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Abstract 

 

A convolution in the variable exponent Lebesgue spaces   is defined and the possibility 

its approximation by finite linear combinations of Steklov means is proved. Moreover, the 

convergence of the special convolutions sequence constructed via approximate identity 

to the original function is showed. 
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Değişken üslü Lebesgue uzaylarında konvolüsyonların bazı 

özellikleri 
 

 

Öz 

 

Bu çalışmada değişken üslü Lebesgue uzaylarında konvolüsyon tanımlandı ve Steklov 

ortalamalarının sonlu lineer birleşimleri ile yaklaşımının mümkün olduğu kanıtlandı. 

Ayrıca yaklaşım birimi ile oluşturulan özel konvolüsyonlar dizisinin başlangıç 

fonksiyonuna yakınsadığı gösterildi. 

 

Anahtar kelimeler: Konvolüsyon, değişken üslü Lebesgue uzayları, yaklaşım birimi 
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1. Introduction 
 

Let ( )    ): 0,2 1,p  →   be a Lebesgue measurable 2 -periodic function. We define 

the modular functional ( ) ( ) ( )
( )2

0
:

p x

p
f f x dx






=   on the Lebesgue measurable functions 

f  on  0,2 .  By 
( )

2

p
L 


 we denote the class of 2  periodic Lebesgue measurable 

functions f , such that for a constant ( ) 0f =   the inequality ( ) ( )/
p

f 


   holds. 

Let 2  be the class of Lebesgue measurable functions ( )    ): 0,2 1,p  →   such that  

 
( )

 
( )

0,2 0,2

1 : inf : sup
x x

p ess p x p ess p x
 

− +
 

 =  =   ,                                                            (1) 

( ) ( )
( )

( )log

p
c

p x p y
x y


− 

− −
                                                                                         (2) 

for all  , 0,2x y  , 1/ 2x y−  , and for some constant ( )
0

p
c


 . Then with the norm 

 

( ) ( ) ( ) : inf 0 :  / 1
pp

f f  


=                                                                                (3) 

( )
2

p
L 


 creates a Banach space (detailed information about the researches carried out in these 

spaces can be found in the monographs [1, 2]). 

 

Let 1,f g L .  We define a convolution type operator  

 

( )( ) ( )( ) ( )
2

0
, : ,hf g x h f x u g u du



 =  ,                                                                        (4) 

 

where ( ) ( )
0

1
, :

h

h f x u f x ut dt
h


 

= + 
 
 , 0 h   ,  0,2x  , u−     is the Steklov 

means constructed via f . 

 

The convolution operators play an important role in approximation theory, especially for 

construction of approximation polynomials and modulus of smoothness, which used for 

estimation the speed of convergence in the different function spaces. 

 

In the classical Lebesgue spaces, for this goal were used the convolutions constructed via 

classical shift operator.  But this shift operator is not invariant in the some spaces, for 

example in the variable exponent Lebesgue spaces.  In the last spaces for construction of 

modulus of smoothness used the Steklov means h f , which are invariant in the variable 

cases.  Using this modulus were investigated some fundamental problems of 

approximation theory on the intervals of real line and also on the domains of complex 

plane (see, for example: [2-21].  Moreover, in the variable cases were investigated (see, 

for example: [22-25]) basicity problems of well known systems of functions which play 
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important role in the different areas of applied mathematics.  Therefore, the problems of 

studying convolutions in these spaces are actual. 

 

In this work we prove the possibility of approximation to convolutions ( )f g  by linear 

combinations of the means h f  and also approximation of convolutions ( )nf K , 

constructed by approximate identity  n n
K


 to f  in the variable exponent Lebesgue 

spaces 
( )

2

p
L 


, ( ) 2p   .  In the case of ( ) 1p    these results were obtained in [13].  

 

 

2.  Auxiliary results 

 

As immediately follows from the definition of convolution type operator given in 

Introduction, for 
( )

2, ,
p

f g j L 


   (⋅)} and for    the relations 

 

a. ( )( )( ) ( ) ( )( ), ( )( , ) ,f g x h f g x h f g x h   =  =  , 

b. ( )( )( ) ( )( ) ( )( ), , ,f g j x h f j x h g j x h  =                                                    

 

hold. 

 

But  the operator ( )f g  isn’t commutative.  For example:  If ( ) : 1f x =  and ( ) :g x x= , 

then  

 

( )( ) ( ) ( )
2

0 0

1
,

h

f g x h f x tu dt g u du
h

  
 = + 

 
   

2
2

0 0

1
1 2

h

dt udu
h




 

= = 
 

  .                                                                                              (5) 

 

On the other hand,  

 

( )( ) ( ) ( )
2

0 0

1
,

h

g f x h g x tu dt f u du
h

  
 = + 

 
   

( )
2

0 0

1 h

x tu dt du
h

  
= + 

 
   

2

0 2

hu
x du

  
= + 

 
  

( )2x h = + .                                                                                                                 (6) 

 

Theorem 1 [1; page:34] Let ( )    ): 0,2 1,p  →   and let    : 0,2 0,2f   →  be 

the measurable functions and ( ) ( )
2,
p

f y L 


   for every  0,2y  . Then  
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( )
( )

( ) ( )
( )

2 2

0 0
, ,

p p
p

f y dy c f y dy
 

 


                                                                            (7) 

 

with some positive constant 
( )p

c


.  

 

Let , 0    and /    . We consider the Steklov operator 
,S f  , defined as  

( )( ) ( )
1/2

,
1/2

:
x

x
S f x f t dt

 

 
 


+ +

+ −
=  . 

 

The following result was proved in [3]. 

 

Theorem 2 Let ( ) 2p    and 0 1  . Then the family of the Steklov operators 
,S f   

is uniformly bounded in 
( ) ( )p

L T


 for 1    and /    , i.e. there exists a positive 

constant ( )c p  such that  

 

( )
( )

( )
( ), pp

S f c p f  
 , 1   , /    .                                                         (8) 

 

 

3.  Main results 

 

Our new results arre following: 

 

Therorem 3 If 
( )

2

p
f L 


 , ( ) 2p    and 1g L , then there exists a positive constant ( )p

c


 

such that   

 

( ) ( ) ( ) 1pp p
f g c f g

 
  .                                                                                           (9) 

 

Proof  Let 
( )

2

p
f L 


 .  Since for any positive integer u  with 0 1uh   

 

( )
( )

( )
( )

0

1 1h x uh

x
p p

f x ut dt f s ds
h uh

+

 

+ =   ( )
( )

/2 /2

/2 /2

1 x uh uh

x uh uh
p

f s ds
uh

+ +

+ −


= 

( )
( )

1
,

2

uh

uh p

S f



 
=  
 

, 

 

denoting : 1/ uh = , : / 2uh =  and applying Theorem 1 and Theorem 2 we have  

 

( )
( ) ( )

( )

2

0
,hp

p

f g f u g u du







 =   

( ) ( )
( )

( )
2

0
,hp p

c f u g u du



 

   

( ) ( ) 1p p L
c f g

 
 .  
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Theorem 4 If 
( )

2

p
f L 


 , ( ) 2p    and 1g L , then the convolution f g  in 

( )
2

p
L 


 can 

be approximated by the finite linear combinations of means f , i.e. for 0  , there are 

the sets of numbers  
1

n

k   and    
1

0,2
n

ku   such that 

 

( )( ) ( )
( )1

, ,
n

k h k

k p

f g h f u  
= 

  −   .                                                                         (10) 

 

Proof  Let 2S   be the set of simple functions defined on  0,2 .  Since is dense in 1L , it 

is sufficient to prove this theorem in the case of 2g S  .  Taking into account that every 

function 2g S   can be represented as a linear combination of the characteristic functions 

of some subsets of  0,2 , it is sufficient to proof this theorem in the case of 

 

( ) ( )
1,   

: :
0,   

M

u M
g u u

u M



= = 


                                                                                       (11) 

 

where  ,M a b= , 0 2a b     is an arbitrary interval. 

 

For a given 0   we divide M  into finite subintervals kI  with the length kI   and 

satisfying the conditions 
i jI I = , i j  and k

k

M I= .   Then 

 

( )( ) ( )( ) ( )
2

0
, ,hf g x h f x u g u du



 =   

( )( ) ( )
2

0
,h Mf x u u du



 =   

( ) ( ),h
M

f x u du=   

( )( ),
k

h
I

k

f x u du=  

 

Taking k ku I  we have 

 

( )( ) ( )( ), ,k h k

k

f g x h I f x u −  

( )( ) ( )( ), ,
k k

h h k
I I

k k

f x u du f x u du = −    

( )( ) ( )( ), ,
k

h h k
I

k

f x u f x u du = −   . 

 

Using the triangle property in 
( )

2

p
L 


 norm and Theorem 1, we have  

( )( ) ( )( )
( )

, ,k h k

k p

f g h I f u


  −   
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( )( ) ( )( )
( )

, ,
k

h h k
I

k p

f u f u du 


=  −     

( ) ( )( ) ( )( )
( )

, ,
k

h h kp pI
k

c f u f u du 
 

  −  .                                                               (12) 

 

By continuity of the mean value operators, for 0   and for every finite subintervals 

kI M  there is a 0   such that for kI   and ku I  the inequality 

 

( )( ) ( )( )
( )

, ,h h k p
f u f u  


 −                                                                                    (13) 

 

holds.  Hence by (12) and (13) we get   

 

( )( ) ( )( )
( )

( )
, ,

k
k h k p I

k kp

f g h I f u c du 




  −     

( ) kp
k

c I 


=   

( )p
c M 


=                                                                                                                    (14) 

 

where M  is the Lebesgue measure of M .  

 

Let us consider the approximate identities in the space ( )p
L


.  By the approximate identity 

we mean a sequence ( )  ( )1 ,n n
K L  


  − ), satisfying the conditions: 

 

a. 1sup n L
n

K   , 

b. ( )
1

lim 1
2

n
n

K x dx




→

−

= , 

c. ( )
1

lim 0
2

n
n

x

K x dx
 

→
 

= , ( )0,   .                                                                               

 

The following theorem is true.  

 

Theorem 5 Let ( ) n n
K


  be an approximate identity. Then for every 

( ) ( ),
p

f L  


 − , 

( ) 2p   , the following relation holds 

 

( )

lim 0
2

n

n
p

f K
f

→



− = .                                                                                                                     (15) 

 

Proof  We suppose that f  is continuous on  , − , i. e.,  ( ),f C   − . By the triangle 

inequality  
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( )

( ) ( )
( )

2

0

1

2 2 2

n n
n

p p

f K f K
f f K u du



   

 
−  −   

 ( ) ( )
( )

2

0

1

2
n

p

f K u du f


 

+  −                                                                                    (16) 

 

For the first term in the right side of (16) we have  

 

( )( )
( ) ( )

2

0

1

2 2

n

n

f K x
f x K u du



 


−   

( ) ( ) ( ) ( )
2 2

0 0 0

1 1 1

2 2

h

n nf x ut dt K u du f x K u du
h

 

 

 
= + − 

 
  

( ) ( )( ) ( )
2

0 0

1 1

2

h

nf x ut f x dt K u du
h





 
= + − 

 
   

( ) ( ) ( )
2

0 0

1 1

2

h

nf x ut f x dt K u du
h





 
 + − 

 
  . 

 

Let 0  .  By continuity of f , for a given   there is a 0   such that for h  , the 

inequality ( ) ( )f x ut f x + −   holds.  Hence from .a  property of approximate identity 

we have  

 

( )( )
( ) ( )

2

0

, 1

2 2

n

n

f K x h
f x K u du



 


−   

( )
2

0

1

2
nK u du c



 


  .                                                                                           (17) 

 

On the other hand by .b  property of approximate identity  

 

( ) ( ) ( )
2

0

1
lim ,   [0, 2 ]

2
n

n
f x K u du f x x




→

=                                                              (18) 

 

and hence for a given 0   there is a number 0n   such that for every 0n n   

 

( ) ( ) ( )
( )

2

0

1

2
n

p

f K u du f



 

 −   .                                                                           (19) 

 

Using (17) and (19) in (16) we have  

 

( )2

n

p

f K
f c

 


−  .                                                                                                     (20) 

Let ( )  ( ),
p

f L  


 − .  Since  ( ),C  −  is dense [26] in ( )  ( ),
p

L  


− , for every 0   

there is a function  ( ),g C   −  such that  

 



İSRAFİLOV D. M., GÜRSEL E. 

643 

( )p
f g 


−                                                                                                                  (21) 

 

By the property .a  of approximate identity and Theorem 3 we have 

 

( )

( )

( )
2 2 2

nn n

p p

f g Kf K g K

   

−  
− =  

( )
( )

( )
1

2

p

n Lp

c
f g K M






 −                                                                                       (22)                                 

                                            

with some positive constant M independent of n .  

 

Now for 0n n  , using the relations (22), (20) and (21) we have 

 

( ) ( ) ( )
( )2 2 2 2

n n n n

p
p p p

f K f K g K g K
f g f g

    
  

   
−  − + − + −  

                          

 ( )1M c M c    + + = + + . 
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