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 As a primary element of urban ecosystem, street trees are very essential for environmental 
quality and aesthetic beauty of urban landscape. Street trees play a crucial role in everyday life 
of city inhabitants and therefore, comprehensive and accurate inventory information for street 
trees is required. In this research, an automatic method is proposed to detect single street 
trees from airborne Light Detection and Ranging (LiDAR) point cloud instead of traditional 
field work or photo interpretation. Firstly, raw LiDAR point cloud data have been classified to 
obtain high vegetation class with a hierarchical rule-based classification method. Then, the 
LiDAR points in high vegetation class were segmented with mean shift and Density Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithms to acquire single urban 
street trees in the Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey. The 
accuracy assessment of the acquired street trees was also conducted using completeness and 
correctness analyses. The acquired results from urban study area approved the success of the 
proposed point-based approach for automatic detection of single street trees using LiDAR 
point cloud.   
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1. Introduction  
 

The trees on the streets are important component 
of urban vegetation as creating shades, decorating 
roads, alleviating urban environmental pollution, 
reducing street noise, decreasing CO2 emissions and 
building energy consumption, moderating heat 
accumulation in urban street canyons [1-4]. However, 
growth conditions of street trees can be very harsh as 
they have little space on the roadsides, and they can be 
affected by spread of diseases besides many natural and 
abiotic factors in single-species plantations [2, 5]. Also, 
street trees should be carefully positioned not to block 
utility lines below or above the ground and street 
luminaries [6]. Therefore, detection of the single street 
trees in urban areas is necessary for local governments 
to plan urban horticulture, manage and maintenance 
land use and land covers. 

The inventory studies of urban street trees have 
been usually carried out by field investigation or manual 
visual interpretation of aerial images [4, 6]. The recent 
advent of the LiDAR systems provides rapid and cost-
effective three-dimensional (3D) data acquisition of 
street trees [1]. Several segmentation approaches have 
been recommended to detect single trees using airborne 
laser scanning data [3, 7]. The initial techniques for 
identification of individual trees from LiDAR point cloud 
have been based on the methods which were developed 
to process optical imagery [8-10]. Region growing and 
watershed segmentation are the most popular and often 
used raster-based segmentation methods for airborne 
LiDAR data to obtain single street trees [2, 11-12]. 
Solberg et al. [13] employed a region-growing algorithm 
for single tree segmentation and their approach 
produced results equally good with other studies. Kwak 
et al. [14] used the watershed segmentation for 
delineation of individual trees and they concluded that 
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LiDAR data can be successfully utilized for detecting 
single trees and estimating their heights. The template-
matching [15], wavelet analysis [16], multi-stage 
filtering [17] and fitting functions [18] are one of the 
other methods for segmentation of the individual tree 
crowns. The loss of information owing to the 
interpolation of initial 3D point cloud to the grid 
structure is the major drawback of these segmentation 
methods [10, 19].  

In this paper, we aimed to detect single street trees 
in the urban study area using raw LiDAR data with the 
suggested 2D point-based segmentation methods. An 
automatic hierarchical rule-based classification 
approach was firstly proposed to acquire high 
vegetation class. The mean shift and DBSCAN clustering 
methods had been utilized for automatic point-based 
segmentation of the high vegetation points to obtain 
single street trees in the Davutpasa Campus of Yildiz 
Technical University, Istanbul, Turkey as study area. 
The accuracy assessment of the acquired single street 
trees was also conducted using completeness and 
correctness analyses. 

The study consists of five main sections. Study area 
and dataset is given in section 2. Section 3 contains the 
methods, including high vegetation classification, point-
based segmentation, accuracy assessment subsections. 
The results and discussion section (section 4) presents 
the analysis and an experimental evaluation of 2D point-
based urban street tree segmentation process. The 
study concludes with Section 5. 
 

2. Study area and dataset 
 

The Davutpasa Campus of Yildiz Technical 
University, which is located in Istanbul, Turkey was 
selected as the urban study area for this research (Fig. 
1). There are different types of buildings, a wide variety 
of plant species and trees, driveways, walking paths, 
parking lots, recreation areas, as well as many street 
trees in the urban study area. Two different test areas, 
test area A and B, were used to automatic detection of 
single street trees from airborne raw LiDAR point cloud 
in the urban study area (Fig. 2 and Fig. 3). 

The LiDAR data with the density of 16 points/m2 
was collected by Metropolitan Municipality of Istanbul 
in September, 2013 in the study area with “Riegl LSM-
Q680i” laser scanner mounted on “Eurocopter AS350”. 
The flying height and speed of the helicopter were 
approximately 600 m and 148 km/h, respectively 
during the data acquisition with integrated “IGI 
DigiCam” camera, “IGI Aerocontrol” georeference 
system, and the LiDAR system. The ground truth data 
has been obtained by field investigation for accuracy 
assessment process of the proposed point segmentation 
methods. 
 

 
Figure 1. The Davutpasa Campus of Yildiz Technical 
University (yellow line) (Google Earth, 2013) 

 
 
 

   
(a) (b) (c) 

Figure 2. Test area A: City map image (2013) (a), street trees (b), and the raw LiDAR point clouds colored by intensity 
(c) 
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(a) (b) (c) 

Figure 3. Test area B: City map image (2013) (a), street trees (b), and the raw LiDAR point clouds colored by intensity 
(c) 
 
 
3. Methods  
 

In the present study, the point-based workflow to 
detect single street trees can be split in two parts as 
classification and segmentation. The flowchart of the 
proposed approach can be seen in Fig. 4. 
 

 
Figure 4. Flowchart of the proposed method for 
automatic detection of single street trees 
 
3.1. Point-based classification of high vegetation 
 

The point-based classification approaches of LiDAR 
points aim to determine an object class for every single 
laser point [20-21]. Different point-based classification 
methods including machine learning-based and rule-
based classifications are available for the classification 
of LiDAR dataset. The 3D LiDAR point clouds are 
classified with the point-based classification methods 
using different classification features such as height 
features, eigenvalues, surface-based features, local plane 
features, multiple returns features, echo amplitude, 
echo width, etc. which are calculated for all individual 
LiDAR points [22-25]. 

In this paper, classification of LiDAR data of the test 
areas (test area A and B) was executed with proposed 
an automatic hierarchical rule-based classification 
method. The hierarchical rule set was constituted using 
the selected geometric features for point-based 
classification and after parameter analyses, the ground, 
low, medium and high vegetation, building, low point, 
air point, and default classes were acquired with the 

determined parameters (Table 1). The all-high 
vegetation points acquired as a result of the point-based 
classification were separated from the points of other 
terrain classes. The classification process of LiDAR point 
cloud has been achieved using TerraScan module of 
Terrasolid. The details of the used point-based 
classification method to acquire high vegetation class 
can be found in Yastikli and Cetin [12]. 
 
Table 1. The hierarchical rule set and obtained classes 
Point-based classification 

Rules Classes 

By class Default 

Low points Low point 

Ground Ground 

Below surface Low point 

Air points Air point 

By height from ground 1 Low vegetation 

By height from ground 2 Medium vegetation 

By height from ground 3 High vegetation 

Building Building 

 
 

 

3.2. Point-based segmentation of single trees  
 

All individual laser points are grouped into subsets 
according to their similar characteristics with the point-
based segmentation methods. Point-based methods 
mainly segment the data using geometric features [26]. 
The commonly adopted three important strategies for 
point-based segmentation of LiDAR data are geometric 
fitting, region growing, and clustering [26-27]. The high 
vegetation points, obtained from the automatic point-
based classification of LiDAR data, were segmented 
using popular mean shift and DBSCAN clustering 
algorithms after detailed parameter analysis for best 
segmentation results in this research. 2D tree 
segmentation process for the detection of single street 
trees was carried out using Python programming 
language (Python 3.6.4) in Jupyter Notebook. 
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3.2.1. Mean shift clustering  
 

Mean shift [28] is a nonparametric, recursive, and 
kernel-based clustering approach which shifts each data 
to local maximum of density function [29]. Mean shift 
does not require a pre-determined number of clusters 
and nor restrict the shape of clusters [30]. Mean shift is 
a center-based algorithm, and firstly, the algorithm 
chooses a random point from the data set as cluster 
center. Typically, it examines the center of mass of its 
local neighborhood and then shifts the point in the 
general direction of that center of mass [31]. 

In the mean shift clustering algorithm, the 
bandwidth of a kernel function is the most significant 
parameter [32]. Bandwidth, which determines the size 
of the region to be searched, can be adjusted manually 
or estimated using the bandwidth function. A specific 
bandwidth selection considerably decreases the bias 
while the variance value remains theoretically 
unchanged [32]. 
 
3.2.2. DBSCAN clustering  
 

Density Based Spatial Clustering of Applications with 
Noise (DBSCAN) [33] is based on the concept of dense 
regions and performs well in determining arbitrarily-
shaped clusters [34]. The three important elements for 
DBSCAN algorithms are the seeds members of the 
group, borders of the group, and noise which does not 
have any effect in the group [35-36]. The main idea of 
the DBSCAN is based on the requirement of a certain 
number of neighbor points at a certain radius for each 
core point [37]. The algorithm starts with an arbitrary 
core point, and controls if the neighboring points create 
a dense region [38]. A cluster is started if there are 
enough points in the neighborhood of the core point; 
otherwise, the point is labeled as noise [37]. The 
iterative process ends when no new points are added to 
any cluster [39]. DBSCAN algorithm requires two input 
parameters; the radius (the maximum distance of one 
core point to its neighbors) and minimum samples 
(density threshold of points in a neighborhood for a 
point to be regarded as a core point) [34, 40]. 
 
3.3. Accuracy assessment 
 

Accuracy assessment is a necessary process to 
determine the performance of the segmentation 
methods. In this study, accuracy assessment process for 
the proposed segmentation methods was carried out 
according to completeness (Eq. (1)) and correctness 
(Eq. (2)) analyses [41-43]. 
 

Completeness = (TP)⁄(TP+FN) (1) 
  

Correctness = (TP)⁄(TP+FP) (2) 
 

TP, FP, and FN define perfect segmentation, over-
segmentation, and under-segmentation, respectively 
[44].  TP refers to the true positive entities segmented 
correctly, FP is the false positive entities that were 
obtained in the segmentation but do not correspond to 
an entity in the ground truth data, and FN refers to the 

negative entities available in the ground truth data 
which were not acquired in the segmentation [45]. 
 

4. Results and Discussion 
 

The automatic 3D point-based classification results 
of LiDAR point cloud in the test areas (test area A and 
test area B) using geometric features were given in Fig. 
5, and only high vegetation points separated from the 
other terrain classes were shown in Fig. 6. According to 
the point-based classification results (see Fig. 5 and Fig. 
6), it can be realized that the points of high vegetation 
class is obtained precisely for the tree crown 
segmentation of single street trees in the study area. 

The 2D single tree segmentation results in test area 
A and B with mean shift clustering and DBSCAN 
clustering are given in Fig. 7 and Fig. 8, respectively, 
including the raw LiDAR point clouds, the segmented 
street trees, and the segmented street trees overlaid on 
the grey coded Digital Surface Model (DSM). When the 
segmentation results are analyzed, it is seen that the 
single street trees were successfully determined with 
the point-based segmentation using both mean shift and 
DBSCAN clustering algorithms. The segmentation 
results performed by mean shift and DBSCAN are close 
to each other in test area A and exactly the same in the 
test area B. 

In Fig. 9, the reference urban single street trees, TP, 
FP, FN acquired with mean shift and DBSCAN clustering 
algorithms are given as a result of accuracy assessment 
of detected trees in the test area A. In the test area A, 17 
clusters were determined as single street trees correctly 
(TP) using both mean shift and DBSCAN clustering 
algorithms. While there is no incorrectly clustered mean 
shift and DBSCAN clustering were obtained as 100% in 
the test area B (Table 2). The completeness and 
correctness results for both two segmentation methods 
are very satisfying as expected because of the accurate 
point-based classification of high vegetation class, and 
detailed parameter analyses for point-based 
segmentations. Mean shift clustering method single 
street tree with mean shift clustering, only 1 cluster 
were determined as single street tree wrongly (FP) with 
DBSCAN clustering. The points of 2 street trees couldn’t 
also be segmented as tree clusters (FN) using both mean 
shift and DBSCAN clustering. The results of the 
segmentation were 89.47% completeness and 100% 
correctness for mean shift clustering method, and 
89.47% completeness and 94.44% correctness for 
DBSCAN clustering method (Table 2) in the test area A. 
In Fig. 10, reference urban single street trees, TP trees 
acquired with mean shift and DBSCAN clustering 
algorithms are given as a result of accuracy assessment 
of detected trees in the test area B. In the test area B, all 
31 clusters were also detected as single street trees 
correctly (TP) using both mean shift and DBSCAN 
clustering algorithms. Since there were no single street 
trees identified wrongly (FP), and there were any single 
street trees couldn’t be segmented (FN) in the test area 
B, the completeness and correctness values for both 
mean shift and DBSCAN clustering were obtained as 
100% in the test area B (Table 2). The completeness and 
correctness results for both two segmentation methods 
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are very satisfying as expected because of the accurate 
point-based classification of high vegetation class, and 
detailed parameter analyses for point-based 
segmentations. Mean shift clustering method 
outperformed slightly to DBSCAN clustering according 
to the correctness value only in the test area A. 

 

Table 2. Completeness and correctness values 

 

 
 

  

  
(a) (b) 

Figure 5. The automatic point-based classification results of test area A (a) and test area B (b) 
 
 
 

  
(a) (b) 

Figure 6. The high vegetation points in test area A (a) and in test area B (b) 
 
 
 
 
 
 
 

 Mean shift clustering DBSCAN clustering 

 Complet. Correct. Complet. Correct. 

Test area A 89.47% 100% 89.47% 94.44% 

Test area B 100% 100% 100% 100% 
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(b) (c) 

  
(a) (d) (e) 

Figure 7. The test area A: raw LiDAR clouds colored by height (a), the segmented street trees using mean shift 
clustering (b) and the segmented street trees (red circles) overlaid on the grey coded DSM (c), the segmented street 
trees using DBSCAN clustering (d) and the segmented street trees (red circles) overlaid on the grey coded DSM (e) 
 

 

  
(b) (c) 

  
(a) (d) (e) 

Figure 8. The test area B: raw LiDAR clouds colored by height (a), the segmented street trees using mean shift 
clustering (b) and the segmented street trees (red circles) overlaid on the grey coded DSM (c), the segmented street 
trees using DBSCAN clustering (d) and the segmented street trees (red circles) overlaid on the grey coded DSM (e)  
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(a) (b) (c) 

Figure 9. The test area A: the reference trees (a), TP, FP, FN trees acquired with mean shift clustering (b), and TP, FP, 
FN trees acquired with DBSCAN clustering (c)  
 

   

   
(a) (b) (c) 

Figure 10. The test area B: the reference trees (a), TP trees acquired with mean shift clustering (b), and TP trees 
acquired with DBSCAN clustering (c)  
 
5. Conclusion  
 

In this study, an automatic point-based 
segmentation approach is proposed to detect single 
street trees using raw airborne LiDAR point cloud. The 
LiDAR data were classified with hierarchical rule-based 
classification method, and acquired high vegetation 
class’ points were segmented with mean shift and 
DBSCAN algorithms to detect single street trees 
automatically in the test area A and test area B which 
were located in Davutpasa Campus of Yildiz Technical 
University, Istanbul, Turkey. The accuracy assessment 
had been performed with respect to the detection rate 
of the single street trees in the test areas. The results of 
completeness and correctness were acquired 89.47% 
and 100%, respectively for mean shift clustering 
algorithm and 89.47% and 94.44%, respectively for 
DBSCAN clustering algorithm in the test area A. In the 
test area B, all completeness and correctness results are 
obtained 100% for both mean shift and DBSCAN 
clustering algorithms. Obtained results verified the 
success of proposed methods for automatic detection of 
single street trees using airborne raw LiDAR data 
without any information loss. The automatic 
segmentation results are quite satisfactory for both 

mean shift and DBSCAN clustering algorithms. The 
proposed approach for automatic detection of single 
street trees using airborne LiDAR data can be used 
effectively by local governments and city planners to 
plan urban horticulture, manage and maintenance land 
use and land covers studies. 
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