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1. Introduction
There are some studies about integer sequences in the literature [1]-[4]. Especially Mersenne primes are an active field in the

number theory and computer science [5]. They are popular research objects because of their interesting representation in the
binary system properties as (1)a, (11), (111),, (1111)s,,.... The Mersenne numbers can also be defined as [6]

M, +2=3M,+1 —2M,,
with the initial conditions My = 0 and M = 1.
The roots of the respective characteristic equation 7> — 3r +2 = 0 are r; = 2 and r, = 1 and we easily get the Binet formula
M, =2"—1.
The first few terms of the Mersenne sequence are
M, =1{0,1,3,7,15,31,63,127,255,511,...} [7].
In many studies, generalizations of the integer sequences have been examined [8]-[15]. The bi-periodic Fibonacci sequence,

which was introduced by Edson and Yayenie, have made an important contribution to the literature [16]. Inspired by this study,
many new generalized sequences have been described [17]-[20].

The main purpose of this paper is to first define bi-periodic Mersenne sequence, to find the generating function and Binet
formula, and then to present some identities that include the bi-periodic Mersenne sequence as a result of the corresponding
Binet formula.
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2. Bi-periodic Mersenne sequence

Definition 2.1. The bi-periodic Mersenne sequence {my}, _, is defined by

3am,_1 —2my,_o, ifniseven;
my=0, m=1, m,= " e Yo T on>2.
0 ’ : ’ " { 3bm,_| —2m,_o, ifnisodd. =
where a and b are any two non-zero real numbers.
By setting a = b = 1, we get the classic Mersenne numbers.
The quadratic equation for the bi-periodic Mersenne sequence is defined as
x> —3abx+2ab=0
with the roots
N —/9a2p2—
a = 3ab+ 9; b=—8ab and = 3ab 9; b 8ab. (21)

Lemma 2.2. The bi-periodic Mersenne sequence satisfies the following properties:

mop = (9ab —4)myy_» — 4may,_a,

Mop+1 = (9(lb — 4) Moy —4my,_3,
Proof. By using the recurrence relation for bi-periodic Mersenne sequence, we obtain my, and my, 1 as follows:

my, = 3amp,_1—2my,_>
= 3a(3bm2n,2 — 2m2n,3) — 2m2,1,2
= (9ab—2)my,—p — 6amy,—3
= (9ab—2)mpu_2 — (2mop_p +4mo,_4)
= (9ab — 4) mau—2 — 4m2,,,4

and

Mypy1 = 3bmo, —2my,
= 3b(3am2n,1 — 2m2n,2) — 2m2n,1

(9ab — 2)my,—1 — 6bmy,—»

(9ab —2)mo, 1 — (2mop—1 +4ma,—3)

= (9ab — 4)m2n,1 — 4m2,,,3.

O
Lemma 2.3. The roots a1 and o defined in (2.1) satisfy the following properties:
o0 = Zab,
o1+0p = 3ab,
2
04
300 —2 = L,
! ab
2
a
3 -2 = 2
2 ab )
(3061 72)(3062 72) = 4.
Proof. By using the definitions of a; and a;, the proof can be easily obtained. [

Theorem 2.4. The generating function for the bi-periodic Mersenne sequence is

x(1+2x% +3ax)
M(x) = .
O = T Gab— 2t 4t
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Proof. M(x) = mo+mix+mpx*> 4 ... + mex* +... = ¥, mx* is the formal power series representation of the generating
k=0
function for {m,,}, . If this series is multiplied by 3bx and 2x2, then we get

3bxM (x) = 3bmox + 3bmix* + ... =3 Y bmy* T =3 by 1
k=0 k=1

and
22M (x) = 2mox* +2myx> 4 ... =2 Z mx =2 Z my_axk.
k=0 k=2
So,
<1 —3bx+ 2x2>M(x) = mg + m1x — 3bmox + )°f (mk —3bmy_y + ka_2>xk. (2.2)
k=2

Since moyy1 = 3bmyy —2my_1 and mg =0, m; = 1, we have
(1 —3bx+ 2x2) M(x)=x+ i (mag — 3bmag_1 + 2may_)x** .
k=1
myr = 3amyy_1 — 2myy_o implies that
(1 —3bx+ 2x2)M(x) =x+3(a—b)x i mo_1x21

k=1

Now, we let

m(x) = Z moy_ 1 x*1
k=1

Then,

=)

<1 — (9ab — 4)x* + 4x4> m(x) = Z mye_1x*1 — (9ab — 4) Z myp_3x* 1 44 Z mo_sx*1
k=1 k=2 k=3

= mx+ m3x3 - (9(1b - 4)m1x3 + Z <m2k_1 — (9ab — 4)M2k_3 + 4m2k_5>x2k_1.
k=3

From Lemma 2.2, we have my,_1 = (9ab — 4)my,_3 — 4my,_s. By substituting this in the expression above, we get

(1 — (9ab —4)x> + 4x4) m(x) = x+ (9ab —2)x* — (9ab — 4)x> = x +2x°.

Therefore,
x+2x3

(1— (9ab—4)x2 +4x%)"

m(x) =

Substituting m(x) in M(x) gives

(1—3bx+2x*)M(x) = x+ (3(a—b)x x+20 )

(1— (9ab—4)x2 + 4%

After simplifying the above expression, we get the desired result

x(142x% + 3ax)
M(x) = .
0 = 1= oab— a2 - d

Theorem 2.5. The terms of the bi-periodic Mersenne are given by
al=¢m) <ai’ — oc5‘>
m, = - ,
(ab) 5] \ou— o

where oy and & are as in (2.1), |b] is the floor function of b and & (n) is the parity function.
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Proof. Using the partial fraction decomposition, we can write the generating function for the bi-periodic Mersenne sequence
M(x) as

1 a1x+a(3a‘2_2) a2x+a(30622—2)
M(.X) = 2 302 - 2 30p—2
o 2x? — (=5—) 22— (=5—)
The Maclaurin series expansion of the function 4 BCZ is expressed in the form
A—Bz - —n—1_2n+1 - —n—1_2n
zLC:Z;)BC =Yy ac I
n= n

So, M(x) can be written as

M) = [i il v )"szm‘z)nﬁxz"“}

= 2061 )n+1(3ai;2)n+1

o 30:2 "y (2q 301—2\n
=0 = )n(3%=2)

By using Lemma 2.3, we obtain

| (o ColeR? @ity
S R ¢ S— '
L (SR L
72(051 - ) ngb % !

061)2”“—(052)2”+1 zn+1+2 a (o)™ (az)znxzn
o — 0y (ab)" o — 0 '

=
ng

By the help of the parity function & (n ) it follows that
M(x) = al<) <a{l — ag’) X"
(ab) 5] \ou—
m 850 (=)
(ab) 5] \ou —

Theorem 2.6. (Catalan’s Identity) For any two nonnegative integer n and r, with r < n, we get
aé("*r)blfé("*r)mn_rmnﬂ _ ai(")blfi(n)mﬁ - _ (2"4) aS (I p1=6(n) 2

Therefore, for all n > 0, we have

Proof. Using the Binet’s formula, we obtain

1 n—r - -r 1= (n+r n—+r n+r
AIEn g g @ & >< —of )a §(ntr) (al —of )

(ab) 155" ] o — 0 (ab)L"T“J o — 0

2 n—r)p1=E(n—r) n r_ n r n-+r n+r
_ & b &( o — oy
( n op — 0

=(W$J( ““@ tyeteat

n n 2n
s 2 az;(n)b1¢<n)< 5(1) ( —2(a1m)"+ 05 )

(ab)? I (o — )2
_ a (ocl"—2((x1a2)"+a22”>
(ab)z\_ JJF@(”)*I (061 - 062)2

- (@) ()

and

(S B

[S B
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So,
() p1-E(n—) -ty (@ ) (Homo)' = (o) (af +a7)
a b Mmy—yMy4r —a b my, ((ab }’ll) ( (al — a2)2
— a (0100)" (2 (010n) — 0" —a5"))
(ab n—1 (OC] - (362)2
(- (a2 aw))
B ((ab)"l)(alaz) ( (1 -2
r r 2
. —a nr (%1~ %
= () e (5=2)

Theorem 2.7. (Cassini’s Identity) The following equality holds
al*fi(")bfé(")mn_lmn_H _aé(n)blfi(n)mi ——a (2%1)’
where n is any nonnegative integer.

Proof. In Catalan’s identity, if we take r = 1, we get Cassini’s identity. So, the proof can be obtained from the relevant
identity. O

Theorem 2.8. (d’Ocagne’s Identity) For any two nonnegative integer n and r, with r < n, we have
aé("””)b&(””’)mnmrﬂ — g RS i)y =275y,
Proof. There are such equations
S(+1)+8(r)=26(nr+r) =& +5(r+1) =28 (nr+n) = 1-&(n—7) (2.3)
and
E(n—r)=E&(nr+n)+&(nr+r) (2.4)

for the floor function defined as §(n) =n—2 | %] .

Using the Binet’s formula, (2.3) and (2.4), it follows that

6(nr+n)b§(nr+r) _ a ai’l+r+1 + angrJrl o (al az)r(af*rocz + oy Olgir)
a MpMyy | = (ab) (&2 (@ —0)
and
!j(nrJrr)bc‘;(nH»n) _ a a{H_H—l + aéH—r—H - (061 az)r(afhhq + agirJrl)
a Tt = ) =& (=) 2 (o1 — )2 '
So,
a (o g o)

a&(nr+n)b§(nr+r)mnmr+l _ aé(nr—&-r)bé (nr-‘rn)anrlmr

(ab)rr—Eam2 (102)

(a1 —0p)?
a (0" —ag ") (o — o)
(ab)(nt+r=8(n=n))/2 (o) — )?

= Zraé("_r)mn,r.
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Theorem 2.9. (Honsberger Identity) For any two nonnegative integer n and r, with r < n, we have

a (ah)g(nr+ﬂ

(aé(nrJrn)bE(nrJrr) _ 1 W) My, 1+ (a‘)§ (nr+r)b£j(nr+n) — (061 OCQ)

(o ) (o

GEDHE=1)1

—02) )

o) — 0
Proof. Using the Binet’s formula, (2.3) and (2.4), we obtain

n+r+1

a
a ( 1

n+r+1
+a,

aé (nr+n) b8§ (nr+r) P

My tr-

r+1
-0

n 1
052—06 o, )

(ab)ir—Em=)/2 (o

and

n+r—1

n+r—1
+Q,

a
a < 1

alj (nr+r)b§ (nr+n)mn_1mr _

— a2)2

n—1
OC1062

—oq” 1%)

(ab)(;1+r7§(n7r))/2 (al

So, we get

+
a (ot

— az)z

— o) (—ay ' — o) (o + o)

a* S @SB OT = nr—E(nr)
(ab)— 2

o (o ) o (g o) —

(1+aa)(afay™!

(1 —m)?

+o5a )

(1 —m)?

+a1>< bl
1=E(ntr)

—op)(ay
o — 0

a (o'
n+r—&(n—r)

(ab) 2

1 _
(ajoy " — oy

'og) () lE) (oo -

o) (

Myr

o — 0 alfé(”) o] —

l _aZ)(afl+al))a§(n+r) 1

o
(—og

s+

nl)

plst)
1-&(
1

é()

=( o — o Mpyr
as(N+&n-1)-1

(o) )

My 1My

Hence, we obtain

L
oo (ab)é(nH»n)

(as () pE (r47) _

o0 (ab) & (nr+n)

>mnmr+l + (aij(nrJrr)bé(nrJrn) _ (al 062)

My My

G (HE (=11

(

o +an)(—ay ! - ) &)

o — 0

Theorem 2.10. (Sums Involving Binomial Coefficient) For any nonnegative integer r, we have

i (:) (=2)" " (3") (ab) e

and

Mst1

<:> (2@ )| T g

Proof. For any integer s, we have

— 0 :

= myy

= NM2r+1.

Mytr-
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By using this equality above, we get

£() s, — § (s (225)

= g (B0 =2~ (3o —2)]

B a r ailz ri 05722 r
o o — 0 | ab ab

_a (o -ag
o (ab)’ o — Oy

Also o
) ()2 e (aty e X ()2 e (W)
- iaz :alszré (;) (—=2) " (Bey)* — i() (:) (—2)"5(30:2)%
- ! % [og 3oy —2)" — o (3a —2)"]
- aliOQ :al <Zi§>r_a2 <Z§>]

= M4l
O
Theorem 2.11. The nonnegative terms of the bi-periodic Mersenne sequence are defined in terms of the positive terms as
m_, =—2"m,.
Proof. By using the Binet’s formula, we obtain
(=) S — s
%]
(=n)
a J ( 2 az OCz))
()
on (ab)"(ab) 15 N~
_ —gl—50) (a{‘ %>
21 (ab) 7] \or—o
= —27"m,
O

3. Conclusion

In this paper, we define bi-periodic Mersenne sequence, which is called bi-periodic Mersenne sequence. We obtain some
properties for this sequence such as Binet formula, generating function, Catalan, Cassini, d’Ocagne and Honsberger identities.
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