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 Deep Learning algorithms are used by many different disciplines for various purposes, thanks 
to their ever-developing data processing skills. Convolutional neural network (CNN) are 
generally developed and used for this integration purpose. On the other hand, the widespread 
usage of Unmanned Aerial Vehicles (UAV) enables the collection of aerial photographs for 
Photogrammetric studies. In this study, these two fields were brought together and it was 
aimed to find the equivalents of the objects detected from the UAV images using deep learning 
in the global coordinate system and to evaluate their accuracy over these values. For these 
reasons, v3 and v4 versions of the YOLO algorithm, which prioritizes detecting the midpoint 
of the detected object, were trained in Google Colab’s virtual machine environment using the 
prepared data set. The coordinate values read from the orthophoto and the coordinate values 
of the midpoints of the objects, which were derived according to the estimations made by the 
YOLO-v3 and YOLOV4-CSP models, were compared and their spatial accuracy was calculated.  
Accuracy of 16.8 cm was obtained with the YOLO-v3 and 15.5 cm with the YOLOv4-CSP. In 
addition, the mAP value was obtained as 80% for YOLOv3 and 87% for YOLOv4-CSP. F1-score 
is 80% for YOLOv3 and 85% for YOLOv4-CSP. 
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1. Introduction  
 

Vehicle tracking and traffic situation analysis play an 
essential role in safe autonomous driving. Vehicle 
detection from unmanned aerial vehicle (UAV) imagery 
is a crucial task for many computers vision-based 
applications [1]. However, various factors associated 
with aerial photos, such as different vehicle sizes, 
orientations, types, density, limited datasets, and 
inference speed, make it a difficult process [2]. Many 
deep learning-based strategies have been developed in 
the literature in recent years to solve these issues [3]. 

When image processing techniques are combined 
with deep learning, successful techniques have begun to 
emerge in this regard [4]. Unmanned aerial vehicle (UAV) 
images are also widely used for object detection and 
tracking. UAVs have another concept increasing due to 
their customizability for different purposes and 
conditions. Considering these two solutions together is 
an inevitable unity, but it is possible to see their examples 
in many fields such as cultural heritage [5-7], building 

extraction [8, 9], mapping [10], geology [11], mining [12], 
shoreline extraction [13]. Images obtained with high 
sensitivity in very low flight using UAVs can be produced 
at a lower cost than images obtained from conventional 
aerial photogrammetry [10]. 

For computer vision and image processing, artificial 
intelligence (AI) offers new methodologies and benefits. 
Deep learning (DL) algorithms are becoming increasingly 
popular since they are resilient and require fewer human 
operations [14]. Deep learning has an essential role in 
many typical applications and it is gradually developing 
[15]. Deep Learning is essentially one of the sub-
branches of artificial intelligence technology. Although 
Artificial Intelligence has been on the agenda since the 
1950s, Deep Learning has been more effective since the 
2010s [16]. The main reasons for this are the developing 
hardware features and the new algorithms and methods 
developed depending on the increasing amount of data. 
In simple terms, deep learning is the process of 
mathematically modeling the learning process of human 
beings. 
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Convolutional Neural Network (CNN) has been 
developed based on imitating the working principles of 
the neural networks and learning mechanism in the 
human brain [16]. Neural networks are capable of 
solving complicated problems with accuracy [17]. Object 
detection is a challenging topic in photogrammetry and 
computer vision. One of the primary issues is the need for 
human interaction in object detection [18]. CNN models 
are one of the important tools to reduce human 
intervention. CNN processes images used as input in 
layers for object detection. As a result of various filtering 
processes, the image becomes a flat matrix. As a result of 
the mathematical equations that are solved based on the 
parameters determined for the model using the resulting 
matrix, a weight and a bias value are determined for each 
node. Objects in the new images evaluated as a result of 
these weights are detected.  

CNN-based object approaches are examined under 
two title: two-stage and single-stage detection methods 
[19]. Regions with convolutional neural networks (R-
CNN), Fast R-CNN and Faster RCNN can be counted as 
two-stage detectors. R-CNN divides images into region 
proposals and applies CNN for each region respectively. 
CNN decides the appropriate region and object size. 
However, two-stage approaches stand out with their 
slowness. The speed problem is solved with single-stage 
approaches. You Only Look Once (YOLO) is a single-stage 
object detection approach. YOLO thinks that object 
detection is a regression problem and obtain the position 
of the object, category and corresponding confidence 
score. It increases the detection speed and detects the 
object in the real-time target [20].  

The aim of this study is to consider the DL algorithms 
developed for detection from a photogrammetric 
perspective and to compare the midpoints of the 
detected objects using the produced position accuracies. 
Vehicle detection was performed over orthophoto using 
YOLOv3 and YOLOv4-CSP algorithms. The midpoint 
coordinates of the detected vehicles are obtained in the 
EPSG:5254 TUREF / TM30 coordinate system.  Accuracy 
analysis was performed by comparing the detected 
coordinates and reference coordinates. 
 
 
2. Literature Review 
 

There are different neural network algorithms for 
object detection. For example, deep learning algorithms 
were used in these studies [19, 21, 22, 23]. 

In the study by Cepni et al. (2020) [19], vehicles were 
selected as the object to be detected and their data were 
analyzed according to the YOLOv3- YOLOv3-spp and 
YOLOv3-tiny algorithms, with the models they trained on 
Google Colab using the COCO data set and UAV images. 
Average IoU is obtained as 84,88% with YOLOv3-spp. 
Zhao et al. [21] presented a compact solution for vehicle 
detection, tracking and ground coordinate using a 
microcomputer integrated UAV system. They preferred 
YOLOv3 as a deep learning algorithm in the model they 
established in real-time. However, the model used was 
chosen as a pre-trained model due to the physical 
conditions of the UAV platform. They stated that they 
preferred a passive system to calculate the coordinates of 

the target object, so the positioning process was carried 
out according to the data obtained from the GPS and IMU 
sensors on the UAV. In the study, mAP value of 90.61% 
was reached with YOLOv3. Božić-Štulić et al. [24] aim to 
perform automatic object detection and positioning from 
aerial photographs using convolutional neural networks 
(CNN) without the need for Ground Control Points (GCP), 
in a three-stage proposed method as a new approach. 
The vehicle detection accuracy is 82.5% by using R-CNN. 
Liu et al. [25] have presented a solution called UAV-YOLO 
to solve the difficulties experienced in detecting small 
objects from UAV-based images in their study based on 
deep learning algorithms. They stated the study's aims as 
creating an image data set obtained from the UAV 
platform to improve the human detection performance 
and improve the neural network structure of the YOLO 
algorithm. In the study, the YOLOv3 algorithm was 
chosen and an improvement was made for the purpose 
of the study by using the Darknet software framework. In 
this way, model training and backbone structure 
optimization were provided. As a result of the study, a 
90.86% mAP value was obtained in object detection 
made on UAV images. Zhang et al. [26] explains the stages 
of the approach they developed based on the problems 
experienced by object detection algorithms and 
integrated with the TrackleNet Tracker (TNT) method in 
their photograph and video series. In this approach, the 
RetinaNet method was preferred for object detection, as 
it was more convenient in the subsequent monitoring 
phase. In the multi-object detection phase, the TNT 
method is included to eliminate incomplete or unreliable 
detections that may arise. Subsequently, Visual 
Odometry and Ground Plane Estimation were made 
using the multi-image stereo (MWS) method. Finally, 3D 
object positioning was done from 2D image coordinates, 
thanks to the camera parameters and the data obtained 
in the previous processes. The detection performance of 
the study is 97.8% Map for cars. Radovic, et al. [27] 
determined their motivation as testing CNN object 
detection algorithms that can be used for autonomous 
UAV applications in civil engineering. They preferred the 
YOLO algorithm in training the artificial network. Images 
obtained using Google Maps platform were used to test 
the trained model. They obtained 97.5% accuracy using 
satellite images.  In the study conducted by Atik et al. 
[15], it was aimed to detect different objects over DOTA 
data with YOLO-v2 and YOLO-v3 algorithms. The vehicles 
are detected with 59% F1-score using YOLOv3. 
 
3. Material and Method 
 
3.1. Dataset 
 

In the study, two separate data sets were used for 
training and testing. The dataset used for the training 
consists of aerial images obtained with UAV on the Prince 
Sultan University campus. This dataset, published as 
open-source on GitHub, was prepared for vehicle 
detection from UAV-based images [28]. The platform 
height was specified as 55 m and 80 m while the images 
were collected (Fig. 1). The training set contains 218 
images and 3,365 instances of labeled cars. 
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Figure 1. A sample image from training dataset 
 

For the performance tests of the algorithms, aerial 
images obtained from the UAV flight over Istanbul 
Technic University Ayazaga Campus were used (Fig. 2). 
Forward overlap 80% and side overlaps of 70% and 
flown at a height of 80 m above were selected as flight 
parameters. Ground Sampling Distance (GSD) is around 
3 cm/pixel. Vehicle detection was performed on the 
scaled and coordinated orthophotos created with these 
images. For accuracy analysis, vehicles were manually 
labeled and ground truth was produced. 
 

 
Figure 2. A sample image from test dataset 
 
3.2. You Only Look Once (YOLO) 
 

You Only Look Once (YOLO) [20] is among the most 
well-known deep learning algorithms, and it stands out 
with its speed thanks to its single-stage detection 
architecture. In addition, if necessary, optimizations are 
made, it can work as CPU-based and is open source. Also, 
some pixels will have object conflict. Thanks to the 
"Anchor Box" approach in the YOLO algorithm, this 
problem can be solved. 

There are some points to consider when using the 
YOLO algorithm. Because it processes images in one step, 
large images can exceed hardware capacities, and the 
detection accuracy of small objects in large images may 
be low. For this reason, the data to be used should be well 
examined. If necessary, large-size images should be 
divided into parts. Label files created as a result of the 
labeling process should be prepared in the format 
required by the YOLO algorithm. This format is shown in 
Table 1. The x and y coordinates, representing the 
centroid of the boxes drawn during labeling, take a value 

between 0 and 1. Width and height are values for the 
dimensions of the rectangle drawn for the label or 
bounding box (Fig. 3). 
 

 
Figure 3. YOLO Algorithm work schema [28] 
 

YOLO-v3 has residual skip connections and an up-
sampling layer. Also, it makes detections at three 
different scales at layer 61, 94 and 106 [29]. It has 
darknet53 backbone [30]. Moreover, Rectified Linear 
Unit (ReLU) function was preferred as an activation 
function in YOLO-v3. In this study, YOLOv4-CSP (Cross-
Spatial-Partial) is used. It has similar architect, but it uses 
the CSPdarknet53 backbone. YOLOv4-CSP [31] has cut-
mix and mosaic data augmentation layers as default and 
without increasing training or detection time. YOLOv4-
CSP uses a mish activation function and it has a Spatial 
Pyramid Pooling (SPP) module. The main difference 
between YOLO-v3 and YOLOv4-CSP algorithms is the 
backbone structure they use. Darknet53 is used for 
YOLO-v3, while CSPDarknet53 is used for YOLOv4-CSP. 
Accordingly, YOLO-v3 consists of a total of 106 layers, 
while YOLOv4-CSP contains a total of 161 layers.  

The mathematical expression of the confidence score 
for the predictions made by the YOLO algorithm is 
specified in equation 2.1, as expressed in the article 
explaining the YOLO-v3 algorithm [30]. 
 

Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ   (1) 

 
According to the equation, the confidence score of a 

prediction box is the product of the confidence score of 
the object that can be detected in it and the IOU value 
obtained for the box. It takes a value between 0 and 1. A 
high IOU value is an indicator of how accurately the 
dimensions of the detected object and the region it is 
located are detected. 
 
3.3. Evaluation Metrics 
 

As evaluation metrics, F1-score and mean average 
precision (mAP) are utilized. Precision is used to 
calculate the percentage of points that are classified as 
positive. The recall of a collection of positives is the 
percentage of true positives. The mean Average 
Precision, or mAP score, is the mean precision over all 
classes and/or overall IoU thresholds, depending on the 
numerous detection challenges that occur. 
 
 



International Journal of Engineering and Geosciences– 2023, 8(2), 138-145 

 

  141  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (3) 

  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

  

AP = ∑ [Recalls(k) − Recalls(k + 1)] ∗ Precisions(k)

k=n−1

k=0

 (5) 

  

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 (6) 

 
True positive (TP) is the number of points that are 

prediction is positive and the actual label is positive. 
False positive (FP) is the number of points that are 
prediction is positive and the actual label is negative. 
False negative (FN) is the number of points that are 
prediction is negative and the actual label is positive [32]. 
 
4. Experiment 
 

The algorithms compared within the scope of the 
study were YOLO-v3 and YOLOv4-CSP algorithms. Both 
algorithms are prepared in accordance with the Darknet 
software framework. In order to compare the models, all 
parameters were kept constant during the training of the 
models. During the training of both models, parameter 
values published as open source by the publishers of 
Darknet Software Architecture were used. The workflow 
is presented in Fig. 4. 
 

 
Figure 4. Workflow diagram 

4.1. Producing Orthophoto 
 

Photogrammetry is a scientific technique to calculate 
an object's three-dimensional coordinates by measuring 
the correspondence points in overlapping images and to 
provide reliable sensor calibrate for 3D object modelling 
from digital images [33]. As computer vision algorithms 
and photogrammetric technologies are combined, 
procedures that automate the image-based 3D modeling 
process become more common [34]. Agisoft Photoscan 
was used to model the point cloud. The software is based 
on the Structure-from-Motion (SfM) algorithm, which 
works on the basis of photogrammetry principles, in 
which the 3D coordinates of an object are determined by 
measuring the matching points between two overlapping 
photos.  

Removing the errors due to topography in 
photographs and making them vertical is called 
orthorectification. The final product with coordinate 
information is called orthophoto. Coordinates of certain 
points are marked on the Orthophoto by using the GCP 
whose coordinates are known. As a result of balancing 
and interpolation processes, the coordinate values of any 
location on the orthophoto can be obtained. Although 
there are open source and paid software solutions for 
these operations, while producing the orthophoto, 372 
images of 4000x3000 pixels were used (Fig. 5). The 
orthophoto has 3 cm/pixel spatial resolution. One of the 
factors affecting the accuracy of the orthophoto is the 
distribution of ground control points on the area. In the 
study, attention was paid to the homogeneous 
distribution of ground control points. In addition, care 
was taken to produce the generated point cloud at high 
density (83 pts/m2). Thus, the digital elevation model 
(DEM) produced has high accuracy as a result of 
interpolation. DEM quality is one of the main factors 
affecting orthophoto accuracy. 
 

 
Figure 5. Orthophoto of Istanbul Technical University 
Ayazaga Campus.  
 

The produced Orthophoto contains 10 ground control 
points (GCP). 3D coordinates of GCPs were measured by 
terrestrial measurements (using Global Navigation 
Satellite System (GNSS)).  In addition, in order to 
calculate the accuracy of the model, 5 control points were 
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selected from the images in conditions that can be 
distinguished and intersect. The technical report of the 
model was prepared using Agisoft Professional software. 
The accuracy values obtained based on this report are 
shown in Table 1. 
 
Table 1. Accuracy assessment result of check points. 

Point X Error 
(cm) 

Y Error 
(cm) 

Z Error 
(cm) 

Total 
(cm) 

3 0,2 0,5 0,1 0,5 
6 -3,7 -1,0 5,6 6,8 
7 2,4 0,0 -5,7 6,2 
8 2,0 -0,2 -5,7 6,1 
9 -0,4 -0,4 1,7 1,8 
∑ 2,2 0,5 4,4 5,0 

 
4.2. Training  
 

Within the scope of the study, YOLO-v3 and YOLOv4-
CSP models were trained. Model training was done in 
cloud environment using Google Colab. The training 
period varies depending on the hardware power. The 
training dataset divided into 90% training and 10% 
validation. Training parameters are given in Table 2. 
 

Table 2. Training parameters. 
Parameter YOLOv3 YOLOv4-CSP 
Batch Size 16 16 
Subdivision 4 4 
Width x height 608x608 608x608 
Max. batch 6000 6000 
Learning rate 0.001 0.001 
Momentum 0.9 0.9 

 
During the training phase, the parameter files of the 

models were accepted as standard and no changes were 
made. The data used during model training are data 
shared as open source. The images are separated as 
training and validation data, the same distribution is 
used for each model. Although 2000 iterations are 
recommended for each number of classes, since there is 
only one class in our study, the models are trained with 
6000 iterations, which is the minimum number of 
iterations recommended by the developers. The weights 
with the highest sensitivity value among the obtained 
weights were selected for the test. Trained models were 
tested on images selected over orthophoto.  
 
 
 

 
Table 3. Analysis of position accuracy of vehicles detected on Figure 7, test area 2 using Model YOLO-v3 

 Orthophotos Coordinates (m) Detected Coordinates (m) Variation (m)   
Object RIGHT UP RIGHT UP RIGHT UP Vx^2 Vy^2 

1 418093,865 4552668,461 - - - - - - 

2 418096,459 4552657,237 418096,443 4552657,497 0,016 -0,260 0,000 0,068 

3 418104,607 4552621,107 - - - - - - 

4 418109,700 4552640,200 - - - - - - 

5 418110,083 4552622,712 418110,131 4552622,884 -0,048 -0,172 0,002 0,029 

6 418112,624 4552623,083 - - - - - - 

7 418115,305 4552641,617 - - - - - - 

8 418117,522 4552623,495 - - -  - - 

9 418117,788 4552647,484 418118,028 4552647,399 -0,240 0,085 0,058 0,007 

10 418119,946 4552623,651 - - - - - - 

11 418126,056 4552648,435 418125,993 4552648,197 0,063 0,238 0,004 0,057 

       RMSE= 0,168 m 

 
Table 4. Analysis of position accuracy of vehicles detected on Figure 7, test area 2 using Model YOLOv4-CSP 

 Orthophotos Coordinates (m) Detected Coordinates (m) Variation (m)   
Object RIGHT UP RIGHT UP RIGHT UP Vx^2 Vy^2 

1 418093,865 4552668,461 418093,829 4552668,681 0,036 -0,220 0,001 0,048 

2 418096,459 4552657,237 418096,388 4552657,290 0,071 -0,054 0,005 0,003 

3 418104,607 4552621,107 418104,518 4552621,481 0,088 -0,374 0,008 0,140 

4 418109,700 4552640,200 418109,650 4552640,245 0,050 -0,045 0,003 0,002 

5 418110,083 4552622,712 418109,980 4552622,856 0,103 -0,144 0,011 0,021 

6 418112,624 4552623,083 418112,662 4552623,159 -0,039 -0,077 0,002 0,006 

7 418115,305 4552641,617 418115,276 4552641,704 0,028 -0,087 0,001 0,008 

8 418117,522 4552623,495 418117,519 4552623,833 0,003 -0,338 0,000 0,114 

9 418117,788 4552647,484 418117,780 4552647,550 0,007 -0,066 0,000 0,004 

10 418119,946 4552623,651 418119,899 4552623,902 0,047 -0,251 0,002 0,063 

11 418126,056 4552648,435 418125,800 4552648,582 0,256 -0,147 0,066 0,022 

       RMSE= 0,155 m 
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Table 5. Comparison of models using common detected vehicles on test area 2 
  Orthophotos Coordinates (m) Detected Coordinates (m) Variation (m)     
Object RIGHT UP RIGHT UP RIGHT UP Vx^2 Vy^2 
2 418096,459 4552657,237 418096,388 4552657,290 0,071 -0,054 0,005 0,003 
5 418110,083 4552622,712 418109,980 4552622,856 0,103 -0,144 0,011 0,021 
9 418117,788 4552647,484 418117,780 4552647,550 0,007 -0,066 0,000 0,004 
11 418126,056 4552648,435 418125,800 4552648,582 0,256 -0,147 0,066 0,022 
       RMSE= 0,128 m 

 

5. Results  
 

In the study, accuracy analysis was analyzed in two 
stages, the accuracy of the algorithm applied and the 
spatial accuracy of the detected vehicles. 

Two regions were selected over orthophoto for 
evaluation. The detection performances of the 
algorithms were compared. In addition to the confidence 
values of the vehicles found by the algorithms, the 
number of vehicles they could detect was also evaluated. 
0.80 mAP was achieved with Yolo-v3, while 0.87 mAP 
was achieved with YOLOv4-CSP. The YOLOv4-CSP has an 
F1 score of 0.85, while the YOLO-V3 has an F1 score of 
0.80 (Fig. 6 and Fig. 7). The accuracy of the trained 
models is presented in Table 6. The confusion matrix is 
presented in Table 7 and Table 8. 

 

Table 6. Statistical outputs of models 
Model mAP mIOU F1 Score 

YOLO-v3 0.80 0.55 0.80 
YOLOv4-CSP 0.87 0.60 0.85 

 
 

Table 7. The detection performance of the algorithms for 
sample images. 

Figure Model 
Detection 
Ratio 

 Confidence 
Score Mean 

Test Area 1 YOLO-v3 0,64 79.0 

Test Area 1 YOLOv4-CSP 1.0 99,18 

Test Area 2 YOLO-v3 0,78 91.0 

Test Area 2 YOLOv4-CSP 1.0 98,78 

 

 

Table 8. Confusion matrix of YOLOv4-CSP and YOLOv3 
 YOLOv4-CSP  YOLOv3 
 Predicted Positive Predicted Negative Predicted Positive Predicted Negative 
Actual Positive TP=26 FN=2 TP=26 FN=2 
Actual Negative FP=1 TN=0 FP=1 TN=0 

 

  

 

  
Figure 6. Evaluation result on test area 1 (YOLO-v3 on 
the left; YOLOv4-CSP on the right) 

 
Figure 7. Evaluation result on test area 2 (YOLO-v3 on 
the left; YOLOv4-CSP on the right). 

 

The operator marked the midpoints of the detected 
vehicles to obtain reference values (Fig. 8). Then, the 
coordinates of the midpoints of the bounding boxes 
created by the algorithms are calculated. Thus, a spatial 
accuracy analysis was performed. Spatial accuracy 
analysis was applied separately for both all vehicles and 
common vehicles detected by both algorithms. Since all 
vehicles detected by YOLO-v3 were also detected by 
YOLOv4-CSP, only the accuracy of YOLOv4-CSP in 
common vehicles was analyzed. The purpose of 
preparing Table 4 is to show the position accuracy of the 
detected vehicles only for both models. Spatial accuracy 
for all tools is 16.8 cm for YOLOv3 and 15.6 cm for 
YOLOv4-CSP (Table 3 and Table 4). In common detected 
vehicles, the accuracy of YOLOv4 is 12.8 cm. 

 

 
Figure 8. Obtaining the midpoints of the vehicles via 
Agisoft Metashape software 



International Journal of Engineering and Geosciences– 2023, 8(2), 138-145 

 

  144  

 

6. Discussion 
 

As a result of the comparison between YOLO-v3 and 
YOLOv4-CSP, it was seen that the detection accuracy of 
the YOLOv4-CSP algorithm was higher in terms of both 
detection rate and spatial accuracy. YOLOv4-CSP can 
detect almost all vehicles in images. YOLO-v3 is unable to 
detect most vehicles close to image boundaries. The 
confidence value of the vehicles found is also higher in 
YOLOv4-CSP. The CSPDarknet architecture and the many 
layers make YOLOv4-CSP superior to YOLO-v3. 

According to the accuracy analysis, the YOLOv4-CSP 
model detected the midpoints with higher accuracy than 
the YOLO-v3 model. Considering the common vehicles, 
vehicle positions can be detected with high accuracy with 
the YOLOv4-CSP. Bounding boxes are found by YOLOv4-
CSP with higher accuracy. As seen in Table 6, the mIoU 
value is higher than that of YOLOv4-CSP. High mIoU in 
this case means high location accuracy. Appropriate data 
set and parameter selection in deep learning networks is 
important not only for detecting vehicles but also for 
obtaining accurate spatial information. 

The reason for choosing YOLOv4-CSP among 
YOLOv4-CSP versions is to provide a healthier 
comparison with YOLO-v3. Thus, the effect of CSP 
optimization used in the backbone will be better 
understood. In addition, YOLOv4-CSP also requires less 
hardware resources and training time during training as 
it contains fewer layers than other YOLOv4-CSP versions. 
Finally, new YOLO versions are releasing with different 
approaches. According to their developers’ claim some of 
them shows better mAP performance than the YOLOv4-
CSP. 

Consequently, However, as a point to be noted, the 
coordinate values reached do not express an absolute 
accuracy, it should be noted that the coordinate values 
taken from the orthophoto and accepted as correct have 
at least as much error as the orthophoto. However, since 
the same orthophoto was used during the study, this 
error amount was ignored assuming that it was equally 
distributed to each determination.  

Area-based matching methods are also used for 
vehicle detection [35]. However, in area-based 
approaches, changes in the resolution or point of view of 
the image adversely affect the detection performance. It 
is more appropriate to use deep learning approaches 
instead of domain-based approaches, which are useful in 
cases where the search and target image are very similar. 
Especially in complex city structures, deep learning-
based approaches are more suitable for vehicle 
detection. The YOLOv4-CSP algorithm correctly detected 
almost all vehicles in the images (Table 7). 

In addition, training and test data were obtained from 
different sources in the study. This problem is called 
domain-shift in the literature. Models trained on aerial 
photographs obtained from a different region with a 
different UAV were tested on a completely different 
orthophoto with training data. It has been concluded that 
YOLOv4-CSP is less affected by the domain-shift problem 
and can be used in such cases. 
 
 
 

7. Conclusion  
 

In this study, we detect the vehicles from the 
orthophoto using different deep learning algorithms and 
analyze the spatial accuracy of the midpoints of the 
vehicles detected. It is possible that this work, which 
currently requires manual interventions and is carried 
out with non-instantaneous data, will become a fully 
autonomous and instantaneous solution in the future. In 
order to achieve this, it is a preferable solution to derive 
the positions of the detected objects depending on the 
UAV location, with the increase in the capabilities of the 
GNSS and IMU sensors on the UAVs. 

In addition, the servicing of GNSS coordinates instead 
of limiting the results to image coordinates, especially in 
object detection studies with air platforms, will speed up 
and facilitate the production of location information, 
which many disciplines need. 

Finally, new YOLO versions are releasing with 
different approaches. According to their developers’ 
claim some of them shows better mAP performance than 
the YOLOv4-CSP. So, this study can be expanse with 
YOLO-v5 and YOLO-X. 
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