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Abstract 

The Urban Heat Island (UHI) effect is characterised by higher temperatures in cities than in rural surroundings. This 

phenomenon leads to increased health risks in urban dwellers, particularly in the context of global climate change. It is essential to 

consider its spatial variability to propose efficient UHI mitigation strategies. The Local Climate Zone (LCZ) scheme is a climate-

based classification that can accurately capture UHI intensities according to the urban area characteristics. In this study, an LCZ 

classification has been established for the city of Strasbourg by using a vector-based method that relies on a large vector database 

composed of land cover and cadastral parcels data. LCZ polygons are digitized from cadastral maps, then the different LCZ 

parameters are calculated for each of them. Six of the ten LCZ parameters proposed in the literature have been obtained. New criteria 

have been added to improve the classification, i.e. a vegetation parameter (VgSF) and a compactness index (CI). A given LCZ class 

is then assigned to each polygon using a trapezoidal fuzzy logic model, which is completed by a decision tree. The acquired final 

LCZ map shows that the developed vector-based method permits obtaining relevant LCZ classification. The LCZ parameters values 

are subsequently used to determine a multiple linear regression (MLR) aiming to get a UHI intensity for each LCZ polygon. 

The resulting UHI map of the Eurométropole de Strasbourg (EMS) accurately illustrates the strong spatial heterogeneity of the 

phenomenon.  
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Introduction 

The Urban Heat Island (UHI) effect is defined as the 

temperature difference between an urban area and its 

rural surroundings. Its magnitude is commonly greatest 

after sunset, in particular during calm and clear nights 

(Oke et al., 2017). This phenomenon has significant 

implications on public health, air quality, and thermal 

outdoor comfort, putting additional stress on urban 

dwellers during heatwave events. It occurs because of 

the greater heat capacity of building materials, the 

morphology of the cities, the lack of vegetation, and 

the high anthropogenic heat release (Arnfield, 2003). 

Nevertheless, due to the heterogeneous land use and 

surface characteristics of urban areas, the UHI exhibits 

an important spatial diversity. As a consequence, the 

UHI magnitude variability can be conspicuous in a 

given city (Unger, 2004; Stewart, 2011; Schatz and 

Kucharik, 2014; Sutariya et al., 2021). In this context, 

it is essential to investigate the relationships between 

UHI intensity and urban fabric characteristics to 

optimize mitigation strategies that will be proposed to 

urban designers and planners. 

As a result of the tremendous urban heterogeneity, 

many classifications have already been developed to 

enhance understanding of the urban climate (Chandler, 

1965; Ellefsen, 1991; Oke, 2004; Celik et al., 2019). 

Amongst them, the Local Climate Zone (LCZ) scheme 

(Stewart and Oke, 2012) uses standardized descriptions 

of urban and rural landscapes and therefore can be 

applied in cities all over the world. Each LCZ class is 

defined by a specific range of geometric and surface-

cover values. The LCZ classification consequently 

enables to identify the main parameters that can 

strengthen the UHI intensity. Two distinct approaches 

are commonly used to generate LCZ maps: the raster-

based approach and the vector-based approach. The 

former relies on remote sensing data whereas the latter 

uses GIS vector layers. Several methods for LCZ 

mapping have been proposed in the literature (Unger et 

al., 2014; Bechtel et al., 2015; Geletič and Lehnert, 

2016; Sekertekin et al., 2016), each of them with 

advantages and drawbacks. Although Hidalgo et al., 

2019 the LCZ concept was originally designed for 

urban climate purposes and therefore links UHI 

magnitude to urban morphology, few previous studies 

are directly using LCZ parameters to map the 

phenomenon.   

A first raster-based method leading to an LCZ 

classification for Strasbourg city has been proposed in 
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previous work (Gourguechon, 2018). This method 

follows the procedure reported in Bechtel et al (2015) 

and is based on free satellite images (Sentinel-2 or 

Landsat 8) and the use of free software packages 

(Google Earth and SAGA GIS). Firstly, training areas 

are defined for each LCZ. The spectral signature of 

pixels composing these areas is then compared to 

reference values of LCZ classes to associate each 

training area polygon to a given LCZ type. Among the 

supervised classifier algorithms, the random forest 

classifier has been chosen since it appears to be an 

ideal compromise between the achieved accuracy and 

computational performance according to Bechtel et al 

(2015). Although this methodology is easily applicable 

and universal, some biases appear in the process. The 

approach remains subjective because the training areas 

are defined by the user and hence depend on its 

expertise and local knowledge of the given territory. 

Moreover, it still relies on the quality of remote sensing 

images that are used. Finally, it only allows reaching 

the lowest level of detail (L0) from the World Urban 

Database and Access Portal Tools (WUDAPT). Since 

the deliverable is limited to the visual information that 

is provided by remote sensing images, it has been 

decided to take benefit from vector layers and to 

develop a vector approach. 

This study presents a vector-based method whose aim 

is to get a more accurate LCZ classification. The 

associated database and processing chains are 

described. In this paper, a new method for mapping 

and assessing the UHI that depends partly on LCZ 

parameters is also proposed. 

Study area 

The study area is the whole Eurométropole de 

Strasbourg (EMS) area, a medium-sized European city 

(505,000 inhabitants, 339.6 km
2
) located in 

northeastern France (Figure 1). The city has a 

temperate climate, which can be named Cfb according 

to the updated Köppen-Geiger classification (Kottek et 

al., 2006), with warm summers and cold winters. The 

average annual temperature reaches 10.9°C. July is the 

warmest month, with a mean monthly maximum 

temperature of 20.1°C (1981 to 2010 climate normals, 

Météo France). 

Fig. 1. Location of the EMS area (Eurométropole de Strasbourg, France). 

Fig. 2. LCZ classification (Stewart and Oke, 2012). 
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Table 1. LCZ properties (Stewart and Oke, 2012). 
Properties LCZ parameters 

Urban morphology 

Sky View Factor (SVF) 

Aspect Ratio (H/W) 
Height of Roughness Elements (HRE) – [m] 

Terrain Roughness Class (TRC) 

Surface cover 

Impervious Surface Fraction (ISF) 
Pervious Surface Fraction (PSF) 

Building Surface Fraction (BSF) 

Thermal radiative materials properties Surface albedo 
Surface admittance -[J.m-2.s-1/2. K-1] 

Urban metabolism Anthropogenic heat flux - |W.m-2] 

Materials and Methods 

Description of the database concerning LCZ 

characteristics 

The vector-based method uses precise GIS input data 

to calculate each contributing factor of the LCZ 

classification. As mentioned in (Chen et al., 2020), this 

solution gives a more accurate representation of the 

LCZ variability. The LCZ classification consists 

actually of 17 standard LCZ types, among which 10 are 

considered as “built types” (1-10) and 7 as “land cover 

types” (A-G) (Figure 2).  

The respective values of every one of the 10 physical 

parameters composing the LCZ determine the class to 

which each LCZ belongs (Stewart and Oke, 2012). 

Table 1 presents the LCZ properties and their 

associated parameters.  

Each LCZ class can be thus defined quantitatively by a 

set of parameter ranges. It is therefore essential to 

determine these classes as precisely as possible. The 

raster-based method described above allows reaching 

only a limited level of precision. Despite that, the 

subsequent LCZ map (Figure 3) provides interesting 

results and above all, a first LCZ classification for 

Strasbourg. 

Fig. 3. LCZ classification using a raster-based approach (Gourguechon, 2018). 

A high diversity of data is thus required to describe as 

accurately as possible urban geometry, material 

properties, land cover surface, vegetation, etc. While 

the workflow leading to an LCZ classification based on 

vector data can be generalised, such detailed 

information is hardly available in all cities in the world 

and hence prevents the GIS approach from being 

applied universally. In the case of EMS, a large 
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database composed of many land use and cadastral 

parcels data is accessible. Free and open data are 

investigated as a priority so that the methodology is 

reproducible.  

The available dataset is composed of vector and raster 

data. The former provide elements to define LCZ 

polygons, while the latter facilitate the determination of 

LCZ parameters values. These data are collected from 

several institutes and are composed of fine-resolution 

images, ranging from some meters to twenty meters, 

and vector layers for the whole study area. 

Determination of LCZ polygons and LCZ parameters 

It is essential to check that a given LCZ does not 

represent mixed urban morphologies and land cover 

types, otherwise it will only describe a smoothed 

climate behavior. The cadastral data from our vector 

database are hence used to digitize polygons which 

constitute the basic entities of the classification. The 

layers of these data correspond to either a specific LCZ 

type or a group of LCZ types.  

As mentioned in Hidalgo et al (2019), the polygons can 

likely fall into four land cover types: built-up areas 

(LCZ 1-10), vegetated areas (LCZ A-B), agricultural or 

unbuilt areas (LCZ C-D-F), and water bodies (LCZ G). 

First, by using GIS tools with ArcMap software, the 

forest areas and water bodies are linked to their 

respective land cover types. Only the forest surface 

areas that are superior to one hectare are investigated, 

smaller ones would not respect the required LCZ size. 

Nevertheless, it has been decided to reduce the surface 

threshold for water bodies to 3000 m
2
, otherwise, the 

main watercourses would have been excluded. The 

remaining intermediate polygons (also called “islets”) 

are either built areas or agricultural areas. Those 

having an area superior to one hectare are disjoint from 

built-up islets. Then the road layers are used to fix 

agricultural and built islets contours. Industrial and 

retail areas are classified as built islets whereas 

agricultural islets are attributed to runways. Finally, 

those polygons whose area is less than one hectare are 

merged with their largest contiguous polygon. As a 

result of the process (Figure 4), 2212 polygons are 

digitized, with one of the four land cover groups 

assigned to each of them.  

Fig. 4. Methodology used for defining LCZ polygons in the vector based approach. 

Based on available data, six of the ten LCZ parameters 

can be determined, i.e. the Building Surface Fraction 

(BSF), the Impervious Surface Fraction (ISF), the 

Pervious Surface Fraction (PSF), the Sky View Factor 

(SVF), the Height of Roughness Elements (HRE) and 

the surface albedo, for each polygon.  

The surface admittance and the anthropogenic heat flux 

were omitted due to missing data for the study area. 

Concerning the two remaining parameters, they were 

either too difficult to obtain from our data (like the 

aspect ratio) or had irrelevant results (like TRC). 

Classification procedure 

Preliminary work must be conducted to exclude the 

LCZ types which cannot occur in the study area due to 

local urbanistic and climatic context. This is the case 

for LCZ 1, since there are no central business districts 

in Strasbourg, LCZ 7 due to the lack of areas 

corresponding to slums, and LCZ C because they are 

mainly located in Mediterranean areas. Up to fourteen 

LCZ types will thus be potentially distinguished in the 

final LCZ map of the EMS area.    

Philipps et al., / IJEGEO 9(4):057-067 (2022)  
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To assign an LCZ class to each polygon, the fuzzy 

logic is used, whose application is here a trapezoidal 

decision rule (Unger et al., 2014). Hence, the 

membership of polygons to an LCZ type might range 

between completely true and completely false (Figure 

5). If the parameter value belongs to LCZ X ranges, the 

assigned membership score is equal to 1. Else, the 

score is between 0 and 1 and proportional to the 

absolute difference between the parameter value and 

the closest boundary.  

Fig. 5. Fuzzy membership function for ISF and BSF 

parameters with LCZ 2 class. 

Although the trapezoidal membership function tends to 

follow the four groups described previously, it is not 

enough to distinguish “built” LCZ types. It is therefore 

essential to provide additional criteria to better exclude 

irrelevant LCZ classes. Even if there are neither 

vegetated surface fraction nor compactness notion in 

the LCZ scheme, the inclusion of additional parameters 

should significantly improve the assignment of LCZ 

classes. Two original parameters were thus added: the 

Vegetated Surface Fraction (VgSF) and the 

Compactness Index (CI). The VgSF is calculated as 

follows: 

VgSFLCZ = ∑Svegei/SLCZ (Eq.1) 

Where Svegei corresponds to an elementary vegetated 

surface in a polygon i and SLCZ to the total LCZ surface 

area.  

Moreover, the CI takes into account the space between 

buildings. Actually, the compacter the built zone, the 

narrower the space between buildings. Thiessen 

polygons are used to delineate proximal regions around 

buildings, as shown in Figure 6. The compactness 

notion is here illustrated with area A which is sparser 

than area B. 

Fig. 6. Compactness index for a part of Strasbourg city 

based on Thiessen polygons. 

As expected, many polygons are still assigned to 

several LCZ classes. A decision tree inspired by 

Geletič and Lehnert’s study (2016) is therefore 

introduced to improve the LCZ assignment. It is 

composed of two main branches: the former follows a 

succession of tests and decisions that allows attributing 

the built LCZ class output (LCZ 1-10), whereas the 

latter does the same but with land cover LCZ types 

(LCZ A-G). The decision tree relies on the degree of 

membership and the description of LCZ classes. 

Despite improvements in LCZ class assignments, 

several polygons aren’t well-classified yet. It remains 

difficult to distinguish some LCZ classes from others, 

due to the lack of some parameters which would 

provide more information. For example, the LCZ 10 

type (“Heavy industry”) can’t be detected despite the 

presence of corresponding zones in the EMS area. It 

results from the lack of anthropogenic heat flux which 

would allow distinguishing the LCZ 10 class from the 

LCZ 8 or the LCZ E. Moreover, several outcomes can 

still result in a given LCZ type.  

To better detect some LCZ classes, in particular urban 

LCZ types, it has been decided to adjust some LCZ 

parameters values ranges. It permits actually to take 

into account the urban and regional context, which is 

here typical for a mid-sized European city. 

Subsequently, the final decision tree has been adapted 

to these changes (Figure 7).  

Therefore, the developed vector approach and its 

associated database (Figure 8) are not only used to get 

a relevant LCZ classification, but also to determine 

UHI intensities. 

Philipps et al., / IJEGEO 9(4):057-067 (2022)  
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Fig. 7. Final decision tree (Montauban, 2019). 

Fig. 8. Diagram of the developed vector-based approach. 

Multiple Linear Regression model for UHI mapping 

It is well known that LCZ parameters impact UHI 

intensity, also called ΔTur. In EMS, a network of about 

twenty weather stations primarily worked between 

2013 and 2016 (Philipps et al., 2020). Since the LCZ 

parameters are henceforth available for each polygon, 

it is possible to relate them to the ΔTur, and hence to 

determine a UHI intensity value in any LCZ polygon 

of the EMS area. Therefore, air temperature data from 

the meteorological network and the LCZ parameter 

values of each weather station are used to calculate a 

multiple linear regression (MLR). The ΔTur in any 

urban station x at time t is determined by subtracting 

the air temperature of the rural reference station (here 

the Entzheim station) from the urban station (Eq. (2)). 

∆𝑇𝑢𝑟(𝑥,𝑡) = 𝑇𝑎𝑖𝑟 𝑢𝑟𝑏𝑎𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑥 − 𝑇𝑎𝑖𝑟 𝑟𝑢𝑟𝑎𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛

(Eq.2) (1) 

The mean maximum daily ΔTur value of each station is 

linked with its LCZ parameters values. Several MLR 

with different LCZ parameters are tested. The BSF, the 

ISF, and the VgSF, whose respective maps are 

presented in Figure 9, appear to be the most correlated 

parameters with the mean ΔTur max (Eq. (3). 

Philipps et al., / IJEGEO 9(4):057-067 (2022)  
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0,0699 ∗ 𝐵𝑆𝐹 + 0,0572 ∗ 𝐼𝑆𝐹 − 0,0329 ∗ 𝑉𝑔𝑆𝐹 +

0.3268 = ∆𝑇𝑢𝑟 𝑚𝑎𝑥                          (Eq.3) (2) 

Equation 3 is then implemented in the SAGA GIS tool 

and applied to each LCZ polygon to generate a UHI 

map, as suggested in Bottyan and Unger (2003).  

Fig. 9. Maps of (a) Building Surface Fraction (BSF) (b) Impervious Surface Fraction (ISF) and (c) Vegetated Surface 

Fraction (VgSF). 

Philipps et al., / IJEGEO 9(4):057-067 (2022)  
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Results and discussion 

The final LCZ classification map 

Thirteen LCZ classes out of the seventeen originally 

defined by Stewart and Oke (2012) were listed for the 

LCZ classification. Figure 10 presents the resulting 

classification. It can be noticed that the spatial pattern 

represents the structure of the EMS area well.  

No reference LCZ map exists for the EMS area, so the 

accuracy of the final LCZ classification map (Figure 

10) can’t be assessed. However, it has been compared

to another LCZ map obtained according to the L0 

WUDAPT method (Landes et al., 2020). The results 

highlight common tendencies, especially concerning 

the unbuilt LCZ classes repartition. Nevertheless, some 

differences appear regarding the “built” LCZ types. 

Firstly, the vector LCZ map is more precise because it 

integrates height and compactness parameters. 

Therefore, it allows better distinguishing some urban 

LCZ classes from others. Secondly, the WUDAPT L0 

approach tends to smooth LCZ spatial features whereas 

the vector approach better captures morphological 

details. Considering a regular grid composed of 100 m 

x 100m cells, those containing only one LCZ class are 

selected and compared between the two approaches. 

Using a confusion matrix, it can be observed that 

precision of 91% is achieved, which proves the 

relevance of the two methods. However, the vector 

method is more time-consuming compared to the 

WUDAPT L0 approach, due to the complexity of its 

implementation. According to the user requirements, it 

can be advised to use the WUDAPT approach if there 

is a need only for qualitative analysis. However, if the 

users need an LCZ map of higher precision for 

quantitative analysis, the vector approach is 

recommended. 

In addition to this comparative analysis, the LCZ 

classification has been assessed by experts of the 

Urban planning and Development Agency of 

Strasbourg (ADEUS). They validated the classification 

despite some errors. Their analysis highlights that some 

areas remain inaccurately classified, in particular urban 

parks, pitches, graveyards and water bodies shores. 

These areas are related to the microscale urban 

structure (several cm to 100m) and can be therefore 

difficult to assign to an LCZ class since an LCZ might 

cover hundreds of meters to several kilometers area. 

Although the remaining limits, the vector-based LCZ 

classification can be considered to have reached the L1 

WUDAPT level details according to WUDAPT criteria 

(Bechtel et al., 2015). 

Fig. 10. Final LCZ classification map of the EMS area obtained with the developed vector approach. 

Philipps et al., / IJEGEO 9(4):057-067 (2022) 
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UHI map 

The methodology described above enables to produce a 

mean maximum daily UHI map. As it relies on LCZ 

parameters values of each polygon, its relevance 

depends simultaneously on the accuracy of the MLR 

equation and the reliability of the LCZ classification. 

However, when a polygon has a given LCZ class and 

its neighbour has another one, very abrupt transitions 

can occur: some proximal polygons present mean ΔTur 

max differences of 8°C, which is unrealistic. Therefore, 

the moving average is applied with SAGA GIS to 

smooth the obtained UHI intensities.   

The final UHI map (Figure 11) presents as expected a 

strong correlation with the LCZ classification. 

Calculated mean maximal UHI intensities (ΔTur max) 

tend to be highest for LCZ 2 and LCZ 3, which 

characterise the city centre and proximal suburbs. To a 

lesser extent, some peripheral cities also present 

stronger UHI intensities in their centre, which is often 

classified in LCZ 6 or LCZ 8.  

The methodology highlights not only the inter-LCZ 

UHI heterogeneity but also the persistent intra-LCZ 

variability. For example, the mean ΔTur max values in 

LCZ 2 vary between 3°C and more than 6°C. Due to 

their strong BSF value, some urban parks are assigned 

to LCZ 2 class despite their high VgSF value. The 

mitigation potential of vegetation on the UHI 

phenomenon is clearly illustrated here.  

Table 2. Performance metrics values for MLR 

equation. 

R2 

Root 

Mean 

Square 

Error 

(RMSE) 

Mean Bias 

Error 

(MBE) 

Mean 

Absolute 

Error 

(MAE) 

Refined 

index of 

agreement 

(dr) 

0.71 0.53 -3,21.10-16 0.49 0.99 

As shown in Table 2, metrics values show that the 

MLR model is statistically relevant. However, only 

twenty ideal weather days in 2015 have been used to 

average the mean ΔTur max values of the 

meteorological stations. This is a small sample size and 

limits the robustness of the model. Besides, some LCZ 

parameters, like surface albedo, aren’t considered in 

the MLR equation whereas they are also related to UHI 

intensities. 

Fig.11. Mean maximum daily UHI intensity map (Philipps et al., 2020). 
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Conclusion 

In this paper, a UHI mapping methodology based on 

LCZ parameters was developed, as well as the vector 

approach used to produce the LCZ map of the EMS 

area. The comparison between the vector-based and the 

raster-based LCZ classifications showed that both 

approaches are relevant as they lead to similar LCZ 

maps. Even though the input data for the vector 

approach are difficult to acquire and the process is 

complex and time-consuming, this methodology is 

more accurate since it relies on more precise and 

diverse data. As soon as a relevant LCZ classification 

was available, it was possible to associate LCZ 

parameters of each LCZ polygon and UHI intensities. 

This UHI mapping method is easy to apply and permits 

highlighting the important spatial heterogeneity of the 

phenomenon as well as the mitigation potential of 

vegetation. However, this first UHI map still needs to 

be improved. Although it shows pertinent results which 

are well correlated to measures, it doesn’t include some 

LCZ parameters, like surface admittance or aspect 

ratio, which might improve the analysis. Besides, the 

map illustrates only the mean maximum daily UHI 

intensity, and neither the mean daily nor the seasonal 

UHI. Further works will be conducted aiming to 

produce more significant UHI maps of the EMS area. 

Finally, some of the remaining LCZ parameters might 

be calculated as part of future work, which would 

likely improve the LCZ classification and therefore the 

UHI mapping. 

This study highlights the fact that the UHI analysis 

depends strongly on the GIS data worldwide available. 

The study used mainly free data and open-source 

software to guarantee reproducibility at least in French 

cities. Actually, the developed methodology is 

transferable to any city in the world if the necessary 

input data are available. In the context of future works, 

the presented UHI map has also been compared to 

another which was produced by the Meso-NH 

atmospherical model (Masson, 2000; Lac et al., 2018). 

Preliminary results show that both maps present 

noteworthy similarities, which underscores the 

relevance of the two methods. This will constitute the 

object of future studies which will be further published.  
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