

Current Perspectives on Medicinal and Aromatic Plants

An International Journal ISSN: 2619-9645 | e-ISSN: 2667-5722

A Review of Moroccan Medicinal Plants Used in the Ttreatment of Urolithiasis

Elhassan IDM'HAND*

Department of Biotechnology and Valorization of Natural Resources, Faculty of Sciences, University Ibn Zohr, 8106, Agadir, Morocco, E-mail: idmhand-h@hotmail.com, ORDID ID: 0000-0001-9548-6231

*Corresponding author : idmhand-h@hotmail.com

https:/	/doi.org/10.38093/cup	man 1078416
nups./	/u01.01g/10.30093/cu	Jiliap.1070410

Received: 24/02/2022 Accepted: 03/04/2022

Abstract

In Morocco, surveys on the medicinal plants used in the treatment of urolithiasis have been carried out by various researchers during ethnobotanical missions.

The main objective of this work is to contribute to the knowledge of medicinal plants used in the treatment of this disease in Morocco in order to help in the formulation of improved traditional medicines.

Data concerning the use of medicinal plants against urolithiasis are gather together from published documents concerning the various ethnomedicinal surveys conducted in Morocco for synthesis and analysis. In total, 82 species of plants belonging to 42 families are recorded to be used by the Moroccan population to treat urolithiasis. Apiaceae, Lamiaceae, Leguminosae and Poaceae are the most represented families. The most cited plant species are *Petroselinum crispum and Citrus limon*. Many parts of the plant are used, especially the use of the seeds and leaves are the most used parts. Decoction and infusion are the most common methods of preparation of the these plants for utilised.

Morocco has an important floristic biodiversity in terms of antilithiasic plants. These results form the basis of subsequent studies aimed at experimentally evaluating the potential of these plants.

Key Words: Medicinal plants, Urolithiasis, Ethnopharmacology, Antilithiasic effect, Morocco

© CUPMAP. All rights reserved.

1. Introduction

Medicinal plants have been used since antiquity to relieve and cure human illnesses. In fact, their therapeutic properties are due to the presence of hundreds, even thousands, of bioactive natural compounds called: secondary metabolites. These are then accumulated in different organs and sometimes in specialized cells of the plant. Despite the progress of pharmacology, in the absence of a modern medical system, the therapeutic use of medicinal plants is quite common in some countries of the world and especially in developing countries.

Urolithiasis is the third most common disorder of the urinary tract, after infections and pathological disorders of the prostate (Delfan et al., 2015). Urinary stone formation affects 10-12% of the population in industrialized countries (Atmani and Khan, 2000, Butterweck and Khan, 2009, Dayapule et al., 2021). Urolithiasis is the presence of hard crystals in the urinary tract (bladder, urethra or ureters). They vary greatly in size, with diameters ranging from a few millimeters to several centimeters, but there are several calculation methods. The most common (80%) are calcium oxalate (CaOx) stones formed by deposits of calcium, phosphates and oxalates which eventually take the form of a stone which can lead to severe pain. Kidney stone formation is a complex process resulting from the succession of several physicochemical including supersaturation, events. nucleation. growth, aggregation and retention in the renal tubules, but the mechanisms of these processes are not exactly understood (Atmani et al., 2004a; Atmani and Khan, 2000, Atmani et al.. 2004b). These stones can persist for an indefinite period and have serious consequences for the life of the patient (Kumari et al., 2016). Unfortunately, despite considerable advances in medical treatment, there are no satisfactory drugs to treat kidney stones (Atmani and Khan, 2000; Atmani et al., 2003; Butterweck and Khan, 2009; Fouada et al., 2006). In some cases, it is necessary to break the stone or resort to surgery to remove it. In addition to the high cost of the surgery, various side effects, such as urinary tract infections, are expected (Atmani et al., 2004a; Delfan et al., 2015). Because there is no suitable medical treatment for these disorders, it is imperative to search for new or lesser-known medicinal plants that could be a potential source for new bioactive compounds with a therapeutic value. Thus, in Morocco, as in many countries, most patients use medicinal plants as an alternative therapy for many diseases, including urolithiasis.

2. Ethnobotanical studies

In Morocco, several ethnobotanical surveys have been carried out to identify the medicinal plants used to treat urolithiasis. However, no systematic study has yet been conducted to introduce different herbs used to treat kidney stones in different regions of Morocco. This study aims to systematically introduce medicinal plants from different regions of Morocco that are reported to be effective against urolithiasis according to ethnobotanical documents. This was carried out by searching studies in Google, Google Scholar, PubMed, Medline, Science Direct, Researchgate, and other online databases.

The results obtained made it possible to identify 82 medicinal plants, used in Morocco to treat urolithiasis, the majority of which correspond to spontaneous plants. These are divided into 42 families. The most represented families are Apiaceae (10 species), species), Lamiaceae (7 Leguminosae (6 species), Poaceae (6 Compositae species), species), (4 Amaryllidaceae (3 species), Brassicaceae (3 species), Euphorbiaceae (3 species), Rosaceae (3 species), Anacardiaceae (2 Caryophyllaceae (2 species), species), Juncaceae (2 species) and Ranunculaceae (2 species). The other remaining families have only one species.

Analysis of the information collected shows that 17 medicinal plants are the most used in Morocco (Table 1). The species the Petroselinum crispum and Citrus limon were used in four different regions. Atriplex halimus, Apium graveolens, Opuntia ficusindica, Herniaria hirsuta, Euphorbia falcata, Crocus sativus, Glycvrrhiza glabra, Linum europaea, Cynodon usitatissimum, Olea dactylon, Hordeum vulgare, Zea mays, Ziziphus lotus, Urtica urens and Vitis vinifera were used in three different regions. The rest of the medicinal plants reported in Table 1, were only used in one or two regions.

Several parts of the listed plants are utilized. The results obtained show that seed and leaf are the most used parts by the population.

Several methods of preparation are used by the Moroccan population to treat urolithiasis. The data analysis showed that the decoction is the most used method of preparation, followed by the infusion and then by the powder.

Ethnobotanical surveys carried out with the aim of listing antilithiasic medicinal plants in different regions of Morocco underline the importance of this plant heritage in the traditional pharmacopoeia and in particular in the treatment of urolithiasis.

During an ethnobotanical survey in the province of Tan-Tan (southern Morocco), 50 plant species belonging to 29 families were recorded as remedies used by the local population to treat kidney stones. The most represented family is that of the Apiaceae. The results of the study showed that the leaf and the seed are the most used parts. The decoction is the most used method of preparation (Ghourri et al., 2013).

An ethnobotanical study of medicinal plants used in the treatment of genitourinary diseases was carried out between 2016 and 2018 in the Rif region (Northern Morocco). A total of 548 local traditional healers were interviewed. The survey identified 27 species of medicinal plants belonging to 18 botanical families. Medicinal plants are mostly used in the treatment of kidney stones (Chaachouay et al., 2020).

Another ethnobotanical study of medicinal plants traditionally used in the treatment of urolithiasis was conducted in 2013–2014 on the population of Rabat, Salé and Temara. This study showed 35 plant species used in the treatment of kidney stones. The most cited plant species are *Herniaria hirsuta*, *Petroselium crispum*, *Zizyphus lotus* and *Citrus limon* (Khouchlaa et al., 2017).

A study that we recently carried out in the province of Tarfaya identified 40 medicinal plants, divided into 27 families, used by the local population for the treatment of urolithiasis. Apiaceae, Lamiaceae, Leguminosae and Poaceae are the most represented families. As for the dominant species, there are essentially *Herniaria* hirsuta, Anastatica hierochuntica, Apium graveolens, Ziziphus lotus, Allium sativum and Ranunculus muricatus (Idm'hand et al., 2019).

Information on the use of these plants as reported by local people is given in Table 1.

3. Pharmacological studies

Several studies show that medicinal plants have a beneficial effect in case of urolithiasis. However, their mechanisms of action are not fully understood. Some of them help prevent the formation and especially recurrence of kidney stones, while others facilitate the excretion of wastes by the kidneys or inhibit the formation and aggregation of calcium oxalate crystals. (Aggarwal et al.; 2014, Atmani, 2003; Grases et al., 2009). In Morocco, 82 plants have been inventoried as antilithiasis, but only a few have been scientifically evaluated. Indeed, experimental work has been carried out in order to verify the antilithiasis activity of some of these plants, as well as the active compounds responsible for this activity. These are Atriplex halimus. Pistacia lentiscus. Ammi visnaga, Ammodaucus leucotrichus. Coriandrum sativum, Daucus carota, Foeniculum vulgare, Petroselinum crispum, dactylifera, Opuntia ficus-indica, Phoenix Herniaria hirsuta, Citrullus lanatus, Crocus sativus, Cicer arietinum, Trigonella foenumaraecum, Punica granatum, Cvnodon dactylon, Hordeum vulgare, Zea mays, Adiantum capillus-veneris, Nigella sativa and Malus pumila.

The antilithiasic activity of some plants has also been proven experimentally. This is the case of the species mentioned below:

Herniaria hirsuta has a prophylactic effect against the formation of calcium oxalatebased stones (the most frequent stones) (Atmani et al., 2003). *In vitro*, an extract of *Herniaria hirsuta* promoted the nucleation of calcium oxalate crystals, increasing their number but reducing their size (Atmani and **NS**CI

Khan, 2000). In vivo, administration of *Herniaria hirsuta* extract to rats reduced the deposition of calcium oxalate crystals in the kidneys (Atmani et al., 2004).

Cynodon dactylon extracts showed a beneficial effect on the prevention and elimination of calcium oxalate deposits in the rat kidney (Atmani et al., 2009, Rad et al., 2011). Administration of hydroacholic extract of *Cynodon dactylon* reduced the growth of urolithiasis in rats (Khajavi Rad et al., 2011). These results provide scientific substantiation for the roles of *Cynodon dactylon* in the prevention and treatment of kidney stones in humans.

Treatment of rats with aqueous and ethanolic extracts of *Nigella sativa* significantly reduced the number and size of calcium oxalate deposits in the kidneys. It also reduced the concentration of calcium oxalate in urine. This beneficial action can be attributed to the antioxidant and antiinflammatory activities of *Nigella sativa* extract (Hadjzadeh et al., 2011; Khoei et al., 2009).

Administration of *Hordeum vulgare* seed extract reduced the growth of kidney stones in rats. It seems that the treatment effect is more effective than preventive. The mechanism of action could be due to its diuretic effect, its antioxidant power, its nephroprotective property and its ability to decrease the concentration of kidney stone constituents (Shah et al., 2012).

In vivo experiments have shown that aqueous and n-butanol extracts of Phoenix dactylifera dose of 200 mg/kg at а possess antiurolithiatic activities (Reddy and Vardhaman, 2013). Therefore, it can be suggested that the aqueous extract or other products of Phoenix dactylifera can be used for the prevention and treatment of urolithiasis in humans; further studies are needed to clarify the mechanism.

Indeed, some plants that we have noted open up promising prospects in the search for new active ingredients, thus being able to provide new economically beneficial and socially important products by producing effective and low-cost drugs for the treatment of urolithiasis.

Indeed, additional research on the inventoried plants is necessary in order to better determine the active compounds responsible for their activities and to evaluate their effectiveness. After the positive effects of these plants are proven to be true, it is possible to produce useful drugs in the treatment and control of kidney stones.

Family	Scientific name	Local name	Used part	Preparation	RFC*	Previous ethnobotan ical studies	Previous pharmacolo gical studies
Amaranthaceae	Atriplex halimus L	Legtef	Leaf	Decoction	0.5	(Ghourri et al.; 2013; Idm'hand et al., 2019)	(Beghalia et al., 2009)
Amaryllidaceae	Allium ampeloprasum L.	Borro	Bulb	Decoction	0.25	(Khouchlaa et al., 2017)	-
	Allium cepa L.	Lbaesla	Bulb	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	-
	Allium sativum L.	Touma	Bulb	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	-
Anacardiaceae	<i>Pistacia atlantica</i> Desf.	Igg	Seed	Decoction	0.25	(Idm'hand et al., 2019)	-

Table 1. List of plants used in the treatment of urolithiasis in Morocco

	Pistacia lentiscus L.	Drou	Leaf	Infusion	0.25	(Chaachoua y et al.,	(Cheraft- Bahloul et al.,
Apiaceae	Ammi visnaga (L.)	Bûŝnîkha	Flowe	Decoction	0.25	2020) (Ghourri et	2017) (Khan et al.,
r · · · · ·	Lam		r			al., 2013)	2001)
	<i>Ammodaucus leucotrichus</i> Coss. & Dur	Kmoun reg	Seed	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	(Beghalia et al., 2009)
	Apium graveolens L.	Lkrafes	Seed	Decoction	0.75	(Ghourri et al., 2013; Idm'hand et al., 2019; Khouchlaa et al., 2017)	-
	Conium maculatum L.	Choukran	Leaf	Poultice	0.25	(Chaachoua y et al., 2020)	-
	Coriandrum sativum L.	Lqezbor	Leaf	Decoction	0.25	(Khouchlaa et al., 2017)	(Chandrasek aran and Veerasamy, 2018)
	Daucus carota L.	Khizzou	Seed	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	(Bawari et al., 2018)
	<i>Eryngium triquetru m</i> Vahl	Zreyga	Leafy stem	Decoction	0.25	(Ghourri et al., 2013)	-
	Foeniculum vulgare Mill.	Nafaa	Seed	Infusion	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	(Ibrahim and El-Khateeb, 2013)
	Petroselinum crispu m (Mill.) Fuss	Maadnous	Leafy stem	Decoction	1	(Chaachoua y et al., 2020; Ghourri et al., 2013, Idm'hand et al., 2019; Khouchlaa et al., 2017)	
	Pimpinella anisum L.	Habbat hlaoua	Seeds	-	0.25	(Chaachoua y et al., 2020)	-
Apocynaceae	Caralluma europaea (Guss.) N.E.Br.	Daghmous	Latex	Raw	0.5	(Chaachoua y et al., 2020; Khouchlaa et al., 2017)	-
Arecaceae	Phoenix dactylifera L.	Tmer	Fruit	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	(Reddy and Vardhaman, 2013)
Aristolochiaceae	Aristolochia baetica L.	Berztam	Leaf	Poultice	0.25	(Chaachoua y et al., 2020)	-
Boraginaceae	Borago officinalis L.	Lhamhem	Flowe r	Infusion	0.25	(Chaachoua y et al., 2020)	-
Brassicaceae	Anastatica hierochuntica L	Lkemcha	Leafy stem	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	-
	Lepidium sativum L	Hab rchad	Seed	Raw	0.5	(Ghourri et al., 2013;	-

						Idm'hand et	
						al., 2019)	
	Raphanus raphanistrum subsp. sativus (L.) Domin	Lefjel	Seed	Raw	0.25	(Khouchlaa et al., 2017)	-
Burseraceae	Commiphora africana (A.Rich.) Endl.	Oumm ennas	Gum	Powder	0.25	(Ghourri et al., 2013)	-
Cactaceae	Opuntia ficus- indica (L.) Mill.	Aknari	Flowe rs	Powder	0.75	(Ghourri et al., 2013; Idm'hand et al., 2019; Khouchlaa et al., 2017)	(Touiti et al., 2020)
Capparaceae	Capparis spinosa L.	Lkbbar	Fruit	Powder	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	-
Caryophyllaceae	Herniaria hirsuta L.	Harasst lhjar	Whol e plant	Decoction	0.75	(Ghourri et al., 2013; Idm'hand et al., 2019; Khouchlaa et al., 2017)	(Atmani et al., 2004a)
	<i>Spergularia rubra</i> (L.) J.Presl & C.Presl	Harasst lhjar	Whol e plant	Decoction	0.25	(Chaachoua y et al., 2020)	-
Cistaceae	Cistus populifolius L.	Irgel	Seed	Decoction	0.25	(Idm'hand et al., 2019)	-
Compositae	Artemisia herba- alba Asso	Chih	Seed	Decoction	0.25	(Khouchlaa et al., 2017)	-
	Asteriscus graveolen s (Forssk.) Less	Tafsa	Flowe rs	Decoction	0.5	(Ghourri et al., 2013; Idm'hand et al., 2019)	-
	Chamaemelum nobile (L.) All.	Babounj,	Stem	Decoction	0.25	(Khouchlaa et al., 2017)	-
	Taraxacum campylodes G.E.Haglund	Oudjem	Leaf	Infusion	0.25	(Khouchlaa et al., 2017)	-
Cucurbitaceae	<i>Citrullus lanatus</i> <i>(Thunb.)</i> Matsum. & Nakai	Dellah	Fruit	Raw	0.25	(Khouchlaa et al., 2017)	(Siddiqui et al., 2018)
Euphorbiaceae	Euphorbia falcata L	Hayyat noufous	Whol e plant	Decoction	0.75	(Ghourri et al., 2013; Idm'hand et al., 2019; Khouchlaa et al., 2017)	-
	Euphorbia granulata Forssk.	Kbidet eddobb	Root	Powder	0.25	(Ghourri et al., 2013)	-
	Mercurialis annua L.	Harrigua melsa	Leafy stem	Decoction	0.25	(Khouchlaa et al., 2017)	-
Iridaceae	Crocus sativus L.	Zaafran	Stigm at	Decoction	0.75	(Ghourri et al., 2013; Idm'hand et al., 2019; Khouchlaa et al., 2017)	(Amin et al., 2015)
Juncaceae	Juncus acutus L.	Smaar	Seed	Decoction	0.25	(Khouchlaa et al., 2017)	-
	<i>Juncus maritimus</i> Lam.	Smaar	Seed	Decoction	0.25	(Ghourri et al., 2013)	-

Idm'Hand

Lamiaceae	Lavandula	Lkhzama	Flowe	Infusion	0.25	(Chaachoua	-
	angustifolia Mill.		r			y et al., 2020)	
	Lavandula dentata L.	Lkhozama	Leafy	Decoction	0.25	(Ghourri et	-
	Laura dalla madelCida	lbeldiya	stem	Desertion	0.25	al., 2013)	
	Lavandula multifida L.	Khilt lkheyl	Leafy stem	Decoction	0.25	(Ghourri et al., 2013)	-
	Origanum	Azokenni	Leaf	Decoction	0.5	(Ghourri et	-
	<i>compactum</i> Benth.					al., 2013; Idm'hand et	
	Ocimum basilicum L.	Lahbak	A	Desertion	0.25	al., 2019)	-
	Ocimum Dasilicum L.	Landak	Aerial part	Decoction	0.25	(Idm'hand et al., 2019)	-
	Rosmarinus officinalis L	Lyazir	Leaf	Decoction	0.5	(Ghourri et al., 2013;	-
	ojjiemans E					Idm'hand et al., 2019)	
	Thymus broussonetii	Tazoukennit	Leaf	Decoction	0.5	(Ghourri et	-
	Boiss.					al., 2013; Idm'hand et	
Lauraceae	Cinnamomum verum	Lgerfa	Bark	Powder	0.5	al., 2019) (Ghourri et	-
Lutituccuc	J.Presl	Byerra	Durk	rowaer	10.0	al., 2013;	
						Idm'hand et al., 2019)	
Leguminosae	Cassia fistula L	Lkharoub	Fruit	Decoction	0.25	(Ghourri et	-
	Cicer arietinum L.	lhindi Lhemees	Fruit	Decoction	0.5	al., 2013) (Chaachoua	(Biglarkhani
						y et al.,	et al., 2019)
						2020; Khouchlaa	
						et al., 2017)	
	Glycyrrhiza glabra L.	Arq souss	Root	Decoction	0.75	(Ghourri et al., 2013;	-
						Idm'hand et	
						al., 2019; Khouchlaa	
						et al., 2017)	
	Medicago sativa L.	Lfessa	Seed	Decoction	0.5	(Ghourri et	-
						al., 2013; Idm'hand et	
						al., 2019)	
	Ononis natrix L.	Hannet reg	Leafy	Decoction	0.5	(Ghourri et	-
			stem			al., 2013; Idm'hand et	
						al., 2019)	
	Trigonella foenum- graecum L.	Lhelba	Seed	Maceration	0.25	(Khouchlaa et al., 2017)	(Laroubi et al., 2007)
Linaceae	Linum usitatissimum	Zariit lkettan	Seed	Decoction	0.75	(Ghourri et	-
	L.					al., 2013; Idm'hand et	
						al., 2019;	
						Khouchlaa	
Lythraceae	Punica granatum L.	Remman	Bark	Infusion	0.25	et al., 2017) (Khouchlaa	(Rathod et al.,
Molluginaceae	Corrigiola litoralis	Sarghina	Whol	Decoction	0.25	et al., 2017) (Chaachoua	2012)
0	<i>subsp. telephiifolia</i> (Pourr.) Briq.		e plant			y et al., 2020)	
Myristicaceae	Myristica fragrans	Lgouza	Fruit	Decoction	0.5	(Ghourri et	-
	Houtt					al., 2013; Idm'hand et	
						al., 2019)	

Mantha and a	Cuquaium anomatiqu	Lauranfal	Classa	Desertion	0.5	(Chaurri at	_
Myrtaceae	<i>Syzygium aromatiqu</i> eum (L.) Merr. &	Lqronfel	Clove s	Decoction	0.5	(Ghourri et al., 2013;	-
	L.M.Perry		5			Idm'hand et	
	1					al., 2019)	
Oleaceae	Olea europaea L	Zaytoune	Fruit	Raw	0.75	(Ghourri et	-
						al., 2013;	
						Idm'hand et	
						al., 2019; Khouchlaa	
						et al., 2017)	
Papaveraceae	Papaver rhoeas L.	Belaaman	Stem	Decoction	0.25	(Khouchlaa	-
, T					·	et al., 2017)	
Pedaliaceae	Sesamum indicum L.	Jenjlane	Seed	Infusion	0.25	(Chaachoua	-
						y et al.,	
D		NT'			0.75	2020)	
Poaceae	<i>Cynodon dactylon</i> L. Pers	Njem	Rhizo me	Decoction	0.75	(Ghourri et al., 2013;	(Rad et al., 2011)
	Pers		me			Idm'hand et	2011)
						al., 2019;	
						Khouchlaa	
						et al., 2017)	
	Festuca glauca Vill.	Agouzmir	Seed	Infusion	0.25	(Chaachoua	-
						y et al.,	
	Handarm milaana I	7	Cooda	Desertion	0.75	2020)	(Chab at al
	Hordeum vulgare L.	Zraa	Seeds	Decoction	0.75	(Ghourri et al., 2013;	(Shah et al., 2012)
						Idm'hand et	2012)
						al., 2019;	
						Khouchlaa	
						et al., 2017)	
	Saccharum	Kasab sokkar	Stem	Juice	0.25	(Khouchlaa	-
	officinarum L	Ssbet	Leaf	Decoction	0.25	et al., 2017) (Ghourri et	-
	Stipagrostis pungens (Desf.) De Winter	SSDet	Lear	Decoction	0.25	al., 2013)	-
	Zea mays L.	Dra	Stigm	Decoction	0.75	(Ghourri et	(Grases et al.,
			at			al., 2013;	1993)
						Idm'hand et	
						al., 2019;	
						Khouchlaa et al., 2017)	
Pteridaceae	Adiantum capillus-	Qzibra	Whol	Powder	0.25	(Ghourri et	(Ahmed et al.,
rterradeae	veneris L.	Quintu	e	rowaer	10.20	al., 2013)	2013)
			plant			. ,	,
Ranunculaceae	Nigella sativa L.	Sanouj	Seeds	Powder	0.5	(Ghourri et	(Khoei et al.,
						al., 2013;	2009)
						Idm'hand et	
	Ranunculus	Wden lhalouf	Root	Decoction	0.5	al., 2019) (Ghourri et	-
	muricatus L	waen maioui	Root	Decocuon	0.5	al., 2013;	-
	inter rotated 2					Idm'hand et	
						al., 2019)	
Rhamnaceae	Ziziphus lotus (L.)	Seder	Leaf	Powder	0.75	(Ghourri et	-
	Lam.					al., 2013;	
						Idm'hand et al., 2019,	
						al., 2019, Khouchlaa	
						et al., 2017)	
Rosaceae	Malus pumila Mill.	Teffah	Bark	Decoction	0.25	(Khouchlaa	(Sinha and
	Ľ					et al., 2017)	Tagore,
					_ _		2010)
	Prunus cerasus L.	Hab lmlouk	Fruit	Decoction	0.25	(Khouchlaa	-
	Drawing Jama (1)	I b av	Creat	In face of a s		et al., 2017)	
	Prunus domestica L.	Lberqouq	Gum	Infusion	0.25	(Ghourri et	-
			I			al., 2013)	

Rutaceae	Citrus limon (L.)	Lhamed	Fruit	Iuice	1	(Chaachoua	-
	Osbeck					y et al.,	
						2020;	
						Ghourri et	
						al., 2013;	
						Idm'hand et	
						al., 2019;	
						Khouchlaa	
						et al., 2017)	
Urticaceae	Urtica urens L.	Lhorriyga	Whol	Decoction	0.75	(Chaachoua	-
			e			y et al.,	
			plant			2020;	
						Ghourri et	
						al., 2013; Idm'hand et	
						al., 2019)	
Theaceae	Camellia sinensis (L.	Atay	Leaf	Decoction	0.5	(Ghourri et	-
Ineaceae) Kuntze	Ацау	Leai	Decoction	0.5	al., 2013;	-
	J Kulltze					Idm'hand et	
						al., 2019)	
Thymelaeaceae	Thymelaea	Metnan	Leaf	Decoction	0.25	(Khouchlaa	-
5	<i>lythroides</i> Barratte &				1	et al., 2017)	
	Murb.					. ,	
Vitaceae	Vitis vinifera L.	Zbib	Fruit	Decoction	0.75	(Ghourri et	-
						al., 2013;	
						Idm'hand et	
						al., 2019;	
						Khouchlaa	
						et al., 2017)	
Xanthorrhoeace	Aloe vera (L.) Burm.f.	Aloe vera	Gel	Juice	0.25	(Khouchlaa	-
ae						et al., 2017)	
Zingiberaceae	Zingiber officinale	Skenjbir	Root	Maceration	0.25	(Khouchlaa	-
	Roscoe					et al., 2017)	

*RFC : Relative Frequency of Citation

4. Conclusion

In conclusion, the review of the literature of medicinal plants of Morocco reported in various research documents showed that 82 species of plants are used against urolithiasis of which 17 of them are more used, therefore more important. Nevertheless, several plants have not been the subject of a scientific investigation in the laboratory to finally justify their biological activities against urolithiasis. Therefore, studies are needed to better promote the use of medicinal plants in Morocco.

This study constitutes a useful documentation, which can contribute to preserve the knowledge on the use of the medicinal plants and to valorize them in order to discover new natural active compound usable in pharmacology for the treatment of the urinary urolithiasis.

Acknowledgements

_

Author Contribution

Elhassan IDM'HAND wrote the paper.

Conflicts of Interest

No conflict of interest was reported by the author.

References

- 1. Aggarwal, A., Singla, S., and Tandon, C., 2014. Urolithiasis: Phytotherapy as an adjunct therapy. Indian Journal of Experimental Biology, 53, 103-111.
- 2. Ahmed, A., Wadud, A., Jahan, N., Bilal, A., and Hajera, S., 2013. Efficacy of *Adiantum capillus veneris* Linn in chemically induced urolithiasis in rats. Journal of ethnopharmacology, 146(1), 411-416.

- 3. Amin, B., Feriz, H.M., Hariri, A.T., Meybodi, N.T., and Hosseinzadeh, H., 2015. Protective effects of the aqueous extract of *Crocus sativus* against ethylene glycol induced nephrolithiasis in rats. EXCLI journal, 14, 411.
- 4. Atmani, F., 2003. Medical management of urolithiasis, what opportunity for phytotherapy. Front Biosci, 8(6), 507-514.
- 5. Atmani, F., Farell, G., and Lieske, J.C., 2004a. Extract from *Herniaria hirsuta* coats calcium oxalate monohydrate crystals and blocks their adhesion to renal epithelial cells. The Journal of urology, 172(4), 1510-1514.
- 6. Atmani, F., and Khan, S., 2000. Effects of an extract from *Herniaria hirsuta* on calcium oxalate crystallization in vitro. Bju International, 85(6), 621-625.
- Atmani, F., Sadki, C., Aziz, M., Mimouni, M., and Hacht, B., 2009. *Cynodon dactylon* extract as a preventive and curative agent in experimentally induced nephrolithiasis. Urological research, 37(2), 75-82.
- Atmani, F., Slimani, Y., Mimouni, M., Aziz, M., Hacht, B., and Ziyyat, A., 2004b. Effect of aqueous extract from *Herniaria hirsuta* L. on experimentally nephrolithiasic rats. Journal of ethnopharmacology, 95(1), 87-93.
- 9. Atmani, F., Slimani, Y., Mimouni, M., and Hacht, B., 2003. Prophylaxis of calcium oxalate stones by *Herniaria hirsuta* on experimentally induced nephrolithiasis in rats. BJU international, 92(1), 137-140.
- 10. Bawari, S., Sah, A.N., and Tewari, D., 2018. Antiurolithiatic Activity of *Daucus carota*: An in vitro Study. Pharmacognosy Journal, 10(5).
- 11. Beghalia, M., Ghalem, S., Allalia, H., Belouatek, A., and Marouf, A., 2009. Effects of *Atriplex halimus* and *Ajuga iva* L. Schreb on Calcium Oxalate Urolithiasis Risk in vitro. Asian Journal of Chemistry, 21(2), 1119.
- Biglarkhani, M., Amir Zargar, M.A., Hashem-Dabaghian, F., Amini Behbahani, F., and Meyari, A., 2019. *Cicer arietinum* in the treatment of small renal stones: a double-blind, randomized and placebo-controlled trial. Research Journal of Pharmacognosy, 6(1), 35-42.
- 13. Butterweck, V., and Khan, S.R., 2009. Herbal medicines in the management of urolithiasis: alternative or complementary? Planta medica, 75(10), 1095-1103.
- 14. Chaachouay, N., Benkhnigue, O., Khamar, H., and Zidane, L., 2020. Ethnobotanical study of medicinal and aromatic plants used in the treatment of genito-urinary diseases in the Moroccan Rif.
- 15. Chandrasekaran, S., and Veerasamy, V., 2018. Antiurolithiatic activity of whole plant aqueous and ethanolic extract of *Coriandrum sativum* L.-an in vitro approach. Malaya Journal of Biosciences (MJB), 5(1), 28-36.

- Cheraft-Bahloul, N., Husson, C., Ourtioualous, M., Sinaeve, S., Atmani, D., Stévigny, C., Nortier, J.L., and Antoine, M.-H., 2017. Protective Effects of *Pistacia lentiscus* L. fruit extract against calcium oxalate monohydrate induced proximal tubular injury. Journal of ethnopharmacology, 209, 248-254.
- Dayapule, S., Yamajala, S.P., Anand, A., Patankar, R., Krishna, B.M., and Chadalawada, N.R., 2021. Role of Osteoprotegerin as Novel Marker in Urinary Stone Formers: A Pilot Study. The journal of nephrourology monthly, 13(2), 1-5.
- Delfan, B., Baharvand-Ahmadi, B., Bahmani, M., Mohseni, N., Saki, K., Rafieian-Kopaei, M., Shahsavari, S., Naghdi, N., Taherikalani, M., and Ghafourian, S., 2015. An ethnobotanical study of medicinal plants used in treatment of kidney stones and kidney pain in Lorestan province, Iran. Journal of Chemical and Pharmaceutical Sciences, 8(4), 693-699.
- 19. Fouada, A., Yamina, S., Nait, M.A., Mohammed, B., and Abdlekrim, R., 2006. In vitro and in vivo antilithiasic effect of saponin rich fraction isolated from *Herniaria hirsuta*. J Bras Nefrol, 28(4), 199-203.
- Ghourri, M., Zidane, L., and Douira, A., 2013. Catalogue des plantes médicinales utilisées dans le traitement de la lithiase rénale dans la province de Tan-Tan (Maroc saharien). International Journal of Biological and Chemical Sciences, 7(4), 1688-1700.
- 21. Grases, F., March, J., Ramis, M., and Costa-Bauzá, A., 1993. The influence of *Zea mays* on urinary risk factors for kidney stones in rats. Phytotherapy research, 7(2), 146-149.
- 22. Grases, F., Prieto, R.M., Gomila, I., Sanchis, P., and Costa-Bauzá, A., 2009. Phytotherapy and renal stones: the role of antioxidants. A pilot study in Wistar rats. Urological research, 37(1), 35.
- 23. Hadjzadeh, M., Rad, A.K., Rajaei, Z., Tehranipour, M., and Monavar, N., 2011. The preventive effect of Nbutanol fraction of *Nigella sativa* on ethylene glycol-induced kidney calculi in rats. Pharmacognosy magazine, 7(28), 338-343.
- 24. Ibrahim, F.Y., and El-Khateeb, A., 2013. Effect of herbal beverages of *Foeniculum vulgare* and *Cymbopogon proximus* on inhibition of calcium oxalate renal crystals formation in rats. Annals of Agricultural Sciences, 58(2), 221-229.
- 25. Idm'hand, E., Msanda, F., and Cherifi, K., 2019. Étude ethnobotanique des plantes médicinales utilisées dans le traitement de la lithiase urinaire dans la province de Tarfaya (Maroc). International Journal of Innovation and Applied Studies, 26(3), 711-719.
- 26. Khajavi Rad, A., Hajzadeh, M.-A.-R., Rajaei, Z., Sadeghian, M.-H., Hashemi, N., and Keshavarzi, Z., 2011. Preventive effect of *Cynodon dactylon* against ethylene glycol-induced nephrolithiasis in male rats. Avicenna Journal of Phytomedicine, 1(1), 14-23.

- Khan, Z.A., Assiri, A.M., Al-Afghani, H.M., and Maghrabi, T.M., 2001. Inhibition of oxalate nephrolithiasis with *Ammi visnaga* (AI-Khillah). International urology and nephrology, 33(4), 605-608.
- Khoei, A., Hadjzadeh, Z., and Parizady, M., 2009. Ethanolic extract of *Nigella sativa* L seeds on ethylene glycol-induced kidney calculi in rats. Urology journal, 4(2), 86-90.
- 29. Khouchlaa, A., Tijane, M., Chebat, A., Hseini, S., and Kahouadji, A., 2017. Ethnopharmacology study of medicinal plants used in the treatment of urolithiasis (Morocco).
- 30. Kumari, P., Singh, T., and Singh, P., 2016. Medicinal plants of buxar district of bihar used in treatment of urinary tract and kidney stones. Indian Journal of Life Sciences, 5(2), 37-42.
- 31. Laroubi, A., Touhami, M., Farouk, L., Zrara, I., Aboufatima, R., Benharref, A., and Chait, A., 2007. Prophylaxis effect of *Trigonella foenum* graecum L. seeds on renal stone formation in rats. Phytotherapy Research, 21(10), 921-925.
- Rad, A.K., Rajaei, Z., Mohammadian, N., Valiollahi, S., and Sonei, M., 2011. The beneficial effect of *Cynodon dactylon* fractions on ethylene glycolinduced kidney calculi in rats. Urology journal, 8(3), 179-184.
- Rathod, N., Biswas, D., Chitme, H., Ratna, S., Muchandi, I., and Chandra, R., 2012. Antiurolithiatic effects of *Punica granatum* in male rats. Journal of ethnopharmacology, 140(2), 234-238.
- 34. Reddy, C.S., and Vardhaman, P., 2013. Evaluation of *Phoenix dactylifera* fruits for Antiurolithiatic activity. Hygeia. JD Med, 5(1), 135-140.
- 35. Reddy, C.S., and Vardhaman, P., 2013. Evaluation of *Phoenix dactylifera* fruits for Antiurolithiatic activity. Hygeia. JD Med, 5(1), 135-140.2013.
- Shah, J.G., Patel, B.G., Patel, S.B., and Patel, R.K., 2012. Antiurolithiatic and antioxidant activity of *Hordeum vulgare* seeds on ethylene glycol-induced urolithiasis in rats. Indian journal of pharmacology, 44(6), 672.
- Siddiqui, W.A., Shahzad, M., Shabbir, A., and Ahmad, A., 2018. Evaluation of anti-urolithiatic and diuretic activities of watermelon (*Citrullus lanatus*) using in vivo and in vitro experiments. Biomedicine & Pharmacotherapy, 97, 1212-1221.
- Sinha, M.R., and Tagore, R., 2010. Effect of acidhydrolyzation of fruits juice of apple (*Malus domestica*), Moushmi (*Citrus medica*) and Amla (*Emblica officinalis*) on solubility of urinary stones. Asian Journal of Chemistry, 22(6), 4840-4846.
- Touiti, N., Bousta, D., Boukhira, S., Chebaibi, M., and Achour, S., 2020. Phytochemical screening, acute and sub-acute toxicity of aqueous extract from a mixture of some recipe of *Herniaria glabra L., Opuntia ficus-indica, Zea mays L. and Zizyphus lotus* L. used traditionally against renal lithiases. Pharmacognosy Research, 12(1), 60.