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Abstract 

Optimal Reactive Power Dispatch (ORPD) is a significant research area in terms of maintaining the reliability and safety of the 

power system and operating it more economically. ORPD problem can be formed from a variety of perspectives including the 

minimization of the active power losses and voltage deviation, and improving the voltage stability performance. The majority of 

methods so as to deal with ORPD problem is meta-heuristic techniques because of the complex, non-linear and non-convex nature of 

the problem. In this paper, a new physic-based meta-heuristic algorithm, Equilibrium Optimizer (EO), is proposed for ORPD 

problem to reach the optimal settings of control variables such as voltage magnitudes in PV buses, tap positions of transformers and 

reactive power support of shunt devices. The introduced algorithm is evaluated on IEEE 30-bus test system by using various 

objectives, and a comparison of the implemented method to other optimization techniques described in the literature is utilized to 

assess its efficacy. Simulation results and statistical indicators demonstrate that the EO algorithm validates its computational efficacy 

and robustness in handling the ORPD problem. 

Keywords: Equilibrium optimizer, meta-heuristics, optimal reactive power dispatch, optimization algorithms. 

Optimal Reaktif Güç Dağıtımı için Equilibrium Optimizasyon Algoritması 

Öz 

Optimal Reaktif Güç Dağıtımı (ORPD), şebekenin güvenilirliğini ve güvenliğini sağlamak ve güç sistemini daha ekonomik bir 

şekilde işletmek açısından önemli bir araştırma alanıdır. ORPD problemi, aktif güç kayıplarının ve gerilim sapmasının en aza 

indirilmesi ve gerilim kararlılık performansının iyileştirilmesi dahil olmak üzere çeşitli açılardan oluşturulabilir. ORPD problemiyle 

başa çıkmak için kullanılan yöntemlerin çoğu, problemin karmaşık, doğrusal olmayan ve dışbükey olmayan doğası nedeniyle meta-

sezgisel tekniklerdir. Bu çalışmada, ORPD probleminin PV baralardaki gerilim büyüklükleri, transformatörlerin kademe pozisyonları 

ve şönt ekiomanların reaktif güç desteği gibi kontrol değişkenlerinin optimal ayarlarına ulaşması için fizik-tabanlı yeni bir meta-

sezgisel algoritma olan Equilibrium Optimizer (EO) önerilmiştir. Tanıtılan algoritma, çeşitli hedefler kullanılarak IEEE 30-baralı test 

sistemi üzerinde değerlendirilmiştir ve etkinliğini tespit edebilmek için uygulanan yöntemin literatürde açıklanan diğer optimizasyon 

teknikleri ile karşılaştırılması yapılmıştır. Simülasyon sonuçları ve istatistiksel göstergeler, EO algoritmasının ORPD problemini 

çözme açısından etkinliğini ve sağlamlığını doğrulamaktadır. 

Anahtar Kelimeler: Equilibrium optimizasyon algoritması, meta-sezgisel, optimal reaktif güç dağıtımı, optimizasyon algoritmaları. 

1. Introduction 

The Optimal Reactive Power Dispatch (ORPD) can 

be seen as a subproblem of Optimal Power Flow (OPF) 

(Biswas et al., 2019; Elsayed & Elattar, 2021). 

Although the reactive power only circulates in the 

power system, it is indispensable for voltage stability 

and power transfer (Saddique et al., 2020). Reactive 

power control and management are required in the 

power system to keep voltages on all busbars within 

acceptable limits and reduce the active power losses. 

Reactive power flow should not be disregarded since 

it's used by inductive loads and some types of 

equipment in the power system. Hence, reactive power 

generation in a power system should be adequate to 

satisfy the related components without causing 

additional power loss and undesired voltage drop. 

The objective of ORPD can be minimizing the 

active power loss based on the premise that reactive 
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power flow increases the active power losses and 

voltage deviations of load buses in the network, and 

enhancing the voltage stability. Control variables such 

as generator bus voltages, transformer tap positions and 

reactive power support of the shunt compensators or 

reactors are modified in order to achieve the desired 

objective. (Li et al., 2013) has concentrated to 

minimize the active power losses while (Gangotri & 

Bhimwal, 2010) and (Robbins & Domínguez-García, 

2016) have focused on improving the system security 

through the voltage stability index and voltage 

deviation equations, respectively. (Nguyen & Vo, 

2020) has tackled the ORPD problem in different 

perspectives such as the minimization of active power 

loss, voltage deviation and voltage stability index. It is 

worth mentioning that constraints related to the power 

system such as power balance, the reactive power 

capability of generators and shunt compensators or 

reactors, limits of bus voltages and transmission lines 

should be maintained during the optimization process. 

The ORPD is modeled as a nonlinear programming 

problem, and some conventional techniques such as 

Interior Point Method (Granville, 1994) and Quadratic 

Programming (Grudinin, 1998) have been utilized so as 

to solve this challenging problem. However, the 

majority of ORPD approaches are meta-heuristics due 

to the non-linear character of the problem(Saddique et 

al., 2020). There are many investigations implemented 

to solve the ORPD problem by using meta-heuristic 

algorithms such as Gravitational Search Algorithm 

(Duman et al., 2012), Grey Wolf Optimizer (Sulaiman 

et al., 2015), Particle Swarm Optimization (Singh et al., 

2015), Coyote Optimization Algorithm (Güvenç et al., 

2020), Barnacles Mating Optimizer (Sulaiman et al., 

2020) and some hybrid techniques (Nasouri Gilvaei et 

al., 2020; Shaheen et al., 2021). The reason of this 

valuable attention has been given to the meta-heuristics 

is that they have capable of effectively solving a 

variety of large-scale complex problems. However, 

they could diverge to local optima and do not guarantee 

to figure out the best solution. Another drawback of the 

meta-heuristics is the long solution time at 

computationally expensive problems. Therefore, 

researchers maintain to investigate the most suitable 

meta-heuristic algorithm in terms of solving capability 

and robustness to deal with the ORPD problem. 

This paper focuses on determining the appropriate 

control parameters for reducing the active power losses 

of the IEEE 30-bus test system and explains how to 

implement the novel Equilibrium Optimization strategy 

in order to improve voltage profiles. Comparative 

analyses have been conducted with well-known meta-

heuristic techniques in the Literature in order to 

demonstrate the effectiveness of the proposed EO 

algorithm in solving the ORPD problem. 

The rest of the paper is organized as follows. First 

of all, the objection functions and constraints to be 

used in ORPD are explained in Section 2. In Section 3, 

the proposed Equilibrium Optimizer algorithm is 

introduced to deal with the ORPD problem. Section 4 

presents the results and statistical indicators for case 

studies. Finally, the conclusion is reported in Section 5. 

2. Problem Formulation 

The ORPD problem purposes to minimize the 

investigated objective function while meeting 

operational equality and inequality constraints, 

obtaining the best solution for independent control 

variables. The ORPD shows a non-linear and non-

convex behaviour, and it’s an NP-hard problem, which 

means it’s tough to solve using mathematical methods. 

The general frame of the ORPD (Biswas et al., 2019), 

including equality and inequality constraints, can be 

written as follow: 

 

Minimize: 𝑓(𝑥, 𝑢)  (1) 

Subject to: 𝑔(𝑥, 𝑢) ≤ 0 and ℎ(𝑥, 𝑢) = 0 (2) 

 

where 𝑥 and 𝑢 represent control and state variables 

of the problem respectively.  𝑓 symbolizes the 

objective function, 𝑔 and ℎ stand for inequality and 

equality constraints.  

Independent control variables of the ORPD 

problem consist of voltage magnitude of the PV bus, 

tap position of transformers and reactive power 

injected into the network by the shunt devices, which 

all of them creates the search space of the problem. 

Although transformers and shunt devices tap positions 

need integer variables, they are considered as decimal 

in this study in order to achieve the optimal point more 

effectively. The set of independent control and 

dependent state variables can be created as follows: 

 

𝑥𝑇 = [𝑉𝑔1, . . , 𝑉𝑔𝑁𝑔
, 𝑇1, . . , 𝑇𝑁𝑡

, 𝑄𝑐1, . . , 𝑄𝑐𝑁𝑐
]  (3) 

𝑢𝑇 = [𝑄𝑔1, . . , 𝑄𝑔𝑁𝑔
, 𝑉𝑙1, . . , 𝑉𝑙𝑁𝑙

, 𝑆1, . . , 𝑆𝑁𝑇𝑙
]  (4) 

 

2.1. ORPD Functions 

The objective function of the ORPD can be 

modelled with three different perspectives, which are 

the minimization of the active power losses, voltage 

deviations and voltage stability index. Furthermore, 

these objectives can be handled together by using the 

multi-objective optimization concept.  

2.1.1. Active Power Loss 

The ORPD problem's initial objective is to reduce 

the total active power loss in the network, which may 

be expressed as (Nasouri Gilvaei et al., 2020): 

 

Minimize: 𝑓1 = 𝑃𝑙𝑜𝑠𝑠(𝑥, 𝑢) →   (5) 

∑ ∑ 𝐺𝑖𝑗[(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)]

𝑁𝐵

𝑗=1

,

𝑁𝐵

𝑖=1

𝑖 ≠ 𝑗  
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where 𝑁𝐵 represents the number of buses, 𝑉𝑖 and 𝑉𝑗 

are the voltage magnitude of the bus i and j 

respectively, 𝛿𝑖𝑗 and 𝐺𝑖𝑗 symbolize the difference of 

voltage angles and the conductance of the transmission 

line between bus i and j respectively. 

2.1.2. Total Voltage Deviation 

The second target to be optimized in ORPD 

problem can be the minimization of the total voltage 

deviation like given in (Abaza et al., 2021): 

 

Minimize: 𝑓2 = 𝑇𝑉𝐷(𝑥, 𝑢) →   (6) 

                         = ∑|𝑉𝑖 − 𝑉𝑟𝑒𝑓|

𝑁𝑙

𝑖=1

  

 

where 𝑁𝑙 symbolizes the number of PQ or load 

buses, 𝑉𝑖 is the voltage magnitude of the ith PQ bus and 

𝑉𝑟𝑒𝑓  represents the reference voltage magnitude 

considered as 1.0 pu.  

2.1.3. Voltage Stability Index 

Another option that can be utilized in the ORPD 

problem as an objective is the improvement voltage 

stability of the power system. The capacity of a power 

system to keep the voltage within its limit at each bus 

in the network under normal operating circumstances is 

referred to as voltage stability. When a system is 

subjected to a disturbance, such as a surge in load 

demand or a change in the system configuration, it 

might experience voltage instability, which can result 

in a gradual and unpredictable drop in voltage. As a 

result, improving a system's voltage stability is a 

crucial aspect of power system management and 

planning (Ettappan et al., 2020). 

The improvement of the voltage stability can be 

accomplished by minimizing the voltage stability 

criteria known as the L-index, a scalar value having a 

range of [0,1], at each PQ bus (Nasouri Gilvaei et al., 

2020). A maximum value of the L-index results near 0 

indicates that the system is almost stable, while a value 

close to 1 indicates that the system is on the verge of 

reaching voltage collapse (Rajan & Malakar, 2016). 

The L-index of the jth PQ bus can be calculated as 

follows (Kessel & Glavitsch, 1986): 

 

Minimize: 𝑓3 = 𝑉𝑆𝐼(𝑥, 𝑢) = 𝐿𝑚𝑎𝑥 →   (7) 

                         = 𝐿𝑚𝑎𝑥 = max(𝐿𝑗) , ∀𝑗 ∈ 𝑁𝑙 (8) 

𝐿𝑗 = |1 − ∑ 𝐹𝑖𝑗
𝑉𝑖

𝑉𝑗

𝑁𝑔

𝑖=1
| , ∀𝑗 ∈ 𝑁𝑙  (9) 

𝐹𝑖𝑗 = −[𝑌1]−1[𝑌2]  (10) 

[
𝐼𝑃𝑄

𝐼𝑃𝑉
] = [

𝑌1 𝑌2

𝑌3 𝑌4
] [

𝑉𝑃𝑄

𝑉𝑃𝑉
]  (11) 

2.2. Equality Constraints 

Equality constraints in ORPD are commonly 

represented by power balance equations for both active 

and reactive power, which ensure that the load demand 

is satisfied by taking into account the power losses, and 

are depicted as follows: 

 

𝑃𝑔𝑖 −  𝑃𝑙𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|
𝑁𝐵
𝑗=1 (𝐺𝑖𝑗 cos 𝛿𝑖𝑗 +

𝐵𝑖𝑗 sin 𝛿𝑖𝑗), ∀𝑖 ∈ 𝑁𝐵  
(12) 

𝑄𝑔𝑖 − 𝑄𝑙𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|
𝑁𝐵
𝑗=1 (𝐺𝑖𝑗 cos 𝜃𝑖𝑗 −

𝐵𝑖𝑗 sin 𝜃𝑖𝑗), ∀𝑖 ∈ 𝑁𝐵  
(13) 

 

where 𝑁𝐵 symbolizes the total number of buses in 

the power system, 𝑃𝑔𝑖 , 𝑃𝑙𝑖, 𝑄𝑔𝑖 , 𝑄𝑙𝑖  and 𝐵𝑖𝑗 represent 

active and reactive power generation and demand in 

bus i and line susceptance between ith and jth buses, 

respectively. Except for the slack bus, whose output is 

a dependent variable since it is affected by power 

losses, all active power generation of PV buses is fixed. 

The 𝑄𝑖  is also a state variable because the reactive 

power injected varies when the control variables are 

changed. 

2.3. Inequality Constraints 

Control and state variables are the two forms of 

inequality constraints used in ORPD. The transformer 

output, generator bus voltages, and the reactive power 

provided by the shunt capacitors are all control 

variables, while active power generation at the slack 

bus, reactive power generation at the PV bus, voltages 

of the PQ bus, and power flow of transmission lines are 

among the state variables. The inequality constraints on 

control variables can be written as follows: 

 

𝑉𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑔𝑖 ≤ 𝑉𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑔  (14) 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑡  (15) 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑐  (16) 

 

The inequality constraints on state variables can be 

created as follows: 

 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑔  (17) 

𝑉𝑙𝑖
𝑚𝑖𝑛 ≤ |𝑉𝑙𝑖| ≤ 𝑉𝑙𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑙  (18) 

𝑆𝑖 ≤ 𝑆𝑖
𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑁𝑇𝑙  (19) 

𝑃𝑔𝑠
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑠 ≤ 𝑃𝑔𝑠

𝑚𝑎𝑥 , 𝑠 = 𝑠𝑙𝑎𝑐𝑘  (20)  

 

Voltages in PQ buses and the loading levels of the 

transmission lines can be considered as security 

constraints, while reactive power generations of units 

are related to the operational limitations. 
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2.4. Constraints Handling 

A suitable solution to the ORPD problem can only 

be achieved by complying with the relevant 

constraints. The inequality constraints on independent 

control variables have already been satisfied through 

determining upper and lower limits that meta-heuristic 

algorithm can allocate. However, there is a need to be 

concerned with inequality constraints on dependent 

variables. Reactive power limits of generators and 

active power limit of the slack bus can be determined 

while using the Newton Raphson power flow equation 

so that if control variables violate these constraints, 

power flows will take place according to allowable 

limits, which means that the exact value of the control 

variable will not be satisfied. On the other hand, the 

voltage limit of PQ buses and transmission line thermal 

limits are constraints that need to be addressed in the 

solution process.  

Various papers such as (Rajan & Malakar, 2016) 

and (Ettappan et al., 2020) have resolved the 

compliance problem to the constraints by using the 

punishment and aggregating method so that any 

violation in constraints reduces the solution quality of 

the objective function. Therefore, the objective 

function of ORPD can be reconstructed through 

binding related constraints to the function as a penalty.  

 

Minimize: 𝑃 = 𝑓𝑜𝑏𝑗 + 𝜔𝑣 +  𝜔𝑠   (21) 

 

where, 

𝜔𝑣 =  𝜆𝑣 ∑ {max (0, 𝑎𝑏𝑠(𝑉𝑖 − 𝑉𝑖
𝑙𝑖𝑚))}

2𝑁𝑙
𝑖=1    (22) 

𝜔𝑠 =  𝜆𝑠 ∑ {max (0, 𝑆𝑖 − 𝑆𝑖
𝑚𝑎𝑥)}2𝑁𝑇𝑙

𝑖=1    (23) 

𝑉𝑖
𝑙𝑖𝑚 =  {

𝑉𝑖
𝑚𝑎𝑥 , 𝑖𝑓 𝑉𝑖 > 𝑉𝑖

𝑚𝑎𝑥

𝑉𝑖
𝑚𝑖𝑛 , 𝑖𝑓 𝑉𝑖 < 𝑉𝑖

𝑚𝑖𝑛   (24) 

 

where 𝜔𝑣 and 𝜔𝑠 are punishments relevant to 

voltage violation in PQ buses and overloading in 

transmission lines while 𝜆𝑣 and 𝜆𝑠 represent constant 

penalty coefficients, 𝑓𝑜𝑏𝑗 symbolizes the main 

objective, which can stand for one of the objectives, 

including power loss, voltage deviation and voltage 

stability index. It is worth mentioning that 𝑓𝑜𝑏𝑗 can be 

also designed as a multi-objective framework by using 

either the aggregating method or pareto-optimality 

technique. 

3. Equilibrium Optimizer 

The Equilibrium Optimizer has been constructed 

based on control volume mass balance models used to 

estimate both dynamic and equilibrium states 

(Faramarzi et al., 2020). Position (concentration) of 

each particle represents search agents in EO. To finally 

reach the equilibrium state, which means an optimal 

solution, the search agents update their positions at 

random with regard to the best-so-far solutions, termed 

equilibrium candidates. EO has been created in order to 

deal with single-objective optimization problems and 

position updating rule implemented can be written as 

follow: 

 

𝐶 =  𝐶𝑒𝑞 + (𝐶 −  𝐶𝑒𝑞)�⃗� +
�⃗�

�⃗⃗⃗�
(1 − �⃗�)   (25) 

 

where, 𝐶 is the new position vector of each particle, 

𝐶𝑒𝑞  represents equilibrium point retrieved from a pool 

comprising some best solutions, �⃗� is an exponential 

term and �⃗� is generation rate. The second term of the 

equation allowing to investigate a wider range in 

search space is related to a difference in concentration 

between a particle and the equilibrium state. Particles 

act as explorers by searching the entire search space in 

this way. On the other hand, the third term associated 

with the generation rate ensures the exploitation of 

obtained search areas with short steps, though it can 

also serve as an explorer. The extended formulations of 

these terms are given as follows: 

 

�⃗� =  𝑎1𝑠𝑖𝑔𝑛(𝑟 − 0.5)[𝑒−�⃗⃗⃗�𝑡 − 1]  (26) 

𝑡 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)(𝑎2

𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)
  (27) 

𝐶𝑒𝑞 = 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑐ℎ𝑜𝑖𝑐𝑒(𝐶𝑒𝑞,𝑝𝑜𝑜𝑙)  (28) 

𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 = (𝐶𝑒𝑞(1), . . , 𝐶𝑒𝑞(4), 𝐶𝑒𝑞(𝑎𝑣𝑔))  (29) 

𝐶𝑒𝑞(𝑎𝑣𝑔) =
𝐶𝑒𝑞(1)+𝐶𝑒𝑞(2)+𝐶𝑒𝑞(3)+𝐶𝑒𝑞(4)

4
  (30) 

�⃗� =  �⃗�0�⃗�  (31) 

�⃗�0 = 𝐺𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗(𝐶𝑒𝑞 − 𝜆𝐶)  (32) 

𝐺𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = {
0.5𝑟1,      𝑟2 ≥ 𝐺𝑃
0,             𝑟2 < 𝐺𝑃 

  (33) 

 

where 𝑎1 is a constant coefficient controlling step 

size in exploration phase, 𝑎2 is a constant coefficient 

that regulate exploitation phase, 𝑟 and 𝜆 are uniform 

distributed random vector between 0 and 1,  𝑟1 and 𝑟2 

are uniform distributed random number between 0 and 

1, 𝐺𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ is generation rate control parameter and 𝐺𝑃 is 

generation probability. 

The equilibrium pool 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 comprise best four 

particles obtained until related iteration and average 

value of these particles. These four particles improve 

the exploration capabilities of the algorithm, whereas 

the average particle strengthens the exploitation ability. 

The main tool in order to exploit the promising region 

is the generation rate �⃗�. The higher the 𝐺𝑃 generation 

probability, the lesser particle takes advantage of the 

generation rate since 𝐺𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ that is generation rate 

control parameter becomes zero. Another meaningful 
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expression is 𝑠𝑖𝑔𝑛(𝑟 − 0.5) determining the motion 

direction of each particle. 

A proper balance between exploration and 

exploitation phases should be constructed in all meta-

heuristic approaches so as to acquire quality solution. 

In EO, exploration phase is conducted by generation 

probability and 𝑎1 constant while exploitation stage is 

performed through memory saving (like 𝑝𝑏𝑒𝑠𝑡 of 

particle swarm optimization) and 𝑎2 constant. 

Equilibrium pool and 𝑠𝑖𝑔𝑛(𝑟 − 0.5) term are also 

crucial terms for establishing balance between phases.  

During the first iterations, the individuals are all 

spatially isolated from one another. The algorithm's 

capacity to explore the space broadly is confirmed by 

updating the concentrations depending on these 

candidates of equilibrium pool. At first iterations, when 

particles are far apart, the average particle of 

equilibrium pool also assists in the discovery of 

unknown search areas. The concentration update 

mechanism will help in local search around the 

candidates since individuals of equilibrium pool are 

close to each other in the last iterations.  Therefore, the 

equilibrium pool manages either exploration or 

exploitation phases according to iteration level. 

4. Result and Discussion 

The IEEE- 30 bus power system has been utilized 

as a test system to validate the efficacy and robustness 

of the proposed EO Algorithm based Reactive Power 

Dispatch. The EO is executed in the Python 

programming language with PSS/E 35.2 software 

package, and numerical tests are performed on a 

computer with an Intel® Core™ i7-8850U CPU at 

2.60GHz with 16GB of RAM. To solve the ORPD 

problem with EO, the Mealpy software package (Thieu 

& Molina, 2021), a set of state-of-the-art Meta-

heuristic algorithms in Python, is used.  

4.1. IEEE 30 bus system 

There are six generator units located at buses 1, 2, 

5, 8, 11, and 13 – bus 1 is chosen as slack bus, twenty-

four load buses with 2.834 pu and 1.262 pu for both 

active and reactive power demand, four regulating tap-

changing transformers at branches 4-12, 6-9, 6-10 and 

28-27, and nine shunt VAR capacitors at the buses 10, 

12, 15, 17, 20, 21, 23, 24, and 29 in the IEEE 30-bus 

system. The limit of voltage magnitude is considered 

between 0.95 and 1.1 pu for generator buses and 0.90 

and 1.1 pu for load buses. The maximum output of the 

shunt capacitors is determined as 5 MVar while the 

transformer tap settings have been configured to vary 

between 0.9 and 1.1 pu. The test system data is 

available in (Pg_tca30bus, n.d.). 

 

4.2. Experimental Case Studies 

On the IEEE 30-bus test system, the EO approach is 

performed to minimize the penalty function, including 

the active power loss, total voltage deviation or voltage 

stability index as a single objective function with the 

penalty terms related to mentioned constraints. Six 

different cases have been evaluated in the test system 

in order to compare the effectiveness of EO according 

to the other meta-heuristics in the Literature. Table-1 

shows the generation amounts adjusted to implement 

the first and second three cases. Every three cases 

consist of the objectives of the minimization of the 

active power loss and voltage deviation, and the 

improvement of the voltage stability. It is worth 

mentioning that 𝜆𝑣 and 𝜆𝑠 penalty coefficients 

(equation 22 and 23) are 500 and 700 as in (Rajan & 

Malakar, 2016).  It should also be emphasized that each 

objective function is subjected to 30 trial runs with 

determining the population size and iteration as 50 and 

1000, respectively. The results have been compared to 

those obtained using numerous meta-heuristics, 

including GSA (Duman et al., 2012), COA (Güvenç et 

al., 2020), ABC (Ettappan et al., 2020) and SMA 

(Elsayed & Elattar, 2021), implemented for addressing 

the same ORPD problem to demonstrate the advantage 

of EO. 

Table 1. Generator data for IEEE 30-bus test system 

Bus 

No 

𝑃𝑔 (MW) 𝑄𝑔,𝑚𝑖𝑛 

(MVar) 

𝑄𝑔,𝑚𝑎𝑥 

(MVar) Case 1,2,3 Case 4,5,6 

1 Slack Slack -20 150 

2 75 80 -20 60 

5 40 50 -15 62.5 

8 30 20 -15 48.7 

11 25 20 -15 40 

13 30 20 -15 46.5 

 

Table 2 presents the optimal values for all control 

variable ranges in case studies in order to minimize the 

relevant objective functions.  It can be recognized in 

Table 2 that the EO is capable of reducing the power 

loss to 4.108 MW in case-1 and 4.54 MW in case-4. 

The percentages of reduction in power loss are 23.61% 

in case -1 and 21.99% in case-4 according to the base 

case values. There are a total of 24 load buses in the 

system under investigation and the highest conceivable 

cumulative total of TVD would theoretically be 2.4 pu 

(i.e. 24x((1.1-1.0) or (1.0-0.9))) if all of these buses run 

at their limits. Therefore, the total voltage deviation 

value for the 30-bus system should never exceed 2.4 pu 

in order to keep the load bus voltages between 0.9 and 

1.1 pu and the achieved TVD values because of the 

minimizing the power losses are 1.87, which means 

that there will be no violation for both case-1 and case-

4. On the other hand, if we turn the objective function 

into the total voltage deviation perspective, the optimal 

values of TVD in case-2 and case-5 are 0.14 and 0.115 

pu, resulting in higher active power losses according to 
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Table 3. The comparison of EO with other meta-heuristics  

Table 2. The results of EO at different cases 

the base cases. However, if the voltage stability index 

is chosen as the objective, the L indexes in case-3 and 

case-6 are obtained as 0.09762 and 0.09758, which do 

not significantly increase the active power losses. 
 

 

 

Table 3 compares the solutions of EO with the 

results obtained from different methods in the IEEE 

30-bus system. As can be seen in Table 3 that the 

active power loss value obtained from EO in case-1 is 

the best one among the published results. It should be 

stated at this point that the range of the voltage limit for 

the load buses is determined within 0.9 pu and 1.1 pu 

in this study. The other effective solutions acquired 

from EO have been achieved in the voltage stability 

index objective. The L-index results of EO for cases 3 

and 6 are superior in comparison with other meta-

heuristics. Nonetheless, the best results for TVD are 

provided by Green Lourie Swarm Optimization 

(Kanagasabai, 2020) for case 2 and Exchange Market 

Algorithm (Rajan & Malakar, 2016) for case 5. It 

should be noted that comparing the performance of two 

methods solely on the basis of numerical values of 

outcomes may be inappropriate for a constrained 

optimization problem due to using coefficients. 

Control Variables 
Base Case 

(1-2-3) 

Base Case 

(4-5-6) 

Case-1 

(𝑷𝒍𝒐𝒔𝒔) 

Case-2 

(𝑻𝑽𝑫) 

Case-3 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

Case-4 

(𝑷𝒍𝒐𝒔𝒔) 

Case-5 

(𝑻𝑽𝑫) 

Case-6 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

𝑉𝑔1 1.05 1.05 1.1 0.9835 1.0953 1.1 0.9814 1.0997 

𝑉𝑔2 1.04 1.04 1.0945 1.0746 1.1 1.0942 0.9607 1.1 

𝑉𝑔3 1.01 1.01 1.0733 1.0129 1.0993 1.074 1.0566 1.1 

𝑉𝑔4 1.01 1.01 1.0809 1.0862 1.0899 1.0764 1.0135 1.0939 

𝑉𝑔5 1.05 1.05 1.1 1.0735 0.9625 1.1 1.0530 0.9642 

𝑉𝑔6 1.05 1.05 1.1 1.0407 0.9504 1.1 1.0598 0.9970 

𝑇4−12 1.032 1.032 0.9856 0.9948 0.9012 0.98 1.0961 0.9 

𝑇6−9 1.078 1.078 1.0433 1.0429 0.9260 1.0489 1.0680 0.9222 

𝑇6−10 1.069 1.069 0.9034 0.9 0.9 0.9 0.9 0.9 

𝑇27−28 1.068 1.068 0.9638 0.9461 0.9287 0.9748 0.9478 0.9261 

𝑄10 0 0 0 0 3.86 2.97 5.0 0 

𝑄12 0 0 0 0 0 0.06 2.9 0 

𝑄11 0 0 4.98 0 0 3.26 3.28 0 

𝑄17 0 0 4.96 0 0 4.87 3.17 3.6567 

𝑄20 0 0 4.56 4.5 0 4.99 5.0 0 

𝑄21 0 0 4.86 0 0 4.93 3.70 0 

𝑄23 0 0 0 0.7 0 4.94 4.35 0 

𝑄24 0 0 5 4.3 0 2.97 4.78 0 

𝑄29 0 0 0 0 0 1.1 6.98 0 

𝑷𝒍𝒐𝒔𝒔 5.38 5.82 4.108 6.25 5.19 4.54 6.9464 5.58 

𝑻𝑽𝑫 1.19 1.19 1.87 0.14 1.89 1.87 0.115 1.87 

𝑳𝒊𝒏𝒅𝒆𝒙 0.24897 0.24548 0.105 0.12 0.09762 0.17 0.1241 0.09758 

% 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 - - 23.61 88.24 60.79 21.99 90.34 60.24 

Algorithms 
Case-1 

(𝑷𝒍𝒐𝒔𝒔) 

Case-2 

(𝑻𝑽𝑫) 

Case-3 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

Case-4 

(𝑷𝒍𝒐𝒔𝒔) 

Case-5 

(𝑻𝑽𝑫) 

Case-6 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

EO 4.108 0.1349 0.09762 4.54 0.115 0.09758 

SHADE-EC (Biswas et al., 2019) 4.4126 0.08886 - 4.8612 0.08724 - 

COA (Güvenç et al., 2020) 4.41238 0.08837 - 4.861183 0.08724 - 

GWO-PSO (Shaheen et al., 2021) - - - 5.09037 0.27800 - 

EMA (Rajan & Malakar, 2016) - - - 4.4978 0.061311 0.09797 

SMA (Elsayed & Elattar, 2021) - - - 4.5181 - - 

SCA (Saddique et al., 2020) - - - 4.7086 - - 

ABC (Ettappan et al., 2020) - - - 4.5804 - - 

ECOA (Abaza et al., 2021) - - - 4.547 - - 

GLS (Kanagasabai, 2020)  4.216 0.064 0.1160 - - - 

FA-APTFPSO (Nasouri Gilvaei et 

al., 2020) 
- - - 4.8664 0.0841 0.1186 

PSOGSA (DUMAN, 2018) - - - 4.5950 0.1234 0.1242 

BMO (Sulaiman et al., 2020) - - - 4.5862 - - 

GSA (Duman et al., 2012) - - - 4.51431 0.067633 0.11607 
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Table 4. The comparison the statistical indicators of EO with other published solutions 

When it comes to meta-heuristics, not only their 

efficacy but also their robustness is critical. Therefore, 

a more extensive and in-depth examination is required. 

In this direction, Table 4 compares the min, max, mean 

and standard deviation outcomes received with EO to 

those  

obtained from other recently published approaches. 

Table 4 illustrates that the EO algorithm testifies its  

robustness with low statistical indicators, including 

standard deviation. 

 
Figure 1. Diversity measurement chart of EO 

 

In order to clarify the efficacy of the EO, 

performance indicators are presented in Figures 1-6. 

Figures 1 and 2 illustrate clear information of 

exploration, exploitation, and particle variety in the 

population of the EO. It's important to keep in mind 

that the reader wondering how to be visualized the 

diversity, exploration and exploitation abilities of a 

meta-heuristic algorithm should refer to the valuable 

paper written by (Hussain et al., 2019). it can be said 

from these figures that the EO algorithm prioritized 

exploitation above exploration for the majority of the 

search process. In the first iterations, a balance between 

exploitation and exploration is constructed (i.e. nearly 

50%-50%), however, after a few iterations, the 

algorithm’s behaviour is converted to the exploitative. 

This can also be seen in Figure 1, where the diversity 

was initially about 0.5 but steadily decreased over the 

iterations. 

 
Figure 2. Exploration and Exploitation of EO 

 

The EO convergence curve is shown in Fig. 3, and 

it has strong convergence properties in terms of power 

loss optimization. Fig. 4 presents the trajectory of two 

individuals of the population in two dimensions. It can 

be observed from this figure that nearly the entire 
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Algorithms 
Indicator 

Case-1 

(𝑷𝒍𝒐𝒔𝒔) 

Case-2 

(𝑻𝑽𝑫) 

Case-3 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

Case-4 

(𝑷𝒍𝒐𝒔𝒔) 

Case-5 

(𝑻𝑽𝑫) 

Case-6 

(𝑳𝒊𝒏𝒅𝒆𝒙) 

EO 

Min 4.108 0.1349 0.0976 4.543 0.115 0.0975 

Max 4.198 0.1788 0.0991 4.653 0.175 0.0987 

Mean 4.156 0.1572 0.0982 4.588 0.154 0.0981 

Std 0.0223 0.0134 0.00038 0.02475 0.013 0.00027 

SMA 

(Elsayed & 

Elattar, 2021) 

Min - - - 4.5181 - - 

Max - - - 4.7814 - - 

Mean - - - 4.63 - - 

Std - - - 0.0979 - - 

FA-APTFPSO 

(Nasouri Gilvaei et 

al., 2020) 

Min - - - 4.8664 0.0841 0.1186 

Max - - - 4.8853 0.0984 0.1198 

Mean - - - 4.8689 0.0894 0.1191 

Std - - - 0.00504 0.00427 0.00039 

SCA 

(Saddique et al., 

2020) 

Min - - - 4.708 - - 

Max - - - 5.286 - - 

Mean - - - 5.030 - - 

Std - - - 0.133 - - 

EMA 

(Rajan & 

Malakar, 2016) 

Min - - - 4.4978 0.061311 0.09797 

Max - - - 4.50 0.0725 0.1011 

Mean - - - 4.4999 0.06558 0.098744 

Std - - - 0.0003716 0.0008328 0.000458 
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search space is investigated. Nevertheless, in order to 

further clarify the behaviour of the individuals during 

the iterations, the trajectory of the first dimension of 

the first agent is demonstrated in Fig. 5. It can be 

concluded from this figure that frequently transitions 

from upper to lower bound occur in most of the search 

process, and the alteration in the dimension slows 

down at the end of the iterations. Ultimately, the 

runtime chart of the EO algorithm throughout the 

iterations can be examined in Fig. 6. Although some 

function evaluations exceed one second, the general 

solution time is roughly 0.8 seconds per iteration (each 

with 50 function evaluations). Direct comparisons have 

not been implemented with other methods based on 

CPU time due to particular hardware properties and 

different numbers of function evaluations. 

 

 
Figure 3. Convergence curve 

 

Figure 4. Trajectory of the first and second dimension of the 

second and third individual after generations in EO 

 

 
Figure 5. Trajectory of the first dimension of the first 

individual in EO 

 
Figure 6. Runtime chart of the EO 

5. Conclusions 

In this paper, the Equilibrium Optimizer, a recently 

developed physic-based meta-heuristic algorithm, is 

performed to overcome the nonlinear, non-convex 

ORPD problem in the power system. The ORPD 

problem is implemented on a standard IEEE 30-bus 

test system in order to validate EO's search ability. 

Active power loss, voltage deviation and voltage 

stability index are calculated with optimization of 

network parameters, including the voltage of the PV 

buses, tap ratio of transformers and reactive support of 

shunt capacitors, under six scenarios. For the systems 

under investigation in case-1 and case-4, using the EO 

to deal with the ORPD problem resulted in a decrease 

in power losses of 23.61% and 21.99% with respect to 

the base cases, respectively. The reduction in total 

voltage deviation for case-2 and case-5 reached 88.24% 

and 90.34% while the improvements of the voltage 

stability for case-3 and case-6 were 60.79% and 

60.24% according to the base cases.  

This paper also includes comparisons of the EO 

with other well-known optimization techniques under 

different perspectives. The EO is superior among 

others in terms of case-1, case-3 and case-6 with the 

best solution obtained. Furthermore, the statistical 

indicators such as mean and standard deviation of 
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independent 30 runs show that the EO is not only an 

efficient but also a robust meta-heuristic algorithm in 

solving the ORPD problem. The measurement of 

diversity, exploration and exploitation allows for more 

in-depth analysis of the causes for successful or 

ineffective outcomes. The analyses conducted 

demonstrate that the EO algorithm has better 

exploitation ability as compared to the exploration.  

In future, this research can be expanded with the 

incorporation of active power loss, voltage deviation 

and voltage stability as an objective in a multi-

objective optimization framework based on Pareto-

optimality. Moreover, a better trade-off between 

exploitation and exploration abilities and a more 

consistent diversity in the population can be 

constructed with the modification of the EO algorithm 

so as to solve the ORPD problem. 
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