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ABSTRACT 
 

The frequently used way of comparing two independent groups is to compare in terms of some measure of location such as 
mean. For non-normal and heteroscedastic cases, trimmed mean, median or some other robust measures of location can be used 
instead. However, determination of the differences in the tails of the groups might be of interest. For this reason, comparing 
the lower and upper quantiles becomes an important issue. In this study, Harrell-Davis estimator and the default quantile 
estimator of R are compared in terms of actual Type I error rates. When quantiles close to zero or one are compared with small 
sample sizes Gumbel's estimator, and when quantiles close to median are compared with large sample sizes Harrell Davis 
estimator saved actual Type I error rate better. 
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1. INTRODUCTION 
 
The most common idea for comparing two independent groups is to use a measure of location such as 
mean. For non-normal distributions the median or some other robust measure of location might be used 
instead. But, when the matter is to determine whether the differences occur in the tails of distributions 
or not, the quantiles should be considered as well. 
 
In a wide range of working areas, there can be an interest in determining how the high scoring individuals 
in one group compare to the high scoring individuals in the other group. On the other side, to compare 
the low scoring observations can be the research interest. 
 
Consider an experimental method and suppose it is being compared with a control group. In such a 
study, the experimental method can be effective for low-scoring participants, that is, the low-scoring 
participants in the experimental group have higher scores than low-scoring participants in the control 
group. On the other hand, the experimental method can be detrimental for high-scoring participants, 
which means the high-scoring participants in the experimental group have lower scores than high-
scoring participants in the control group. In short, different subpopulations of participants respond in 
different ways to the experimental method. 
 
For example, consider an experimental method for teaching reading. Students who do poorly under the 
standard method benefit from the experimental method, but the experimental method is detrimental to 
students who do well using the standard technique [1].  
 
Furthermore, if an experimental method is expensive or invasive, knowing how different subpopulations 
compare might affect the policy or strategy one is willing to adopt when dealing with a particular 
problem [2]. 
 
When comparing two independent groups by using Student's t-test, the result may indicate that, there is 
no significant difference between these two groups. However, there can be a significant difference 
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between the lower quantiles of populations. Hence, it can be useful to compare the quantiles of two 
groups instead. The quantile of a distribution is defined as  
 

     1Q(q) F (q) inf{x : F(x) q},   0 q 1                                                                           (1) 
where q denotes the quantile to be estimated  and F denotes the cumulative distribution function. 
                                   

A variety of methods for estimating population quantiles and additional comparisons of various 
estimators are available in the literature. Some of them have advantages in particular situations, but 
certainly none of them is the best. In this study Harrell Davis estimator and another quantile estimator 
which was studied by Gumbel are investigated [3,4]. 
 
2. QUANTILE ESTIMATORS AND PERCENTILE BOOTSTRAP 
 
Harrell Davis estimator uses all of the order statistics by taking a weighted average. For estimating the 
qth quantile, consider the random variable Y that have a beta distribution with parameters a=(n+1)q and 
b=(n+1)(1-q) where n is the sample size. The probability distribution of Y is  
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where   is the gamma function. Let 
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     Then, the Harrell Davis estimate of the qth quantile is  
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                                                                                                                        (4)                                      

where (1) (2) (n)X X ... X   denotes the order statistics of the sample 1 2 nX ,X ,...,X .  

The quantile estimator that was considered by Gumbel is the default value in R and it is also the 
definition 7 of Hyndman and Fan [4,5]. For estimating the qth quantile, m 1 q   and 

j floor(nq m)   are evaluated where floor(x) means the largest integer not greater than x. Then,

nq m j     is calculated. By using the general definition 
 

     q ( j) ( j 1)(1 )X X                                                                                                              (5)                                     

 
quantile q is estimated by taking the weighted average of two order statistics where ( j)X   denotes the 

jth order statistics. 
 
The aim is to test 0 q1 q2H :  

 
where q1 and q2 are the qth quantiles of the first and second 

populations respectively. For the purpose of investigating the control over actual Type I error rates, The 
Harrell Davis estimator and the quantile estimator that is referred to Gumbel are used in conjunction 
with a percentile bootstrap method. The details of the mentioned method are explained. 
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1. Let ijX be a random sample from the jth group, j 1, 2 and ji 1,..., n . A bootstrap sample from 

the jth group is generated by randomly sampling with replacement yielding *
ijX . 

 

2. 
*

j is the estimate of the qth quantile for group j based on the bootstrap sample. 
 

3. The difference between the quantile estimators of groups which are obtained from bootstrap 

sample is defined as  * *
*

1 2d    . 
 

4. First three steps are repeated B times (for this study B=2000). 
 

5. * *
1 Bd ,..., d  values are obtained and putted in ascending order in this manner * *

(1) (B)d ... d  . 

 
6. B / 2   is rounded to nearest integer where   is the nominal significance level (for this study 

0.05  )  and u B   . 
 

7. An approximate 1 confidence interval for 1 2   is found as * *
( 1) (u)(d ,d ) . 

Furthermore, let A is the number of times that *d 0 and C is the number of times that *d 0 . 
 

* A 0.5C
p

B


                                                                                                                       (6)                                     

 

A generalized p-value is  * *
2 min(p ,1 p ) and clearly, if p value   , 0H is rejected. 

 
3. DESIGN OF SIMULATION AND RESULTS 
 
In this part of the study, the performance of the given quantile estimators (Harrell Davis estimator and 
Gumbel) are compared with a simulation study. The comparison is performed in terms of actual type I 
error rates and the nominal significance level was set at 0.05  .  
 
 Normal, symmetric and heavy-tailed, asymmetric and light-tailed, asymmetric and heavy-tailed 
distributions are used. In particular, g-and-h distributions are used with different g and h parameters in 
order to generate data from those specific types of distributions. g-and-h distribution allows to observe 
how a distribution differs from normal distribution with the parameters g, which is about skewness and 
with the parameter h, which is about kurtosis; and when g=h=0 the g-and-h distribution is equivalent to 
the standard normal distribution [6].  
 
Let Z  be a random variable which is generated from standard normal distribution, with the 

transformation 

2hZ
(exp(gZ) 1)exp( )

2X
g


 when g 0 , and with the transformation 

2hZ
X Zexp( )

2
  when g=0 the data is generated from g-and-h distribution [6]. In this study, four 

different g-and-h distributions are used. 
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 Standard normal distribution, g=0  and h=0 
 Symmetric and heavy tailed distribution, g=0 and h=0.5 
 Asymmetric and  light tailed distribution, g=0.5 and h=0 
 Asymmetric and heavy tailed distribution, g=0.5 and h=0.5 

 
Both small and large sample sizes are considered, sample sizes are chosen as n=10, n=20 and n=40. 
Besides median (q=0.5), lower (q=0.1) and upper (q=0.9) quantiles are also compared. In total, 36 
different experimental conditions are examined which are obtained by combining the sample sizes, 
quantile estimators and compared quantiles. Simulations were based on 10000 replications and all 
simulations were done with R programming language (R version 3. 2. 2). 
 
To interpret the simulation results, Bradley's liberal criteria of robustness is considered [7]. When the 
actual Type I error rates of quantile estimators fall within the interval 0.025 and 0.075, the control over 
the Type I error is achieved when the nominal significance level is set at 0.05.  
 
The following four tables represent the actual significance level results for each distribution. 
Furthermore, the marked cells are the results that could not fall in the interval (0.025, 0.075).  
 

Table 1. Actual Type I Error Rates, g=0, h=0 
 

 n Gumbel’s HD 

q = 0.1 
10 0.0631 0.1208 
20 0.0341 0.0807 
40 0.0287 0.0446 

q = 0.5 
10 0.0351 0.0476 
20 0.0355 0.0468 
40 0.0344 0.0441 

q = 0.9 
10 0.0633 0.1234 
20 0.0356 0.0855 
40 0.0335 0.0467 

 
Table 1 shows the actual significance level results for standard normal distribution. Gumbel’s quantile 
estimator could control the actual significance levels for all settings, whereas Harrell Davis estimator 
could not control the results within the bounds 0.025 and 0.075 four times. The reason of deviations 
from nominal significance level with Harrell Davis estimator is comparing the lower or upper quantiles 
with relatively small sample sizes. 
 

Table 2. Actual Type I Error Rates, g=0, h=0.5 
 

 n Gumbel’s HD 

q = 0.1 
10 0.0798 0.1376 
20 0.0369 0.0966 
40 0.0336 0.0537 

q = 0.5 
10 0.0340 0.0443 
20 0.0385 0.0462 
40 0.0332 0.0430 

q = 0.9 
10 0.0739 0.1381 
20 0.0383 0.0978 
40 0.0329 0.0583 

 
Table 2 shows the actual significance level results for symmetric and heavy tailed g-and-h distribution. 
Gumbel’s estimator was able to keep actual significance levels in the interval (0.025, 0.075) in all cases 
except one.  On the other side, Harrell Davis estimator could not control the actual significance levels 
when comparing lower and upper quantiles with small sample sizes again four times. 
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Table 3. Actual Type I Error Rates, g=0.5, h=0 
 

 n Gumbel’s HD 

q = 0.1 
10 0.0608 0.1152 
20 0.0365 0.0785 
40 0.0293 0.0423 

q = 0.5 
10 0.0366 0.0494 
20 0.0361 0.0463 
40 0.0376 0.0447 

q = 0.9 
10 0.0698 0.1317 
20 0.0343 0.0928 
40 0.0299 0.0502 

 
Table 3 shows the actual significance level results for asymmetric and light tailed g-and-h distribution. 
It is seen that, the actual significance levels fell in the stated interval (0.025, 0.075) in all settings with 
Gumbel’s estimator. Harrell Davis estimator had four actual significance levels outside of the Bradley’s 
interval (0.025, 0.075). 
 

Table 4. Actual Type I Error Rates, g=0.5, h=0.5 
 

 n Gumbel’s HD 

q = 0.1 
10 0.0717 0.1307 
20 0.0371 0.0937 
40 0.0312 0.0510 

q = 0.5 
10 0.0331 0.0419 
20 0.0358 0.0464 
40 0.0341 0.0421 

q = 0.9 
10 0.0719 0.1299 
20 0.0373 0.1000 
40 0.0310 0.0549 

 
Finally, Table 4 shows the actual significance level results for asymmetric and heavy tailed g-and-h 
distribution. Gumbel’s estimator kept actual significance levels within the bounds 0.025 and 0.075. The 
results of Harrell Davis estimator were similar with the other tables, that is there are four uncontrolled 
results. 
 
4. CONCLUSION 
 
In general, 36 different conditions were examined. These conditions were obtained by combining 
different population distributions with different sample sizes, and changing the compared quantiles. 
Briefly, the actual significance levels fell in the interval (0.025, 0.075) with Gumbel's estimator 35 times 
and with Harrell Davis estimator 20 times. 
 
The quantile estimator which is referred to Gumbel could control the actual significance levels in all 
conditions except one of them. Even when comparing quantiles that are close to zero or one with 
relatively small sample sizes, its results were not affected.  
 
On the other side, Harrell Davis estimator could not control the actual significance levels when 
comparing the lower and upper quantiles with small sample sizes. However, when the median was 
considered the actual significance levels were very close to nominal level. Also note that, when sample 
size was relatively large, good results were obtained with all quantiles. 
 
When population quantiles of two independent groups are compared in terms of controlling actual 
significance levels, none of the quantile estimators is convenient in all cases. The most appropriate 
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quantile estimator should be preferred according to how large is the sample size and how quantiles are 
close to zero or one.  
 
In particular, when quantiles that are close to zero or one are compared with small sample sizes, control 
over the actual Type I error rate is achieved by using the Gumbel's estimator. Hence, Gumbel's quantile 
estimator can be suggested since its actual significance levels fall in the interval (0.025, 0.075) in almost 
all cases. 

 
Figure 1. Number of cases that quantile estimators were able to control nominal significance level 

α=0.05within Bradley’s limits 
 
Furthermore, Figure 1 also summarizes the performance of quantile estimators. The number of cases 
that quantile estimators could control the actual significance levels is shown, and clearly it is seen that 
Gumbel’s estimator is better. 
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