific testing program to equate the test forms using small samples. Extreme cut scores on scale score 

distributions were not considered in this study.  Three between-subjects factors and one within-subject 

(as repeated measures) with a limited number of levels were investigated. The variances of the data 

generation factors were kept constant with a variance of 1.0 across all of simulation conditions. The 

SEEs of each equating method were estimated using 1000 bootstrapped samples within each simulation 

replication. 

Further studies should be conducted using real-data from a teacher certification/ licensure examination. 

Also, effectiveness of the proposed equating methods should be investigated by considering different 

psychometric characteristics of test forms (e.g. different test lengths with varying anchor/total item ratio, 

internal and external anchor cases, test with low and high reliability levels, examinee groups with 
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varying degree of ability levels, different equating methods, mixture of different examinee score 

distributions, and varying sample sizes).  
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APPENDIXES 
Appendix 1. The Psychometric Characteristics of Pseudo Test Forms 

1

  
2

  3Form   Mean   
4

TSD   /

5

X YT TSD  
6

ASD  /

7

X YA ASD  
8

X YT TSMD 
 

9

X YA ASMD 
 10.Cor   

11SEM   
12.Rel  

-.15 -.20 
X 70.12 18.77 

1.00 
6.03 

1.00 .050 -.133 
.86 4.97 .93 

Y 69.18 18.82 6.04 .86 4.61 .94 

-.03 -.20 
X 72.37 18.76 

.99 
6.04 

1.00 .166 -.026 
.86 4.60 .94 

Y 69.24 18.87 6.05 .86 4.62 .94 

+.03 -.20 
X 73.40 18.76 

1.00 
6.04 

1.00 .227 .036 
.86 4.59 .94 

Y 69.16 18.69 6.02 .86 4.94 .93 

+.15 -.20 
X 75.59 18.49 

.98 
5.97 

.99 .339 .134 
.86 4.53 .94 

Y 69.26 18.84 6.03 .86 4.61 .94 

-.15 -.05 
X 67.13 19.08 

1.00 
6.11 

1.01 -.061 -.141 
.86 4.67 .94 

Y 68.29 19.14 6.07 .86 4.69 .94 

-.03 -.05 
X 69.46 19.01 

.99 
6.06 

1.00 .066 -.026 
.86 4.66 .94 

Y 68.19 19.22 6.04 .86 4.71 .94 

+.03 -.05 
X 70.51 18.89 

.98 
6.08 

.99 .117 .029 
.86 4.63 .94 

Y 68.28 19.34 6.14 .86 4.74 .94 

+.15 -.05 
X 72.56 18.89 

.99 
6.10 

1.00 .233 .131 
.86 4.63 .94 

Y 68.14 19.13 6.07 .86 4.69 .94 

-.15 +.05 
X 65.22 18.54 

.97 
5.88 

.99 -.295 -.133 
.85 4.90 .93 

Y 70.78 19.10 5.93 .86 4.68 .94 

-.03 -.05 
X 67.41 18.56 

.97 
5.88 

.99 -.181 -.024 
.85 4.91 .93 

Y 70.82 19.06 5.92 .86 4.67 .94 

+.03 -.05 
X 68.50 18.59 

.98 
5.91 

1.00 -.119 .032 
.85 4.92 .93 

Y 70.73 19.06 5.91 .86 4.67 .94 

+.15 -.05 
X 70.52 18.54 

.98 
5.89 

1.00 -.019 .129 
.86 4.91 .93 

Y 70.88 18.93 5.87 .86 4.64 .94 

-.15 +.20 
X 62.50 19.05 

1.02 
6.00 

.99 -.393 -.139 
.85 5.04 .93 

Y 69.91 18.69 6.04 .85 4.94 .93 

-.03 +.20 
X 64.84 19.15 

1.02 
6.05 

1.00 -.268 -.029 
.86 5.07 .93 

Y 69.92 18.81 6.07 .86 4.98 .93 

+.03 +.20 
X 65.90 19.19 

1.02 
6.07 

1.00 -.205 .030 
.86 4.70 .94 

Y 69.80 18.86 6.09 .86 4.99 .93 

+.15 +.20 
X 68.08 19.18 

1.02 
6.06 

1.00 -.096 .128 
.86 4.70 .94 

Y 69.90 18.75 6.04 .85 4.96 .93 
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1.  The new group examinee ability difference used to generate the pseudo-population data. 
2.  The new form test difficulty difference used to generate the pseudo-population data.  
3.  Form X is the new test form and Form Y is the reference (base) form in all equating procedures. 

4.  The standard deviation of Form X and Form Y test scores. 

5.  The ratio between the standard deviations of total test scores on Form X and Form Y.  

6.  The standard deviation of Form X and Form Y anchor (common) test scores. 

7.  The ratio between the standard deviations of anchor (common) test scores on Form X and Form Y.  

8.  The standardized mean difference (SMD) between the total test scores on Form X and Form Y. 

9.  The standardized mean difference (SMD) between the anchor (common) test scores on Form X and Form Y.  

10. The correlation between the total and anchor (common) test scores. 

11. Standard Error of Measurement. 

12. Cronbach’s Alpha reliability estimate for the total test. 
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