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Abstract 

In present paper, Double Minkowski Pythagorean Hodograph (DMPH) 

curves and type (3,0) Minkowski Pythagorean Hodograph (MPH) curves are 

studied. Firstly, we obtained the conditions for a MPH curve to be a DMPH 

curve. Then, we examined these conditions in split quaternion form. Finally, 

a special class of seventh degree MPH curves is characterized and illustrative 

examples are given. 
 

 
1. Introduction 

 

Polynomials are symbolic objects that are frequently 

used, especially in computer science and 

computational algebra. Consisting of polynomial 

components, polynomial curves are one of the curves 

studied extensively in computational geometry. These 

curves have application areas such as computer aided 

geometric design, robotics, navigation, and motion 

control, therefore they maintain their importance 

today. Pythagorean hodograph curves, simply PH 

curves, are polynomial curves that provide the 

equality called the Pythagorean condition. This 

condition is satisfied by the hodograph of these curves 

and a distinguishing property for them among the 

polynomial curves. For planar PH curves, this 

condition can be expressed using the conformal map 

ℂ → ℂ defined by 𝑧 → 𝑧² and taking z as a complex 

polynomial [4]. For spatial PH curves, this condition 

can be given using quaternion polynomials. The 

quaternion formulation gives a very elegant and 

concise description of this structure which contributes 

to the development of basic algorithms to construct 

and analyze the PH curves [5].  Alternatively, using 

complex polynomials, the construction of spatial PH 

curves can be given with the Hopf map ℂ2 → ℝ3. This 

transformation associates points 𝑃 ∈ ℝ3 with 

complex number pairs 𝛼, 𝛽 such that 𝑃 = 𝐻(𝛼, 𝛽). 
Taking 𝛼 and 𝛽 as complex polynomials, the 

Pythagorean condition can be obtained [6]. 
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 In computer aided design and manufacturing, 

PH curves play an important role, as rational 

representations of shapes are important in fields such 

as robotics, animation, computer graphic design, and 

motion control. Considering the applications 

mentioned above, orthonormal frames are needed to 

describe the direction of the particle moving along a 

path. One of the most commonly used orthonormal 

frames is the Frenet frame. However, this frame is not 

very suitable for practical applications because it is 

not defined at points where the second derivative of 

the curve is zero and because the normal plane vectors 

rotate unnecessarily about the tangent. To overcome 

this problem, rotation minimizing orthonormal 

frames (RMF) are used [7]. Using this, RRMF-PH 

curves of type (𝑛, 𝑚) is defined by Dospra [2]. In this 

study, some special type (𝑛, 𝑚) curves are examined. 

For further information on PH curves and 

applications, see [3], [9-11]. 

  In this paper, we describe DMPH curves as a 

new concept that will be helpful for Lorentzian 

geometry and its physical applications in Minkowski 

3-space. We express the conditions provided by such 

curves using split quaternion polynomials. Also, we 

study MPH curves of type (3,0) which are a class of 

MPH curves with degree 7. We give illustrative 

examples for both MPH curves of type (3,0) and 

DMPH curves that support the constructed theories 

that will find applications. 

 

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1083043
https://orcid.org/0000-0003-3720-9716
https://orcid.org/0000-0002-3613-4276
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2. Preliminaries 

 

The set 

 

ℍ̃ = {𝜀 = 𝜀0 + 𝜀1𝒊 + 𝜀2𝒋 + 𝜀3𝒌: 𝜀0, 𝜀1, 𝜀2, 𝜀3 ∈ ℝ, 𝒊2

= 𝒋2 = 1, 𝒌2 = −1, 𝒊𝒋𝒌 = 1} 

 

which is defined in (−, +, +, −) signed ℝ2
4 semi-

Euclidean space is called the ring of split quaternions. 

We present the classification of split quaternions 

according to their semi-Euclidean scalar product with 

themselves in ℝ2
4 . Let 𝜀 = 𝜀0 + 𝜀1𝒊 + 𝜀2𝒋 + 𝜀3𝒌 ∈

ℍ̃. In this case, if 

 

  i. 〈𝜀, 𝜀〉ℝ2
4 = −𝜀0

2 + 𝜀1
2 + 𝜀2

2 − 𝜀3
2 > 0, 

 ii. 〈𝜀, 𝜀〉ℝ2
4 = −𝜀0

2 + 𝜀1
2 + 𝜀2

2 − 𝜀3
2 < 0, 

iii. 〈𝜀, 𝜀〉ℝ2
4 = −𝜀0

2 + 𝜀1
2 + 𝜀2

2 − 𝜀3
2 = 0, 

 

then 𝜀 is called spacelike, timelike or lightlike split 

quaternion, respectively [8]. 

Let 𝜔(𝑡) = (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)) be a PH curve 

in ℝ3. If the components of the hodograph of 𝜔 are 

relatively prime, there exist polynomials 

𝑘(𝑡), 𝑙(𝑡), 𝑚(𝑡), 𝑞(𝑡) such that 

 

𝛼′(𝑡) = 𝑘2(𝑡) + 𝑙2(𝑡) − 𝑚2(𝑡) − 𝑞2(𝑡) 

𝛽′(𝑡) = 2[𝑘(𝑡)𝑞(𝑡) + 𝑙(𝑡)𝑙(𝑡)] 
𝛾′(𝑡) = 2[𝑙(𝑡)𝑞(𝑡) − 𝑘(𝑡)𝑚(𝑡)] 
𝜎(𝑡) = 𝑘2(𝑡) + 𝑙2(𝑡) + 𝑚2(𝑡) + 𝑞2(𝑡). 

 

where,  

 

[𝛼′(𝑡)]2 + [𝛽′(𝑡)]2 + [𝛾′(𝑡)]2 = 𝜎2(𝑡). 
 

This kind of hodographs are called primitive 

hodographs [5]. 

Spatial PH curves can be generated by 

quaternion polynomials. Let 𝑲(𝑡) = 𝑘(𝑡) + 𝑙(𝑡)𝒊 +
𝑚(𝑡)𝒋 + 𝑞(𝑡)𝒌 be a quaternion polynomial. The 

quaternion product 

 

 

𝜔′(𝑡) = 𝑲(𝑡)𝒊𝑲∗(𝑡) 

 = [𝑘2(𝑡) + 𝑙2(𝑡) − 𝑚2(𝑡) − 𝑞2(𝑡)] 𝒊  
   +2[𝑘(𝑡)𝑞(𝑡) + 𝑙(𝑡)𝑚(𝑡)] 𝒋                                        

   +2[𝑙(𝑡)𝑞(𝑡) − 𝑘(𝑡)𝑚(𝑡)] 𝒌 

 

gives the hodograph of the PH curve, so generates the 

PH curve [1]. 

 

3. DMPH Curves and Type (3,0) Curves 

 
In this section, we give the definition of DMPH curve. 

We construct DMPH conditions in Minkowski-Hopf 

map form and split quaternion form. Then, we give 

illustrative examples. Also, we characterize type 

(3,0) MPH curves and give an example. 

First of all, we present some basic concepts 

on MPH curves. Since all null curves in ℝ1
3 are MPH 

curves and there is no timelike MPH curve, we 

consider regular spacelike MPH curves. 

The characterization of planar MPH curves 

can be given with hyperbolic polynomials. If 𝜔(𝑡) =
(𝛼(𝑡), 𝛽(𝑡)) is a MPH curve in ℝ1

2, the hodograph of 

𝜔 is expressed with the hyperbolic polynomial 𝛾(𝑡) =
𝑘(𝑡) + 𝑙(𝑡)𝒆 such that 𝜔′(𝑡) = 𝛾2(𝑡). On the 

otherhand, spatial MPH curves are characterized by 

split quaternion polynomials. If 𝜔(𝑡) =
(𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)) is a MPH curve in ℝ1

3, the 

hodograph of 𝜔 is expressed with the split quaternion 

polynomial 𝑻(𝑡) = 𝑘(𝑡) + 𝑙(𝑡)𝒊 + 𝑚(𝑡)𝒋 + 𝑞(𝑡)𝒌 

such that 𝜔′(𝑡) = 𝑻(𝑡)𝒊𝑻∗(𝑡) [9]. 

 

Definition.3.1. For a regular polynomial curve 𝜔(𝑡) 

in ℝ1
3 Minkowski space, if both ‖𝜔′(𝑡)‖𝐿 and 

‖𝜔′(𝑡) ×𝐿 𝜔′′(𝑡)‖𝐿 are polynomials of 𝑡, then 𝜔(𝑡) is 

called a Double Minkowski Pythagorean Hodograph 

(DMPH) curve [12]. 

 

Theorem.3.1. Let 𝜔(𝑡) be a regular MPH curve given 

in Minkowski-Hopf map form with hyperbolic 

polynomials 𝑓₁(𝑡) and 𝑓₂(𝑡). 𝜔(𝑡) with timelike 

normal is a DMPH curve iff the proportionality 

polynomial of 𝑓₁(𝑡) and 𝑓₂(𝑡) defines a planar MPH 

curve. 

 

Proof. The DMPH condition given in [12] is 

expressed as 

 

𝑓1(𝑡)𝑓2
′(𝑡) − 𝑓1

′(𝑡)𝑓2(𝑡) = 𝛿(𝑡)𝝁2(𝑡)                  (3.1)             

 

where 𝛿(𝑡) is a real polynomial and 𝜇(𝑡) = 𝑎(𝑡) +
𝑏(𝑡)𝒆 is a hyperbolic polynomial such that the 

polynomials 𝑎(𝑡) and 𝑏(𝑡) are relatively prime. 

Identifying the set of hyperbolic numbers H 

with ℝ1
2, since the right side of the equality (3.1) 

defines a planar MPH curve, we can consider the 

proportionality polynomial of 𝑓₁(𝑡) and 𝑓₂(𝑡) as the 

hodograph of a planar MPH curve. 

Minkowski-Hopf map forms of DMPH 

conditions can be derived by direct calculations. 

Differentiating the equalities 
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𝛼′(𝑡) = 𝑓1(𝑡)𝑓1̅(𝑡) − 𝑓2(𝑡)𝑓2̅(𝑡),   𝛽′(𝑡) − 𝛾′(𝑡)𝒆 

          = 2𝑓1(𝑡)𝑓2̅(𝑡) 

 

we get 

 

𝛼′′(𝑡) = 𝑓1
′(𝑡)𝑓1̅(𝑡) + 𝑓1(𝑡)𝑓1̅

′
(𝑡) − 𝑓2

′(𝑡)𝑓2̅(𝑡) 

             −𝑓2(𝑡)𝑓2̅
′
(𝑡) 

 

and 

 

𝛽′′(𝑡) − 𝛾′′(𝑡)𝒆 = 2 (𝑓1
′(𝑡)𝑓2̅(𝑡) + 𝑓1(𝑡)𝑓2̅

′
(𝑡)). 

 

Then, we can write 

 

𝛽′(𝑡)𝛾′′(𝑡) − 𝛽′′(𝑡)𝛾′(𝑡) 

=
1

2
𝒆[(𝛽′(𝑡) − 𝛾′(𝑡)𝒆)(𝛽′′(𝑡) + 𝛾′′(𝑡)𝒆) 

                  +(𝛽′(𝑡) + 𝛾′(𝑡)𝒆)(𝛽′′(𝑡) − 𝛾′′(𝑡)𝒆) 
  

and 

 

(𝛽′(𝑡)𝑥′′(𝑡) − 𝛽′′(𝑡)𝛾′(𝑡)) 

+(𝛾′(𝑡)𝛼′′(𝑡) − 𝛾′′(𝑡)𝛼′(𝑡))𝒆           

= 𝛼′′(𝑡)(𝛽′(𝑡) + 𝛾′(𝑡)𝒆)                                                                                               

−𝛼′(𝑡)(𝛽′′(𝑡) + 𝛾′′(𝑡)𝒆). 

 

Denoting 

 

𝜂(𝑡) = 𝑓1(𝑡)𝑓2
′(𝑡) − 𝑓′1(𝑡)𝑓2(𝑡), 

 

we find 

 

𝛽′(𝑡)𝛾′′(𝑡) − 𝛽′′(𝑡)𝛾′(𝑡) = 2𝒆(𝑓1̅(𝑡)𝑓2̅(𝑡)𝜂(𝑡) 

−𝑓1(𝑡)𝑓2(𝑡)�̅�(𝑡)) 
 

and 

 

(𝛽′(𝑡)𝛼′′(𝑡) − 𝛽′′(𝑡)𝛾′(𝑡)) + (𝛾′(𝑡)𝛼′′(𝑡) −

𝛾′′(𝑡)𝛼′(𝑡))𝒆 = −2 (𝑓1̅
2

(𝑡)𝜂(𝑡) + 𝑓2
2(𝑡)�̅�(𝑡)). 

 

Thus, if 𝑁 is timelike, 

 

 ‖𝜔′ ×𝐿 𝜔′′‖𝐿
2

= (𝛽′(𝑡)𝛾′′(𝑡) − 𝛽′′(𝑡)𝛾′(𝑡))
2

  

+ (𝛾′(𝑡)𝛼′′(𝑡) − 𝛾′′(𝑡)𝛼′(𝑡))
2

  

−(𝛽′(𝑡)𝛼′′(𝑡) − 𝛽′′(𝑡)𝛼′(𝑡))
2
 

                                                                    

                   = −4𝜎2(𝑡)|𝜂(𝑡)| 
 

we obtain 

 

𝜌(𝑡) = −4|𝜂(𝑡)| = 4|𝒆𝜂(𝑡)|. 
 

If 𝑁 is spacelike, we obtain 

 

𝜌(𝑡) = 4|𝜂(𝑡)|. 
 

Example.3.1. Consider the curve 

 

𝜔(𝑡) = (𝑡,
2

3
𝑡3, −𝑡2) 

 

in ℝ1
3 Minkowski space. The curve 𝜔(𝑡) is a DMPH 

curve and Frenet vectors and curvatures of 𝜔(𝑡) are 

 

𝑇(𝑡) =
1

2𝑡2 − 1
(1,2𝑡2, −2𝑡),  

𝑁(𝑡) =
2

(2𝑡2 − 1)2
(−2𝑡(𝑡2 − 1), 2𝑡3 − 𝑡, 1

− 2𝑡4),  

𝐵(𝑡) =
2

2𝑡2 − 1
(𝑡2, 1, −𝑡) 

 

and 

 

𝜅(𝑡) =
2

(2𝑡2 − 1)2
, 𝜏(𝑡) =

2

(2𝑡2 − 1)2
. 

 

Since 〈𝜔′(𝑡), 𝜔′(𝑡)〉𝐿 = (2𝑡2 − 1)2, 𝜔(𝑡) is a 

spacelike curve for 𝑡 ≠ ±
1

√2
. Hence, for all 𝑡 ∈ ℝ ∖

(−
1

√2
,

1

√2
), ‖𝜔′(𝑡)‖𝐿 = 2𝑡2 − 1, so 𝜔(𝑡) is a MPH 

curve. On the other hand, since 

〈𝜔′(𝑡) ×𝐿 𝜔′′(𝑡), 𝜔′(𝑡) ×𝐿 𝜔′′(𝑡)〉𝐿 = 4(2𝑡2 − 1)2 

for 𝑡 ≠ ±
1

√2
, 𝜔′(𝑡) ×𝐿 𝜔′′(𝑡) and so 𝐵(𝑡) is 

spacelike and 𝑁(𝑡) is timelike. Hence, for all 𝑡 ∈ ℝ ∖

(−
1

√2
,

1

√2
), ‖𝜔′(𝑡) ×𝐿 𝜔′′(𝑡)‖𝐿 = 2(2𝑡2 − 1), so 

𝜔(𝑡) is a DMPH curve. 

 

 
(1.a) 
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(1.b) 

 

 
(1.c) 

 
Figure 1. DMPH curve interpolator 

                                

Example.3.2. Consider the curve 

 

𝜔(𝑡) = (
3

2
(

𝑡3

3
− 𝑡) ,

3

2
𝑡2,

1

2
(

𝑡3

3
+ 𝑡)) 

 

in ℝ1
3 Minkowski space. The curve 𝜔(𝑡) is a DMPH 

curve and Frenet vectors and curvatures of 𝜔(𝑡) are 

 

𝑇(𝑡) =
1

2√2(𝑡2 + 1)
(3𝑡2 − 3,6𝑡, 𝑡2 + 1), 

 𝑁(𝑡) = (
2𝑡

𝑡2 + 1
, −

𝑡2 + 1

𝑡2 − 1
, 0), 

𝐵(𝑡) =
1

2√2(𝑡2 + 1)
(1 − 𝑡2, −2𝑡, −3(𝑡2 + 1)), 

 

and 

 

𝜅(𝑡) =
3

2(𝑡2 + 1)2
, 𝜏(𝑡) =

1

2(𝑡2 + 1)2
.  

 

Since 〈𝜔′(𝑡), 𝜔′(𝑡)〉𝐿 = 2(𝑡2 + 1)2, 𝜔(𝑡) is a 

spacelike curve for every 𝑡 ∈ ℝ. Hence, for every 𝑡 ∈

ℝ,  ‖𝜔′(𝑡)‖𝐿 = √2(𝑡2 + 1), so 𝜔(𝑡) is a MPH curve. 

On the other hand, since 

〈𝜔′(𝑡) ×𝐿 𝜔′′(𝑡), 𝜔′(𝑡) ×𝐿 𝜔′′(𝑡)〉𝐿 = −18(𝑡2 +

1)2 for all 𝑡 ∈ ℝ,  𝜔′(𝑡) ×𝐿 𝜔′′(𝑡) and so 𝐵(𝑡) is 

timelike and 𝑁(𝑡) is spacelike. Hence, for all 𝑡 ∈ ℝ, 

‖𝜔′(𝑡) ×𝐿 𝜔′′(𝑡)‖𝐿 = 3√2(𝑡2 + 1), so 𝜔(𝑡) is a 

DMPH curve. 

 
(2.a) 

 

 
(2.b) 

 

 
(2.c) 

Figure 2. DMPH curve interpolator 

 

Let 𝜔(𝑡) be a seventh degree MPH curve constructed 

by a cubic split quaternion polynomial 𝑻(𝑡) = 𝑘(𝑡) +
𝑙(𝑡)𝒊 + 𝑚(𝑡)𝒋 + 𝑞(𝑡)𝒌 in normal form. For 𝑖 =
0,1,2, 𝑘𝑖, 𝑙𝑖, 𝑚𝑖 , 𝑞𝑖 ∈ ℝ and we can write 

 

𝑘(𝑡) = 𝑡3 + 𝑘2𝑡2 + 𝑘1𝑡 + 𝑘0, 𝑙(𝑡) 

 = 𝑙2𝑡2 + 𝑙1𝑡 + 𝑙0, 
𝑚(𝑡) = 𝑚2𝑡2 + 𝑚1𝑡 + 𝑚0, 𝑞(𝑡) 

           = 𝑞2𝑡2 + 𝑞1𝑡 + 𝑞0. 
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We suppose that |𝑻(𝑡)| ≠ 0, since we study non-null 

MPH curves. A MPH curve of degree 7 is of type 

(3,0) iff 

 

𝑙1 = 𝑙2 = 0, 
3𝑙0 = 𝑚2𝑞1 − 𝑚1𝑞2,  
3𝑚0 = 𝑚1𝑘2 − 𝑚2𝑘1, 
 3𝑞0 = 𝑘2𝑞1 − 𝑘1𝑞2. 

 

 If 𝛼(𝑡) is a non-planar MPH space curve of type 

(3,0), then 

𝑙1 = 𝑙2 = 0, 𝑙0 =
1

3
(𝑚2𝑞1 − 𝑚1𝑞2), 𝑘2

= 3
𝑚2𝑞0 − 𝑚0𝑞2

𝑚2𝑞1 − 𝑚1𝑞2
, 𝑘1

= 3
𝑚1𝑞0 − 𝑚0𝑞1

𝑚2𝑞1 − 𝑚1𝑞2
, [12]. 

 

Example.3.3. Let 𝑘0 = −2, 𝑚0 = −1, 𝑚1 =
−2, 𝑚2 = 1, 𝑞0 = −3, 𝑞1 = 4, 𝑞2 = 1. In this case, 

since 

 

𝑙0 =
1

3
(𝑚2𝑞1 − 𝑚1𝑞2) = 2,  

𝑘1 = 3
𝑚1𝑞0 − 𝑚0𝑞1

𝑚2𝑞1 − 𝑚1𝑞2
= 5,  

𝑘2 = 3
𝑚2𝑞0 − 𝑚0𝑞2

𝑚2𝑞1 − 𝑚1𝑞2
= −1 

 

we find 

 

𝑘(𝑡) = 𝑡3 − 𝑡2 + 5𝑡 − 2 , 
 𝑙(𝑡) = 2,  
𝑚(𝑡) = 𝑡2 − 2𝑡 − 1 , 
 𝑞(𝑡) = 𝑡2 + 4𝑡 − 3. 

 

Since 

 

 𝛼′(𝑡) = 𝑘2(𝑡) − 𝑙2(𝑡) + 𝑚2(𝑡) − 𝑞2(𝑡)

= 𝑡6 − 2𝑡5 − 3𝑡4 − 2𝑡3 + 3𝑡2

− 2𝑡, 
𝛽′(𝑡) = 2[𝑘(𝑡)𝑞(𝑡) − 𝑙(𝑡)𝑚(𝑡)]             

= 2𝑡5 + 2𝑡4 − 8𝑡3 − 10𝑡2 + 2𝑡        

−2,                        
𝛾′(𝑡) = 2[𝑘(𝑡)𝑚(𝑡) − 𝑙(𝑡)𝑞(𝑡)] = 2𝑡5 − 4𝑡4 − 8𝑡,                                           
|𝑻(𝑡)| = 𝑘2(𝑡) − 𝑙2(𝑡) − 𝑚2(𝑡) + 𝑞2(𝑡)

= 𝑡6 − 2𝑡5 − 3𝑡4 + 10𝑡3 + 5𝑡2

+ 2𝑡 − 2 
 

and 

 

[𝛼′(𝑡)]2 + [𝛽′(𝑡)]2 − [𝛾′(𝑡)]2 = |𝑻(𝑡)|2 
 

the curve 

𝜔(𝑡) = (
1

7
𝑡7 −

1

3
𝑡6 +

11

5
𝑡5 −

13

2
𝑡4 + 7𝑡3 + 4𝑡2

− 8𝑡,
1

3
𝑡6 +

6

5
𝑡5 − 𝑡4 +

38

3
𝑡3

− 19𝑡2 + 16𝑡,
1

3
𝑡6 −

6

5
𝑡5 + 3𝑡4

−
26

3
𝑡3 − 9𝑡2 + 16𝑡) 

 

is a non-planar MPH space curve of type (3,0) such 

that 𝜔(0) = (0,0,0). For all 𝑡 ∈ ℝ such that |𝑻(𝑡)| ≠
0, Euler-Rodrigues frame of 𝜔(𝑡) is obtained as 

 

 𝒆1(𝑡) = Ω(𝑡6 − 2𝑡5 + 11𝑡4 − 26𝑡3 + 21𝑡2 + 8𝑡
− 8,2𝑡5 + 6𝑡4 − 4𝑡3 + 38𝑡2 − 38𝑡
+ 16,2𝑡5  − 6𝑡4 + 12𝑡3 − 26𝑡2 

                           −18𝑡 + 16), 

𝒆2(𝑡) = Ω(−2𝑡5 − 6𝑡4 + 4𝑡3 − 46𝑡2 + 54𝑡 − 8, 𝑡6

− 2𝑡5 + 9𝑡4 − 18𝑡3 + 17𝑡2

− 2, −2𝑡4 − 8𝑡3 + 28𝑡2 − 24𝑡
+ 2), 

𝒆3(𝑡) = Ω(2𝑡5 − 6𝑡4 + 12𝑡3 − 18𝑡2 + 14𝑡
− 8,2𝑡4 − 20𝑡2 − 16𝑡 + 14, 𝑡6

− 2𝑡5 + 13𝑡4 − 10𝑡3 

                              +41𝑡2 − 40𝑡 + 18). 

 

where Ω = (𝑡6 − 2𝑡5 + 11𝑡4 − 2𝑡3 + 37𝑡2 −
48𝑡 + 8)−1. Since 𝜔(𝑡) is of type (3,0), its ERF is a 

RRMF. 

 

 
 

Figure 3. The condition of ERF to be RRMF 

 

4. DMPH Curves and Type (3,0) Curves 

 

In this study, DMPH curves are discussed as a new 

model of MPH curves. This model is based on rational 

forms of Frenet frame and curvatures of MPH curves. 

Considering the importance of rational 

representations of curves in applications, this study 

will also be beneficial in practice. It is obvious that by 

associating DMPH curves with split quaternion 

polynomials and Minkowski-Hopf map, it will 

contribute to the theory of interpolation and 



M. T. Sarıaydın, A. Yazla / BEÜ Fen Bilimleri Dergisi 11 (2), 660-665, 2022 

665 
 

approximation in Minkowski 3-space, as well as 

physical applications. DMPH curve conditions are 

investigated according to the normal vector of the 

curve. Thus, two examples are given for timelike and 

spacelike cases of the normal vector. 

On the other hand, type (3,0) MPH curves are 

examined in this work. This special type of seventh 

degree MPH curves is characterized by a cubic split 

quaternion polynomial which is in normal form. The 

conditions satisfied by non-planar type (3,0) curves 

are given and an example is constructed by means of 

these properties. Type (3,0) MPH curves have a 

rotation minimizing ERF, so ERF is more useful than 

the Frenet frame in applications of these curves. 
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