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Abstract

In this paper, we study inverse source for diffusion equation with conformable derivative:
C’ngv)u — Au = ®(t)F(x) where 0 <y < 1, (x,t) € Q2 x (0,T).
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1. Introduction

In this article, for the equation

CoDMu(z,t) — Au(z,t) = D) F(z), z€Qte(0,T) (1)
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accompanied with boundary conditions

u(z,t)|zea0 =0, t € (0,T), (2)

and the initial condition
u(z,0) =up(z), = €Q, (3)

and later final condition
u(z, T) =4(z), x €9, (4)

The function u = u(x,t) represents a concentration of contaminant at a position x and time ¢. COD§7) is
the symbol of representation the conformable time derivative with order v € (0,1) (see Khalil et al. [I]):
for a given function G : [0,00) — R, the Conformable fractional of order v € (0, 1] is defined by

G(t+ pt!=7) — G(t)

(") BT
CoD{G(t) = lim . , (5)

for all ¢ > 0. For some (0,ty),to > 0 and the limt_ﬁg Cth(W)G(t) exists, then

CoD{G(ty) = lim CoD{VG(¢).

+
t—td

Equations with fractional derivatives and inverse problems to them appear in different branches of science and
engineering. Fractional calculus has many applications in the real world interested [2H6]. There are many
types of fractional derivatives: Riemann-Liouville, Caputo, Conformable, Grunwald-Letnikov fractional
operators, ... (see [THI5] and references therein). Each defines fractional derivatives with properties that
are advantageous in certain applications. Many properties of Conformable fractional can be found more
details in [I6],[17] and references therein. Consider the inverse source problem (). By the definition of
Hadamard [I§] a problem is well-posed if it satisfies: the existence, the uniqueness, and the stability of the
solution. This implies that if one of the three properties is not satisfied, the problem is ill-posed. According
to our research experience, the stability property of the sought solution is most often violated. Therefore,
to overcome this difficulty, a regularization method is required. We do not know observe the data &, ¢, and
using approximate data ®€, /¢ satisfies

1€ =L ) + |12 — | 2 0,7) < € (6)

where € > 0 is the noise level. There are a lot of research results for an inverse source problem of a
time-fractional diffusion equation. To do that, during the past decades, a lot of technical developments by
mathematicians around the world: Quasi-Reversibility method, see [19], Quasi-Boundary Value method,
which readers can see in [20), 21], the Landweber iterative method (see [22, 23]), the Fractional Landweber
method (see [24]), a Tikhonov regularization method (see [25]), a Fourier truncation method (see [26]).
However, the object of this topic is to restore the source function F(z) of the problem by the Fractional
Tikhonov method. Daniel Gerth introduced this method, see [27]. The fractional Tikhonov method is like
being in the middle between the Quasi-Boundary Value method and the classical Tikhonov method (see
28]).

The next sections of the paper are divided into 3 sections. Section [2| provides the preliminary results to
be used in this article, In Subsection , it gives the formula of source function F(x), in Subsection we
have the ill-posedness of problem — and the conditional stability is shown in Subsection In Section
we consider the Fractional Tikhonov method by choosing a priori parameter choice (Subsection, an a
posteriori parameter choice rule (Subsection . In Subsection we receive the regularization and error
in .Z),.
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2. Preliminaries

Definition 2.1. Let (-) be an inner product in Z(€2). The notation | - ||x stands for in the norm in
the Banach space X. We denote by .Z,(0,7;X), 1 < p < oo, the Banach space of real-valued functions
w: (0,7) — X measurable, providing that

7 1
lull.2,0.7:x) = (/ Hu(t)”pdt) " <0, for 1< p < oo,
0

and

|ull 2. 0,m:x) = ess sup [[u(t)|x, for p = oc.
te(0,T)

We begin this subsection by introducing a few properties of the eigenvalues of the operator A, see [30].
We have the following equality

Aej(z) = —Njej(x), v €Q; ¢ =0, x € 09, j €N,
where {Aj };ildenotes the set of eigenvalues of A satisfying
0<)\1§)\2§...§/\j§...,

and lim; o A; = co. For any m > 0, we also define the space

HM(Q) = {u € £(Q): Z)\?mKu,ejMz < —i—oo},

j=1

then . (Q2) is a Hilbert space endowed with the norm

ooy = (D A2, e5)2)
j=1

N

_ — i)
Lemma 2.2. Let ®,® are positive constants such that ® < ® < &. Let choose € € (O, E), we obtain

T < o) < B2, [5). ™)

Proof. The proof is completed in [2§]. O]

Lemma 2.3 (See [29]). The following inclusions hold true:

d 2d
S f — — < >
2,(Q) — D(A%), if 4<3_0,p_d_48,
DAY > 2,), if —0<s<® p< 2T (8)
PEs = P
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2.1. The formula of source term F
In this subsection, we introduce the mild solution of the following initial value problem
CoD]u(z,t) — Au(z,t) = ®(t)F(z), =€ Q,ze(0,T),
u(z,t) =0, x € 0N, te (0,T], (9)
u(z,0) = up(z), x €.

Using the separation of variables to yield the solution of @ Suppose that the exact u is defined by Fourier

t) = Zuj(t)ej(:v), with u;(t) = <u(-,t),ej(-)>.
j=1

From , we get

J=1

Letting ¢t =T and ug ; = 0, we get

From , it gives

this implies that

2.2. The ill-posedness of inverse source problem

Theorem 2.4. The inverse source problem is ill-posed.
Proof. Defining a linear operator £ : %5 (Q2) — £5(Q2) as follows:

T

:Z /gv Lexp (— j(TV_ng—l)cb(g)dgk (-))ej(z —/ x, &) F(&)dE,
Q

Jj=1 0

whereby

o T
b6 =3 ( [ e (- x0 - a)vl)@«)dc) j(x)e; ©).
0

Jj=1

t) = Z [exp (= Xty Huoy + <]—"(-),ej(‘)>/<'yl exp (— (17 — gV)’y*l)(I)(g)dg} ej(x).
0

(10)

(11)

(12)

(13)
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Due to k(z,§) = k(&, x), we know L is self-adjoint operator. Next, we are going to prove its compactness.
Let us define £y as follows

N T
ex() =30 ([ e (=47 = )7 ) @6 ) (F ey ()0 (1)
j:l 0
It is easy to check that Ly is a finite rank operator. Then, from and , we have:
lenF - £Fllpem = 3 ( / O exp (= A (T = M) D(o)ds ) [(F() e
j=N+1 0

T
We consider the integral V, = [ ¢7~lexp ( — (T — gV)'y_l)dg as follows, by denoting ¢7 = w, using the
0

variable transformation method, we get

T
1 _ 1 _ 1
V, = N O/exp (=T =<y 1)dg < )\J(l —exp (— ATy 1)) < )\—j (16)
Combining and , one has
2 —2 o 1 2
HL‘N}“—U:H%(Q) <d Z P\<;r(.), e ()] (17)
j=N+1"17

P
This implies that ||[LyF — LF < —||F|l & (q)- Therefore, ||Ln — L] #,(q) — 0 in the sense of operator
L) = Ny 2(2) 2(€2)

norm in .2 (% (02); £ (2)) as N — oco. L is a compact operator. Next, the singular values for the linear
self-adjoint compact operator L are

T
A= /g”‘l exp (— N(T7 =)y 1) @(<)ds, (18)
0

and in the %5(Q2) space, eigenvectors e; are an orthonormal its basis. From ([13]), the inverse source problem
(1)) can be rewritten as an operator equation

LF(z) = L(x), (19)
and by Kirsch ([18]), we conclude that problem is ill-posed. We will make the following assumptions
er(") : .
¢k(.) = Z2£. The source term corresponding to ¢* is
R
Fh(a) = i (05 () ei())ej(x) ex(2)

7=l fTU_l exp (— A (T7 = 7)) ®(c)ds \/Efd_l exp (= M(T7 = ")y~ 1) @()ds
0 0
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If the final data ¢ = 0 then F = 0, ¢ and ¢* have estimated:
1% = )] 00 = H — L \hich leads to lim ||¢" — ] im —— —0.  (20)
(2 V2@ VN o+ 2O = e
Estimates errors between F* and F is given as follow
1z -1
1F* = Fll 4y = (/C” Yexp (= Me(T7 =)y 1)<I>(<)dc>
0
A -1
(/a Voxp (= M(T7 — <) )dg) Mk (21)
0
From estimation above, we receive
k \/ k . \/)\k B
|F* = Fll 4y = = this leads to kggloouf — Fll gy > Jm === = oo (22)
Combining and , we conclude that the inverse source problem is ill-posed. O
2.3. Conditional stability of source term f
Theorem 2.5. Let M >0, s > 0 and we have been working under the assumption that || F|| zm@q) < M,
one has
[Fll ) < C(m, M)IIEH’"+1 (23)
whereby
C(m, M) = (|@I[1 = exp(-\T7h)]) " M (24)
Proof. Using the Hoélder inequality, form now on, for a shorter,
T
Sy ®) = [ exp (= (T = @l
0
we have
0 _2
P = 3 | Z 0.5 OIFTO )
= 2
g = S(AJ, 1SNy, @)
> e(')ae ( 2 mLH
<[> O 5 w0
— m+2 J
j=1 “S(}‘jv Y, (I))}
= (FO ()]
<| —} eIz, (25)
Z 7SO, @) 2
From , we have
2m m 2m m —2m _ 2m
SN2, @) > 2P SNy, )| = [P AT T —exp (= T[T, (26)
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and this inequality leads to

\S b <I>>\2m 271 — exp(—MTry~H ™"

j=1
Combining and , we get
_2m_ 2
17120 < (12111~ exp(-MT 7)) " IFIG g 15 < Con MPIEETE,. @)

3. The Fractional Tikhonov method

Due to singular value decomposition for compact self-adjoint operator K, as in . If the measured
data £¢ and ¢ with a noise level of € satisfy||{ — £|| &,() < € then we can present a regularized solution as
follows:

261

IS0y 29 )
R g )2 + [S(Aj, 7, ¢ |2€< ())e; (@), ;s¢=1 (29)
> : 26-1
Faolz) = SN, @) 52 (L0).e5())es (@), % <e<1, 0)

2
j=1 [5(6)] + ’S()‘Jv 7> é)‘
and ((e) is a parameter regularization.

If¢= % then the Fractional Tikhonov is called the Quasi-Boundary Value Method.

When € = 1, it is the classic Tikhonov method.

3.1. An a priori parameter choice

Afterwards, the estimation for ||F(-) — fg(e)(-)H%(Q)
convergence rate under a suitable choice for the regularization parameter. To do this, we need the following
lemma

is established by our next Theorem and show

Lemma 3.1. For constants z > A1 and % <& <1, we have

z

Gi(z) = A% 1 5% < B(&, A)p . (31)

where B(£, A) are independent on f3, z.
1
Proof. For 5 < £ <1, from , solve the equation G (z) = 0, we can know that
11
z0=A(26 —1) 265 2.
Replacing the zp into equation , we see that

AT (2¢ — 1) 2

G1(2) < Gi(20) < B(€, A)B~% in which B(¢, A) = >

(32)
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Lemma 3.2. Let the constant z > A\ and % <& <1, one has

2 26-m 26V 1((26 — ) TE" A58 ) 3 E 0<m<?2
= e [ BT,
+ 5% (A%NT2) 712, m > 2.
Proof. The proof is completed in [31]. O]
Theorem 3.3. Let F be as and the noise assumption @ holds. Then, we have the following estimate:
£
e If 0 <m < 2¢, by choosing ((€) = (ﬁ) "2 then

| 7() — Fhe (- Hz is of order emi2. (34)

&5
e Ifm > 2, by choosing B(e) = (ﬁ) ' then

1FC) = Foig Ol ey s of order 752, (35)

(2(9

Proof. By the triangle inequality, we know

1FC) = Fao Oll 0y < P800 ) = Foo Oll 0 + IFC) = Fao Oll g0 (36)
A1:=01+Q2 A2
inwhich
= sty e*Tt
Q1 = () —b(x),ei(x))e;(x),
| ;[5(6)]2+\8(Aj,7,¢6)\25< (x) = (), ej(x))e;(z)
0[S,y ) syt
= - (-),e5(+))ej(z)
: ; B+ Sy, 29 * [Be)]* + SO, @)\2f< /
o 1SNy, @)% 1 )
Ao = — S,ei(:))ei(x).
2 ;([IB(G)P—F‘S(A]‘,’Y,@)‘% ‘S(/\j,’}/,q)” <£() J()> ]( ) (37)

The proof falls naturally into some steps.

Step 1: | Estimation for ||Q1|z2(q), we receive Because of estimation (6], and

D1 —exp(—\T7y 1)
0 .

| [ POy 1)) = ;

From now on, for a shorter, by denoting

P _
(Lo (= MT7y71)) = A(@, A, T, 7).
Next, from (3.1]), we know that

‘ B(®1.[3]) ‘25‘1

191120 < i 2 () = €0), e5()es (@)
=1 (B + \Wfﬁ
|B(2], [@])]* A

<Z

B -1
‘ \B(@\, B sup [We)w?ﬁ +[A@ M, T )| (38)
J

(225 + [A(@ M, T ,7)\%@6( SOt
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Applying the Lemma it gives

1Q1ll.z) <€

Step 2:| Next, Qs have seen estimate

B¢ (|02l @) Ble A@ x,T.0) ).

L1
= IS (7, @ — @)
_ (€(-),e5(-))ej(x)
g (1802 + IS, @) (B + S, @) *)
Lo
> S()‘V'%q)e) % 8(/\'777 2§ S 777(1)6 S 7’7’ )71
50003 2 300077 I (500077 20 |0572) )< )i ())es(@)

T (BRIt e ) (i8]

From , we have estimate for H£1H$2(Q) and ||£2H$2(Q)

o0

1Lz <D

Jj=1

(O)]2|S(A;, 7, @€ —

D))

500 )

“ ()

e5(+))e;(x)

([ﬂ +‘S jjfyjq)e‘ )‘S ]777(1))‘2571 S()\j,ﬁ)/v‘p)

(I)‘Zf 1

|5 2¢6—1

Zoo(0,T)
=00 Fll oy

261

Zoo(0,T) i <£('),ej(')>ej($) <

|Q| = S()‘P% P)

26—1
A7, @) 2 SN, v, @€ —

®) (£()

‘(I)‘% 1

ei())e; ()

S(
L2l () < Z 5

7=1

(1812 + [S(ry 7,29

)

j,fy,q) — D) <£ 4->ejx

—Z

4||<1>
<

}S 3777 )‘ ‘S ja77q))’

s(z) _

‘S()‘ja s (I))|

4|2 — @[ 2 (0,1

—‘I’H,%O(OT)
]Zjl }S ]777(1))’

Combining . ) to ., we see that

192120

261
Zoo(0,T)

} €

< ’q)’25_1 H Hiﬂz(ﬂ)

< 2| — @] . or) max {

@

4| @€ — (I)H.i”oo((),T)’

1

|g‘2§—1’

]
4
5 Nl

1Fll 2@

1Fll 2 )-

(41)

(42)

(43)
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Next, we have to estimate ||Az|| », (o), we get
SO )
Aol (5 - ) 100
o Z B2 + [ 7. 2)* ISW,% )
.- [B(e)]? >2 2
<> ( (CORMONE
= NSOy @) (I8P + S0y, 7, @)[*)
o0 2
s B (0 es)]
= 2
= (1B + [SOy, 7, @)[*) [S(. 7. @)
cs PO A5m1<e<->,ej<->2}|2
= (BOP + S0y m@)*) S0y, 9)]
o A W ()] 20| 2
< Sup Ga(A 1 = sup |G2 (M) | 1| F| " pm (44)
g G20 RO w0017
Hence, G2(\;) has been estimated
2>\fm 2)\2'6*711
Gay) = — DO BT - (15)
[B(e)]? + SNy, 7, @) [B(e)PA]” + [A(2, M1, T, )|
With the Lemma replace A by A(®, A\, T,7), G2(}\;) can be bounded as follow
26—m m m
26) 71 (26 —m) ® A"™m € 2
Gy < | 2726 mE)BEF,  0<m< .
(AZAT2) T B, m > 2.
Combining (44]) to , we conclude that
261 ((26 — m) T A m ) MIB(e)] £ 0<m < 2,
(AZNH) T MIB(), m > 2.
Next, combining the above three steps, we obtain
,1
I70) = 50Ol ey < € 1601 (18021 8D Ble A0 7.))
. 1
+ 2] — ll 2 0.1) max{@‘ﬁ@}ufuﬂ(m
L [eor e m e L T e MBE)E, 0<m<,
([A(@, M1, ) PN ) T MBS, m > 2.
Choose the regularization parameter [(e) as follows:
_£
€ m—+2
Ble) = (49)
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From the selection of £ as in the formula , we receive

[Case 1:]1f 0 < m < 2¢ then

17C) = Foo Ol e <e&[en#2MM(\B(|¢|,|¢y)f£ " B¢, A@, M, T,y )))

420 max{@‘ig 3 WPy + MER 207 (6 = ) @ AL T )| 60)
[Case 2:|1f m > 2¢ then
17O~ Ol ey < [Mﬁil(\z@(m\@r)\?“ Ble A@ N, 7))
+2esilmax{@|21§ - }||}'||52(Q)+(|A(<I> ALT)%) 7! iMéﬂ. (51)

3.2. An a posteriori parameter choice

In this subsection, we study an a posteriori regularization parameter choice in Morozov’s discrepancy
principle, readers can see [14].

= Je, (52)

H S(Aj, 7, @)%
XQ(Q)

e ‘S()\j,fy, @)‘2566(.) — Ee(.)'

1
whereby 3 <¢eE<1,0>1.
1
Lemma 3.4. Let A\; > A1 > 0 and 3 <& <1, and G3(\j) is defined by

Fa2 )26+
J
BN 4 [4A(®, M, T, )"

P26 —m—1 1 mil g
Beom (L YR gamca o,

Gs(Aj) =

< ¢ 2EM4A(R, N, Ty) A28 —m — 1 (53)
B([4A(D, Ay, T, ) 2N TH=2) 7 g2, m > 26 — 1.
2

Proof. The proof is completed in [31]. O

Lemma 3.5. Assume that

B2 2 9 3
<Z oo K0=0N) 54
=1 YERA)

If 0 < 0 < [|€°)| z,(q2). then the following results hold:

(a) K(B) is a continuous function;

(b) K(B) =0 as 5 — 0;

(c) K(B)
(8)

B) = 1€\ 2y (0) as B — o0;
(d) K(B) is a strictly increasing function.
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Lemma 3.6. Let 8 be the solution of , one has

() B2 —m—1) )7 ( m+ 1 )2&
’ §4A(®, A, T, ) 26-m-1 (M)J 0<m<2 1,
1 (62 — 2) 7T € (55)
1T =
B 1oL m
S ()% (|4A(@, Ay, T, ) PN ) T ()= > 26— 1
hiis , m > — 1.
(52 — 2)% :
which gives the required results.
Proof. We receive
<2y ( ) I i
67 <2 () =€) ei)
B2 + \S (A7, @ )|2€
-m 2.\ 9m m 2
B2 + \S (A7 c1>)|25 SNy, @)~ =7 sy e
From inequahtles above, we can see that
= 291 26—(m+1)
o B2S(Aj,, @) DN 57
J= 2 = - 2
182 + SN,y @) [N T B2AX 4 [4A(@, M, T, 7) [
From , using Lemma we have
P mil m
P2 —m —1) ( m+1 ) R 0<m< 26— 1,
Hj < Q 26[4A(D, A1, T,y) [t A28 —m — 1 (58)
B([4A(@, A, T, y) A7) g2, m> 26— 1.
Because of , we know that
([ Tee—m-1) \'/ m+1 \Z=2
i - ( ) M2BTTE 0<m <2 -1,
5262 < 262 424 \26M4A(2, A, T, )+t ) A2 —m —1 (59)
_ _ -2
[ (28)° (J4A(@, A1, T ) PAT07%) a2t m > 26— 1.
From , it is very easy to see that
(26 —m—1 TN
PRL-—m—1) . ( mt )5/\425 ,0<m<2—1,
(62 = 2)% < 28 \2EHA(R AL T, ) [mH ) A28 =m =1 (60)
(|4A (@, Ay, T, 7) A~ 25) M2p m> 2 — 1.
So,
(1)m< PEE—m—1) )1“( m+l )3 1
2 EAA@, N, T,y ) (M)r 0<m<2t_ 1.
1
(62 — 2)2m+D € (61)

=
A

l\)‘,_‘

S (D) (|4(®, T, AL )

(0% — 2)&

is established by our next Theorem.

(&%

€

The estimation of ||F(-) fé(e )H$2(Q)

m > 26 — 1.
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Theorem 3.7. Assume the a priori condition and the noise assumption @ hold, and there exists 6 > 1
such that 0 < de < [|€¢|| », (). This Theorem shows the convergent estimate between the evact solution and
the regqularized solution such that

o IfO<m<2£—1, it gives

H]:( .7’:6 E) Hg is of order €mAT (62)
o Ifm >2¢—1, it gives
|7 () = Fh HZ @ of order . (63)

Proof. Applying the triangle inequality, we get

1FC) = Foo Ol gy < IIFO) = Faolza@ +1F50 ) = Fio Oll gy (64)
Ao

If0<m§2§—1,wehave

[F50() = Foo Ol gy < € B¢ (\B ], [®])[* " B¢, A@ A, m)))

1 4
+ 20 = 8l o:m) max { e 5 fIF g0 (63)
We get
= IsOyye)*T 1
Aoll i) = - ), e5()Ve;
42l 2,0 HZ( . QHS oo SOy ) & (es(@), o
> )\]777@)
F(),ei(-))e; . 66
H; +|3 Oy ) hesNee)] (96)
The Holder inequality gives us the result
]7’77(1)) . . . s )
A2l ey < HZ +\S P TARIOLLS] S
= e)] +\s j,w,@}“ (SO, @)™ )
& B(e)? PRI
= HZ—: +‘5 Gy Y ,@)}2€<€(')76J(.)>e‘7($)’32(9)
Z
3 AOF (FO0) |7 (67)
R +\5 a7 @) SOy @)™ 7 @)

Za
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From , using Lemma one has

2 <(1S e

~ ‘ S T (00) = £0),e5(@))es (@)
HEZ 3 (£ () (o) y$<nfa+wf
Pl +]S 7 @))% TR g9

Next, using the priori condition, we have

L ()

+oo

62 f-,ej'
3 [B(e)] (F(),ei())

m €\ T
j—l [5 6 2+ ’S )‘jv’% ‘25 ‘S()\J’Py’q))} ]( )

_1
m—+1

£5(Q)
m+1

,%2(9) HZ [44(2 >\1, ’()|>mej($)

1
m-+1

J?’ya

< Mo
B ‘4Z(@7 )‘17T7 7)‘#

£(Q)

Combining (66) to , we conclude that

o _m_ Mm+1
1FC) = Fo Ol g0y < €1 (1 + 8)m

—m (69)
|4A(@7 )‘17 T, ’7) ‘ mH
Combining (65]) to , we know that

IFC) = Foo Ol gy < €7 MTT (@, B, 0, B, A),
whereby

3.5 B.4 ¢
X1(®, 3,6, B, A) = 2em+1 max { 1 4}( 14250

4 >m’il+ (14 8)m+
BT D MA@M,mM [4A@, M, T, )|

(26 —m—1)

i m+1 m+1 i
N 2 (g|4A(<I> M, T, )|m+1) (2g_m_1)

(62 _ 2) 7 <!B<\<1>|,rq>|>12§ " B¢, A@ M, Ty ))>_

Our next goal is to determine the estimation of || Fg(o(-) — F

get

5(5)()”,%’2(9) in case m > 2§ — 1, we
17500 () = Fso Ol s

I_L L8i(6)271§(|4z(i7 A17 )
<e 2uMxE

~—

m+1)—26\  2¢

m"“

e (I5ttal. o) B A7) )

-1 1 1 4 1
+e€ 25M2£<2max{q)|2£1,q>} — )“22)

|4A(®, A1, T, )|

(71)
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Next, || F(-) — Fa(e can be bounded as follows

)('>H32(Q)

= [B(e))?
B2 +|S(N,y, @

*f [B(e))?S(\;, 7. @) (F(),e(-))
e +’S j,'y,<I>)‘25 S(Aj;7, )
e AJJ’;’E)‘% (FOes()es(a)]

J1
BEOPSK7.2)  (Fe()
B + SOy, 7, @) SO,y @)%

J2

1FC) = Fao O gy = )|* (F()ei())ej(x)

()

ej(x)‘

Ly (Q)

1
1—3¢

2(Q)

Mg

Il
—

J

1
2
. 72
% o (72

el
NgE

From , repeated application of Lemma Part (b) enables us to write Ji, it is easy to check that
1—L 1—L 1—
Ji < (e+0e) 2 =€ 2(1490)

In the same way as in 2o, it follows easily that

[B(e))?
(B + IS, 7, @)%

<1,

we now proceed by induction

1

> e 2-1_ %
AN F (e
o= Hz:|5 (Ajs 7, @ |2’E e Hg<\4A [ >\1, v )\) i AT C)es (@) 2(9)
< JAA(@, A1, T, )| 2 AT e (73)
Combining (72)) to (73)), it may be concluded that
_11 N 1y 9%—m—
IFC) = Foo ()l gy < €2 M ((1+5)1 % |4A(D, M1, T, )2 A 1)'
Finally, from and , we can assert that
_1 1 N
H'F()_ E(e)(') £(Q) Sel EMEX(D, 9,6, B, A).
whereby
1 4
2maX{T —}
— §—17 _
(@8,68.3) = (——EE B (o) Tl )
[4A(@, M, T )| %

1
83 (B) % (A, A, T, 7) A7)
((52—2)E

<|B<|<1>|,r<1>|>|2“ B(¢,A <<1>,A1,T,7))>.

The proof is completed by showing that and . O
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3.3. Regularization and £, stimate by Truncation method

In this subsection, we assume that ¢¢ is noisy data and satisfied that
1£° =Ll .z, ) < e (74)

Theorem 3.8. Let (€ be as in . Assume that F belongs to D(AS) for any ¢ > 0. Let us gives a
reqularized solution as follows. Let us give a reqularized solution as follows:

- <€6(‘)7eg( ))ej(@) ej(v)
Fi(x) = , and Fn.(z . (75)
By choosing
N, = h=DEmtD) g < p < 1, (76)

in which

w _ (p—2w w
- < ~ 7 < —.
4<p_1mn{0, 1 },O_C<4

Then we have

Hff\fe() - F(.)ng%ﬂg(g) — 0 when € — 0.

Proof. Since the Sobolev embedding Z,(2) — D(A™), we find that there exists a positive constant,
169 = llpeam) < Crmplll = Lll.z,(0) < Cmpe. (77)
For ¢ > 0, using the triangle inequality, we get
7% () = FOllp (AS) = < [|74. () ]:Ne(')HD(Ac) + | Fn () _f(')HD(AC)' (78)

In the following, we first consider the term H‘F/E\fe() — ]:Ne(')HD(A() for any 0 < ¢ < % Indeed, we get

Fi.(x) = Fn.(2)
Aj<Ne Aj<Ne

_ Z () - (W’@ Ly Z[ (327 27 = 1807 B[y O)eg(a). (79)

From , using the triangle inequality (a + b)? < 2a% + 2b%,Va, b > 0, we have

Aj<Ne m |/ re Aj<Ne . 2 2
<2y A 2"”3 (0= 00N | 50,70 390,00
N j=1 ‘S(Aj777¢)6)’2 j=1 ‘S( YEE (I)E)P ’S( ]7"}/7@)’

A <N e 2 € Aj<Ne 2
o5 e XN 0 = B o M A0
N j=1 J ‘A(ip)\lva‘Y)’Q |Q‘2 j=1 |S( YEMA) )|2

<Ne € 2 € 2

16 = U qmy  32[|2° — @ =
Z |A(9a>‘1)Ta7)|2+ ’@P z:: J ’< (),e]()>| ( )
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Using the condition , we can know that

¢ 2 2G5 € 2—2m+2 32¢”
17500 = 20Ol < T, mpp M e e
Next, we continue to get the following estimate
H}—<' - Fn( HD(AC < Z )\—2</\2<‘<—2 = Z /\_24)‘24}0: >‘
NS Sy @)F T 5%,
o Z )‘54‘<'7:(')7ej(')>‘2 < (N’E)_QCH‘FH?D(AC)' (81)
A >N

Since the Sobolev embedding D(AS) — & wzibiC(Q), combining to (81), we conclude that

|75 () —F(-)nga—ﬂ(m) < OlF5 () = FOllpaey < CIFRO) = FaeOllpacy + CIFx ) = FOllpay
V2CC,y, pe i1 L (AV2Ce .
S o LA G RGO [ A
V2CC 4/2Ce
" mp C(1-R)(¢-m+1) ,
=€ |A(®, A1, T,7)| * < |D| +Ce )H]:HD(AC (82)
O
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