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ABSTRACT. In this paper, we examine 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton.
We give some theorems for W flat, & — W flat and ¢ — W semisymmetric 3-dimensional quasi-Sasakian manifold
admitting conformal Ricci soliton. Also we study conformal Ricci soliton on a 3-dimensional quasi-Sasakian
manifold satisfying the conditions W (¢, X).S = 0 and R(¢, X).W;; = 0.
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1. INTRODUCTION

Quasi-Sasakian manifold is a natural generalization of Sasakian manifold whose notion was introduced by Blair [4]
to unify Sasakian and cosympletic structures. The properties of quasi-Sasakian manifolds have been studied by various
authors such as Gonzalez and Chinea [15], Kanemaki [18, 19], De and Sarkar [9], De et al. [10], Turan et al. [26] and
many others. On a 3-dimensional quasi-Sasakian manifold, the structure function 8 was defined by Olszak [21] and
with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally
flat [22].

A Ricci soliton (g, V, 1) on a Riemannian manifold (M, g) is a generalization of an Einstein metric such that

£yg+25 +24g =0,

where § is the Ricci tensor, £y is the Lie derivative operator along the vector field V on M and A is a real number. The
Ricci soliton is said to be shrinking, steady or expanding according to A being negative, zero or positive, respectively.
The concept of conformal Ricci flow [12] was developed by Fischer during 2003-2004 which is a variation of the

classical Ricci flow equation that modifies the unit volume constraint of that equation to a scalar curvature constraint.
The conformal Ricci flow on M is defined by the equation [12]

9

ot
and r(g) = —1, where M is considered as a smooth closed connected oriented n—manifold, p is a scalar non-dynamical
field (time dependent scalar field), 7(g) is the scalar curvature of the manifold and n is the dimension of manifold.

+28 + %) =—pg

*Corresponding Author
Email addresses: muslumakgun@adiyaman.edu.tr (M.A. Akgiin), eacet@adiyaman.edu.tr (B.E. Acet)


https://orcid.org/0000-0002-8414-5228
https://orcid.org/0000-0002-0190-3741

Some Results on 3-Dimensional Quasi-Sasakian Manifolds 376

The notion of conformal Ricci soliton equation was introduced by Basu and Bhattacharyya [1] in 2015 and the
equation is given by

£yg+ 2§ =(2/l—(p+%))g, (1.1

where A is constant. The equation is the generalization of the Ricci soliton equation and it also satisfies the conformal
Ricci flow equation.
Also, Wjj curvature tensor with respect to Levi-Civita connection is defined by [23]

Wy(X,Y)Z =R(X,Y)Z + % SX2D)X -gX,2)QY). (1.2)

The authors studied to improve the topic of solitons in [2,3,5-8, 13, 14, 16,24,27,28]. Some recent studies about
this topic are given in [11,17,25].

This paper is organized as follows: After preliminaries, we give some basic information about the conformal Ricci
soliton and quasi-Sasakian manifolds. Then, we give some theorems for W flat, £ — W flat and ¢ — W semisymmetric
3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton in the following sections. Finally we give
conformal Ricci soliton on a 3-dimensional quasi-Sasakian manifold satisfying the conditions Wj(&,X) - S = 0 and
R, X)W =0.

2. PRELIMINARIES

Let M be a connected almost contact metric manifold of dimension (2n + 1) with an almost contact metric structure
(¢,¢,1,¢) and g is a Riemannian metric such that

$*(X) = X +n00& 1@ =1, n@X)=0, ¢&=0, 2.1)

89X, ¢Y) = g(X,Y) — n(X)n(Y),

for all vector fields X, Y on M. M is said to be quasi-Sasakian if the almost contact structure (¢, &, ) is normal and the
fundamental 2-form @ is closed (d® = 0). A three dimensional almost contact metric manifold M is quasi-Sasakian if
and only if [20]

Vxé = —poX.

for a certain function 8 on M, such that £8 = 0 where V is the Levi-Civita connection of M. Clearly, a 3-dimensional
quasi-Sasakian manifold is cosymplectic if and only if 8 = 0. If 8 = constant, then the manifold reduces to a S-Sasakian
manifold and 8 = 1 gives the Sasakian structure. Throughout in the paper, we are using the fact that § = constant.

In a 3-dimensional quasi-Sasakian manifold, we have [21]

(Vx@) Y = B (g(X,Y)§ —n(1)X),

(Vxn) Y = —Bg(¢X. ),

RX.V)Z = (g - 2ﬁ2) QY. 2)X - g(X.2)Y)
2 T\ 8. 2DnX)é — (X, Dn(Y)é
+(3 z)( N2 - 1XOnEZ)Y ) 22
_ r 5 o) r
SOGY) = (5 - 82) gk 1) - (38 = 2 ) o),
forall X,Y,Z on M.

Definition 2.1. A quasi-Sasakian manifold is said to be an n—Einstein manifold if its non-vanishing Ricci tensor S is
of the form

SX,Y) =ag(X,Y)+ bn(X)nY), (2.3)

where a and b are smooth functions on the manifold. If b = 0, then the manifold is said to be an Einstein manifold.
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Now from the definition of Lie derivative, we get
(£c8) (X.Y) = g(VXE.Y) + g(X, Vyé).
In view of the equation g(X, &) = n(X) with g(X, ¢Y) = —g(¢X, Y) , we find
(£g) X7y =0.

Using above equation in (1.1), we obtain

SX,Y)=wg(X,Y), 2.4
where w = % [2/1 - (p + %)]
From (2.4), we arrive at
0X = wX,
S(X, &) = wn(X), (2.5)
S, &) =w. (2.6)

Thus, we can state the following.
Proposition 2.2. If a 3-dimensional quasi-Sasakian manifold admits conformal Ricci soliton, then the manifold be-
comes an Einstein manifold.

3. W;—FvLar 3-DiMeNsIONAL QUASI-SASAKIAN MANIFOLD ADMITTING CONFORMAL Ricct SoLiton

In view of (1.2), if M is a W(’)‘—ﬂat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton, we
have

1
RX,Y)Z = 5 (8(X, 2)QY - S(¥, 2)X). (3.1
Taking inner product of (3.1) with £ and in view of the equation g(X, ¢Y) = —g(¢X,Y) , we get

8RX,Y)Z,§) = % SX 68X, 2) - S(Y, Z)n(X)).
From the equation (2.2), we find
28 (8(Y, Z)n(X) — g(X, Z)n(Y)) = (X, Z)n(Y) = S (Y, Z)n(X).
Taking X = £ in the above equation and using (2.6) with (2.1), we arrive at
S(¥.2) = =2574(X.2) + (2 +w) n(Vn(2).
So, by virtue of (2.3), we can state the following theorem.
Theorem 3.1. A Wy—flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton is an n—Einstein
manifold.
4. ¢ — W SEMI-SYMMETRIC 3-DIMENSIONAL QUASI-SASAKIAN MANIFOLD ADMITTING CONFORMAL Riccr SoLiron
Firstly we give the following definition:

Definition 4.1. A quasi-Sasakian manifold is said to be ¢ — W semi-symmetric if [7]

WiX,Y)-¢=0 4.1
forall X,Y on M.

Let M be a ¢ — W semi-symmetric quasi-Sasakian manifold admitting conformal Ricci soliton, the from (4.1) we
have
(Wg(x, Y)- ¢) Z = Wi(X, Y)$Z — oW (X, Y)Z.

From (1.2), we get

1 ( S(Y.¢2)X - g(X,6Z)QY ) _o. 4.2)

RX.1GZ = RX Y2+ 5\ _5(v, 206X + o(X, 2)6QY
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By using of (2.2) with (2.4) in (4.2), we obtain
(z _ zﬁz) ( g(Y,62)X — g(X, ¢2)Y ) N (3 5 z)( 8(Y, pZm(X)é — g(X, pZ)n(Y)é )
2 —8(Y, Z)pX + g(X, Z)pY 2\ +n(m@¢X — n(XmZ)pY
! ( wg (Y. ¢Z)X — wg(X,$2)Y ) _o. 43)

2\ -wg(Y, 2)pX + wg(X, Z)pY
Putting Y = £ in (4.3) and by use of (2.1), we find
(B> +w) (8(X, 62)¢ + n(Z)¢X) = 0. (4.4)
Again, taking Z = £ in (4.4), we obtain
(8 +w)ex =0.

So, we get the following.

Theorem 4.2. If a 3-dimensional quasi-Sasakian manifold satisfies Wy - ¢ = 0 and admits conformal Ricci soliton,
then

DIfp= —% + B2, then A = 0 and Ricci soliton is steady,

inlfp> —% + 3%, then A > 0 and Ricci soliton is shrinking,

i Ifp < —% + 82, then A < 0 and Ricci soliton is expanding.

5. CoNFORMAL RiccI SOLITON ON A 3-DIMENSIONAL QUASI-SASAKIAN MANIFOLD SATISFYING W (£, X) - § =0

Assume that M is a 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton satisfying W (€, X) -
S = 0. From this equation, we can write

SWo(€, XY, 2) + S (Y, Wy (£,X)Z) = 0.
Using (1.2) with (2.2), we have

§X,Y)S(£,2) = S (X, Zn(Y) ) l( SX,Y)S(&,2) —wSX,Zn(Y) | _
2

2
o +8(X, 2)S (Y.§) — S (Y. X)n(Z) +S(X,2)S (Y, &) —wS (Y, X)n(Z) |~ 0. (5.1

By use of (2.4) in (5.1), we arrive at
28° (S(X,Y) - wg(X,Y)) = 0.

Thus, we can state the following.
Theorem 5.1. If a 3-dimensional quasi-Sasakian manifold satisfies Wi(€,X) - S = 0 and admits conformal Ricci
soliton, then the manifold is an Einstein manifold.

6. ConrORMAL Ricct SOLITON ON A 3-DIMENSIONAL QUASI-SASAKIAN MANIFOLD SATISFYING R(¢, X) - Wi = 0

In this section, we consider a 3-dimensional quasi-Sasakian manifold admits conformal Ricci soliton and M is
W;—semisymmetric, i.e., R(€, X) - Wy = 0 holds on M. Thus, we have for all X, ¥,Z,V on M
R(E& X)W, (Y, Z2)V = Wy(R(E, X)Y,2)V = Wi (Y, R(£, X)Z)V — Wi (Y, Z)R(£, X)V = 0. (6.1

Using (2.2) in (6.1), we get
8(X, Wy (Y, 2)V)é - n(W; (Y. Z)V)X
—8X, V)W, D)V + n(N)Wy(X, 2)V

Bl e owivov +nowixy |=% (62
—g(X, VYW (Y, 2)& + n(V)W; (Y, 2)X
Putting V = £ in (6.2) and using (2.1), we have
8X, Wy(Y, 2)6)§ — n(Wy(Y, 2)6)X
| EEDWGEDEE W28 | _ o ©3)
—8(X, D)W (Y, 6)é + n(Z)Wi (Y, X)é

—nXOW; (Y. 2)€ + Wy(Y, Z)X
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Taking inner product with & in (6.3) and using (2.1), we obtain

8X, Wy (Y, 2)§) — n(W (Y, 2)§)n(X)
Vi —8(X, V(W (€, 2)6) + n(Vn(Wo (X, 2)¢) | _
—8(X, Dn(Wy(Y, £)&) + n(Zn(W (Y, X)&)
—nXm(Wy (Y, 2)¢) — n(Ws(Y, 2)X)

Now, using (1.2) in above equation, we arrive at
(B> + %) (X, Y)n(2) - g(X, Z)n(¥))

B B (e(X, Zm(Y) — g(Y, Zyn(X))
+1 (X, Zn(Y) — wg(X, Y)n(Z))

Finally, putting ¥ = £ in (6.4) and using (1.2), we obtain
S(X,Z2) =wg(X,2).

0. (6.4)

Thus, we give the following theorem.
Theorem 6.1. If a 3-dimensional quasi-Sasakian manifold satisfies R(¢,X) - Wi = 0 and admits conformal Ricci
soliton, then the manifold is an Einstein manifold.
7. & — W FLAT 3-DIMENSIONAL QUASI-SASAKIAN MANIFOLD ADMITTING CONFORMAL Riccr soLITON
Definition 7.1. A quasi-Sasakian manifold is said to be & — W; flat if
WX, Y)-£=0
forall X, Y on M.

Assume that M is a ¢ — W] flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton, then from
(1.2) we have

1
R(X,Y)¢ = 3 (8(X, QY - S(X,£)X). (7.1)
Taking inner product with Z in (7.1) and using (2.1) with (2.2), we obtain

1
B (8(X, Z)n(Y) — (Y, Z)n(X)) = 7 BEDn(X) - 8(X, 2)S (X.£)) - (7.2)
Putting X = ¢ in (7.2) and in view of (2.5), we arrive at
S(Y,2) = =28°¢(Y, Z) + (28* + w) n(Yn(Z),
which gives the following theorem.

Theorem 7.2. A & —Wj flat 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton is an n—Einstein
manifold.

Now, we will give an example of a three dimensional quasi-Sasakian manifold.

Example 7.3. Let us consider the three-dimensional manifold M = {(x, y,2) € R3, (x,y,2) # (0,0, O)}, where (x,y,2)
are the standard coordinates in R3. The vector fields

e 9 _ 9 0 L _4
l_ax yazv 2_6)]’ 3_62

are linearly independent of each point of M. Let g be the Riemannian metric tensor defined by
8(E1, E3) = 8(Ey, E3) = 8(E1, E2) =0, 8(E1, Ey) = 8(Ez, En) = 8(E3, E3) = 1.
Let n be the 1-form defined by n(Z) = g(Z, E) for any Z € I'(T M). Let ¢ be the (1,1)-tensor field defined by
@E| = -E), ¢E,=E|, ¢E;=0.
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Then, using the condition of the linearity of ¢ and g, we obtain n(E3) = 1,
¢’Z = ~Z+n(2)Es,
8(pZ, W) = Z(Z, W) — n(Z)n(W),

for all Z, W € T(T M). Thus, for & = E3, M(¢p, &, 1, 2) defines an almost contact metric manifold [9].
Now, let V be the Levi-Civita connection with respect to the Riemannian metric g. Then, we obtain

[E1, Ex] = E5, [E1,E3]l =-Ep, [Ep, E3]=0.
The Riemannian connection V of the metric g is given by
28(VxY.Z) = Xg(Y,Z) + YQ(Z,X) - Zg(X, Y) + g(IX. Y], Z) - g([Y. Z]. X) + §([Z, X]. Y),

which is known as Kozsul’s formula. Taking E3 = £ and using the above formula it can be calculated as

1 1

VE]EI = 0’ VE2E1 = _§E3, VE] E3 = —EEZ’
1 1

VE2E3 = EE], VE2E2 = O’ VE1E2 - §E3’

1 1
Ve, Ey = —§E2, Ve, Ep = §E1, Ve, E3 = 0.

From the about represantations, one can easily see that (¢, &, 17, g) satisfies the formula Vx& = —8¢X. Hence, M (¢, &,7, 8)

is a three dimensional quasi-Sasakian manifold with the structure function with g8 = —%.

Using the above relations we have the components of the curvature tensor ass follows
R(E\,Ey)E3 =0, R(Ey, E3)Es = —%Ez, R(E\, E5)E; = —%El,
R(E\, Ey)Er = ZEl, R(E5, E5)E, = _%EL R(E\, E3)E; = 0,
R(E\, E))E, = %Ez, R(Ey, E3)E) =0, R(E3, E\E, = ZE}
Now, we see that

S(Ev, E1) = g(R(E1, E»)Es, Ev) + g(R(EY, E3)E3, Eq) =

s

S(Ey, Er) = g(R(E», E\)E1, E>) + g(R(E2, E3)E3, E>) =

bl

LRI ==

S (E3, E3) = g(R(E3, E1)E1, E3) + g(R(E3, E2)Es, E3) = 3

and

S(ELEj)) =0, @#)).

(p+3):
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