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ABSTRACT  

 
In this paper, a hybrid genetic algorithm is proposed for the quadratic assignment problem. The most time-consuming parts of 

the proposed algorithm are the calculation of objective function values and the local search operator. Therefore, the 

parallelization and implementation on graphics processing units of these parts was addressed. This parallel algorithm and its 

sequential version have been tested and compared for 49 instances in the literature. The best-known solutions were obtained 

for 34 of these instances. Computational experiments show that the proposed algorithm is capable of providing good quality 

solutions in a short time. Indeed, it can be observed that the parallel algorithm works up to 51 times faster --17 times faster on 

average-- than the sequential algorithm. 

 

Keywords: Quadratic assignment problem (QAP), parallel programming, graphics processing units (GPU), CUDA 

 

KARESEL ATAMA PROBLEMİ İÇİN GRAFİK İŞLEM BİRİMLERİ ÜZERİNDE 

TASARLANMIŞ BİR MELEZ GENETİK ALGORİTMA 

 

ÖZET 

 
Bu çalışmada karesel atama probleminin çözümü için melez bir genetik algoritma önerilmiştir. Önerilen algoritmanın en zaman 

alıcı bölümleri amaç fonksiyonun hesaplanması ve yerel arama operatörüdür. Bu nedenle algoritmanın söz konusu bölümlerinin 

paralelleştirilmesi ve grafik işlem birimleri üzerinde uygulanması üzerinde durulmuştur. Algoritmanın seri ve paralel versiyonu 

49 adet literatür problemi üzerinde test edilmiş ve karşılaştırmalar yapılmıştır. Test edilen literatur problemlerinden 34'ü için 

bilinen en iyi sonuçlara ulaşılmıştır. Deneysel çalışmalar önerilen algoritmanın kısa sürede etkin sonuçlar verebildiğini ortaya 

koymuştur. Önerilen paralel algoritmanın ortalama 17 kat olmak üzere 51 kata kadar seri algoritmaya göre hızlı çalıştığı 

raporlanmıştır. 

  

Keywords: Karesel atama problemi, paralel programlama, grafik işlem birimleri, CUDA 

 

1. INTRODUCTION 

 

The quadratic assignment problem (QAP) is a well-known combinatorial optimization problem 

introduced by Koopmans and Beckmann [1]. The problem has a wide range of applications, including 

facility planning [2], backboard wiring [3] and aircraft gate assignment [4].   

 

It has been demonstrated that the QAP is NP-Hard [5]. As the QAP is a facility planning problem, n 

facilities have to be assigned to n candidate locations by minimizing the cost function. Let 𝐷𝑛𝑥𝑛 be the 

distance matrix such that 𝑑𝑖𝑗  denotes the distance between 𝑖𝑡ℎ and 𝑗𝑡ℎ locations, and let 𝐹𝑛𝑥𝑛 be a flow 

matrix such that 𝑓𝑘𝑙 is the flow between facilities k and l. For permutation-based representation of 

solution, any 𝜋 interprets the assignments. Let, 𝜋1 be {4 1 3 2}. For 𝜋1, facility 4 is assigned to location 

1, facility 1 is assigned to location 2, facility 3 is assigned to location 3 and facility 2 is assigned to 

location 4. The objective is to find the best permutation-based solution (𝜋∗) that minimizes the cost 

function given by 

                                                             𝐶(𝜋) = ∑ ∑ 𝑑𝑖𝑗𝑓𝜋(𝑖)𝜋(𝑗).

𝑛

𝑗=1

𝑛

𝑖=1

                                                                    (1) 
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Since the QAP is NP-Hard, obtaining optimal solutions using exact methods may not even be doable 

(for detailed information see [6]). For this reason, researchers have proposed meta-heuristics. To date, 

genetic algorithms (GA) (e.g. [7, 8]), Tabu search (TS) (e.g. [9, 10, 11, 12]), simulated annealing 

(SA)(e.g. [13, 14, 15]) and ant colony optimization (ACO) (e.g. [16, 17]) have been proposed. These 

research shows that even obtaining good quality solutions may very well be time-consuming when large-

scale instances of the problem are considered. 

 

Graphics processing units (GPUs) are processors on the chipset of video cards that were originally 

designed for data visualization. Due to user-friendly software, GPU computational capabilities became 

available for researchers. The introduction of compute unified device architecture (CUDA) by NVIDIA 

in 2006 can be considered a turning point in the usage of GPUs in the applied sciences. Since then, 

thousands of publications have been added to the literature from a variety of disciplines. 

 

Programming on GPUs also drew the attention of researchers working on combinatorial optimization. 

It has become a widespread practice to develop meta-heuristics on GPUs to reduce computation times 

for combinatorial optimization problems. A parallel GA was proposed on GPUs for the QAP; the 

observed computation times on GPUs were 3.12 times faster than the central processing units (CPUs) 

[18]. In another study, an ACO algorithm is applied for the QAP with a local search procedure [19]. 

Since local search is the most time-consuming part of the algorithm, parallelization of this procedure on 

GPUs is focused. Speedups of up to 24.6 times were attained in this study. Luong et al. also considered 

the QAP, presenting a new methodology to design and implement hybrid evolutionary algorithms on 

GPUs [20]. They attained up to 14.1 times speedups. Zhu et al. [21] proposed a parallel TS algorithm 

for QAP on GPUs. Recently, a multi-start TS algorithm was proposed on GPUs to solve the QAP [22]. 

Speedups of up to 50 times were generated based on six-core CPUs for symmetric instances. 

 

There are also several studies in the literature related to other combinatorial optimization problems 

whose solution involved meta-heuristics on GPUs. Cecilia et al. [23] developed an ACO algorithm for 

the traveling salesman problem (TSP) and reported speedups of up to 20 times. Delevacq et al. [24] also 

studied the TSP and were able to reach speedups of 23 times compared to the sequential implementation 

of their ACO algorithm. Shulz [25] presented a study for solving the vehicle routing problem (VRP) 

based on local search algorithms. In the study, memory bottlenecks and their impact on performance are 

discussed, but speedup results are not mentioned. Groer et al. [26] also considered the VRP and 

employed local search methods. Huang et al. [27] studied the scheduling problem using a random key 

GA. They emphasized that chromosomes constructed via random key can be effectively implemented 

on GPUs. Czapinski, Barnes [28] also took up the scheduling problem and developed a TS algorithm to 

solve it. In the study they reported speedups of up to 89 times. 

 

In addition to these studies, Bozejko [29] proposed a new parallel objective function determination 

method for the flexible job shop scheduling problem. They obtained an average 45 times speedup by 

using the shared memory-based version of the parallel algorithm and a 27 times speedup when using the 

global memory-based version. Furthermore, Kneusel 30 studied curve fitting with particle swarm 

optimization on GPUs. 

 

In this paper, a hybrid GA is proposed to solve the QAP. This algorithm is implemented in a parallel 

manner on GPUs and sequentially on CPUs. In the parallel implementation, the algorithm’s objective 

function evaluation and local search procedure are parallelized on GPUs using the CUDA development 

environment. Our goal is to develop a robust and effective algorithm leading to good feasible solutions 

for instances of the QAP and to obtain speedups on computation times with the parallel implementation 

on GPUs. 

 

The rest of this paper is structured as follows: In Section 2, we give information about GPUs, CUDA 

and the use of GPUs for combinatorial optimization problems. Then, we explain the new algorithm and 
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its implementation details in Section 3. The computational results and some comparisons are presented 

and discussed in Section 4 with concluding remarks in Section 5. 

 

2. HIGH-PERFORMANCE COMPUTING ON GPUS FOR COMBINATORIAL OPTIMIZATION 

PROBLEMS 

 

The demand of computer game players and producers has led to the development of today’s graphics 

card technology, resulting in cards with hundreds of cores. Massive data parallelization is used to cope 

with the challenges encountered in the computation of 3D visualization for computer games, CAD 

programs, movies, and other applications. This computing power can also provide opportunities for the 

applied sciences, and well-organized parallel algorithms can offer tremendous speedups with GPUs. 

 

Matrix multiplication is one of the most oft-mentioned computational cases for parallel implementation 

on GPUs [31]. We also worked on the same case, to demonstrate and emphasize GPUs computational 

power by means of speedups. In the first step of our implementation, two matrices were randomly 

generated using decimal numbers. After implementations on both CPUs and GPUs, comparisons were 

made by means of speedups. For the multiplication of matrices A4096x4096 and B4096x4096, the computation 

time was almost 1440 seconds with CPUs, but only 5.1 seconds with GPUs. The speedups can be 

calculated as a ratio of CPU time to GPU time. All the speedups for different matrix sizes are shown in 

Table 1. According to the experimental results, speedups increase dramatically as matrix size grows.  

 

Table 1. Results of matrix multiplication 

 

 
 

2.1. General GPU Structure 

 

After the first CUDA-enabled graphics card was produced, NVIDIA released five architectures for 

GPUs. Although the power of a GPU does not equal that of a CPU, a number of GPUs are much more 

powerful than CPUs, and in recent years GPU performance has increased more rapidly than that of 

CPUs.    
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Figure 1. Fermi architecture [32] 

 

A CUDA core is the processor on a chipset that is also called a GPU. The GTX580 graphics card 

designed with Fermi architecture (Figure 1) is used in this study. In this architecture, CUDA cores are 

assembled in a group known as a streaming multiprocessor (SM). Each SM has 32 CUDA cores and 

there are a total 16 SMs on the chipset. Each SM has 64 KB of on-chip memory that can be configured 

to have up to 48 KB of shared memory and 16 KB as L1 cache, or 16 KB as shared memory and 48 KB 

as L1 cache. Fermi includes a L2 cache of 768 KB memory that is shared with all SMs. Furthermore, 

there are four special function units (SFU) on each SM to conduct special mathematical computations 

and two warp schedulers (WS) to organize the threads. Each CUDA core has its own integer unit (INT) 

and floating point unit (FP) for integer and floating point computations. 

 

2.2 GPU Programming Strategies 

 

It is possible to develop programs on GPUs using various programming languages, like C, C++ and 

Fortran on Microsoft Visual Studio or different compilers. Some parts of these programs continue to run 

on CPUs, with the rest of the programs executed on GPUs using kernels. A kernel is a code block that 

triggers the GPUs to work. Each kernel in a program needs grid parameters for executing code on GPUs. 

A thread is the smallest work piece, and the code is executed in groups of 32 threads called warps. A 

grid contains blocks, and a block contains a set of threads. It is bound with 1024 threads per block in 
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Fermi. Using block or thread indices and dimensions when implementing algorithms can offer many 

advantages. For example, the indices can be used to compute array subscripts. Additionally, each SM 

can work with up to eight blocks and 1536 threads. However, there are limitations, such as restrictions 

using load and store units. Each SM has 16 load and store units that organize the calculation for 16 

threads per clock cycle. Consequently, performance tuning on GPUs requires planning enough 

parallelism to occupy all the multiprocessors. 

 

Beyond raw physical parameters such as capacity and bandwidth, memory optimization also plays a key 

role in higher performance. The main strategy for this issue is avoiding redundant data transfer and 

keeping data in the fastest available memory. There are several memory types for GPUs, and their 

comparisons are mainly based on speed. Registers, the private memory for each thread, are the fastest 

kind of memory on GPUs. Each SM on the board has its own register memory that is divided between 

the threads assigned to that SM. Shared memory is the second fastest kind of memory. This memory is 

accessible to threads within a block. Shared memory can be inefficient if not accessed properly. The 

global memory residing in the devices DRAM is the slowest memory type due to high latency. Efficient 

access to global memory is related to grid organization. Threads properly grouped into warps can tolerate 

long latency operations. Besides the L1 and L2 caches, Fermi also includes dedicated texture and 

constant memory caches to accelerate reading global memory and to send kernel argument interaction. 

In addition to these memories, page-locked memory guarantees the specified memory in RAM to 

transfer data between CPUs and GPUs (You can find detailed information about CUDA in [31]). 

 

3. THE PARALLEL HYBRID GENETIC ALGORITHM FOR THE QAP 

 

In this section, our hybrid GA approach is presented with all operators. Then, the parallelized operators 

for GPU implementation are described. 

 

3.1. GA for QAP 

 

Here, the GA first proposed by Holland [33] with various modifications are presented. The GA is an 

evolutionary algorithm and this type is generally good at diversification. The main reason for 

hybridizing the GA with local search algorithms is to enhance it by means of intensification. In our 

approach, we used genetic operators with some modifications to avoid a premature convergence 

problem. Moreover, we hybridized our GA with a local search operator to optimize our solutions. 

 

3.1.1 Encoding and initial population generation 

 

The first step in the GA approach is to encode the solutions and generate them. In our approach, we used 

permutation-based solutions and generated them randomly. In a permutation, each position means the 

assignment of facilities to candidate locations. For instance, if there is a 4 in the first position of the π, 

this means the fourth facility is assigned to the first location. In our implementation, each π represents 

an individual for the GA, and we worked with a population of 1000 individuals according to our 

preliminary computational tests. After generating all these solutions randomly, each individual's 

objective function value was calculated according to Equation 1. 

 

3.1.2. Selection 

 

The selection operator is designed to select the parents to apply the crossover operator. This operator is 

the first operator for the loop of each iteration. Basically, a modified tournament selection procedure is 

used for this operator. In the literature, a typical tournament selection criterion is to always choose the 

fittest individual among the candidate individuals; however, this leads to a premature convergence 

problem in the GA.  
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In our modified procedure, two individuals were chosen from the population randomly and then 

compared based on their objective function values. The fitter individual wins the tournament at the 

probability of 0.85. Otherwise the other individual wins. Our preliminary computational tests suggested 

that this probability was used to increase diversity in the next generation. 

 

3.1.3. Crossover 

 

The crossover scheme is widely reported as critical to GA performance. For the proposed algorithm, 

this operator works with the 80% of selected individuals and produces the next generation by combining 

the characteristics of both parents. The remaining individuals are directly transferred to the next 

generation. We considered one-point, two-point and position-based crossover techniques for our GA. 

Experiments indicate that position-based crossover works better than the others. Therefore this 

technique is used for the crossover operator.  

 

In our implementation, consecutive individuals (parents) were included in the crossover procedure. A k 

parameter was selected randomly, which indicated the number of transferring genes from consecutive 

parents. When the first new individual (child) was constituted, the locations of the k genes were selected 

and taken from the first parent at random. The unassigned positions of the first child were scanned from 

the left to right of the second parent. The next child was constituted in a manner similar to the first one 

(see also Figure 2). 

 

 
 

Figure 2. Position based crossover 

 

3.1.4 Mutation 

 

After crossover, a mutation procedure was applied to all individuals. For each individual, two genes 

were randomly selected and the difference arising from this change was calculated. If this change 

improved the solution, it was always accepted. On the other hand, if the change was not valuable, it was 

accepted with a probability of 0.1, otherwise it was rejected. This modification serves to maintain 

population diversity. 

 

3.1.5 Local search 

 

A basic ingredient of hybridized meta-heuristics is local search, which brings significant intensification 

to the algorithm. Basically, this swap based operator searches for changes to gene pairs for all individuals 

to improve solutions. The idea behind local search is very simple. Each iteration starts with an initial 

solution π, then a number of neighboring solutions are obtained with the swap operator to π. It must be 

noted that there may be many improving solutions in the neighborhood of the current solution. Thus, we 

need a strategy for the acceptance of improving neighbors. The most common acceptance strategies are 

accepting the best improving neighbor and accepting the first improving neighbor. We utilized the 

accepting the first improving neighbor strategy. Therefore, if a neighbor solution 𝜋′ is better than π, the 

process continues with π replacing 𝜋′. 
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If we think about an n dimensional symmetric QAP instance, there are 
𝑛(𝑛−1)

2
 candidate changes for 

each solution. An iteration of this operator consists of evaluating the neighbors with respect to the 

difference between the current and candidate solutions (see Equation 2). If this difference is less than 

zero, then the change is accepted. Otherwise, it is rejected, and the next candidate is considered.  

                                       𝛿 = ∑ (𝑑𝑎𝑡 − 𝑑𝑏𝑡)(

𝑛

𝑡=1 𝑡≠𝑎 𝑡≠𝑏

𝑓𝜋(𝑏)𝜋(𝑡) − 𝑓𝜋(𝑎)𝜋(𝑡))                                                  (2) 

 

When this operator ends its search, the elitism operator keeps the best solution in the population, and 

the iteration finishes. The pseudo-code of our hybridized GA can be seen in Figure 3.  

 

 
 

Figure 3. Pseudo-code for the proposed algorithm 

 

3.2. Parallel Implementation of the Algorithm on GPUs 

 

As mentioned in Section 1, the main focus of this study was to propose a fast and robust algorithm that 

provides efficient solutions for the QAP. 

 

Many algorithms are well-designed with the powerful combination of GPUs and CPUs. The most time-

consuming parts of our hybridized GA were the calculation of objective function values and the local 

search operator. Therefore, the parallelization and implementation on GPUs of these parts was 

addressed. The remaining parts of the algorithm concentrate on the CPUs. 

 

To begin with, input data 𝐷𝑛𝑥𝑛 and 𝐹𝑛𝑥𝑛was read and copied from host to global memory. These two 

matrices were available for all calculations on GPUs, until the termination criteria were reached. Using 

constant memory can be thought of as more efficient than global memory for storing these data, but this 

is not possible for large-scale instances due to the limitations of constant memory. 

 

3.2.1. Parallel objective function evaluation 

 

For each iteration of the algorithm, all individuals were transferred to the global memory. Then, each 

individual's objective function value was evaluated simultaneously. In addition, multiplication 

operations were handled in a parallel manner for any individual's objective function evaluation.   

 

Specifically, we examined 3 individuals in the population. Let, π1, π2 and π3 be {1 2 3 4}, {4 1 3 2} and 

{1 3 4 2} respectively. Any π interpreted the assignments. For π3, facility 1 was assigned to location 1, 

facility 3 was assigned to location 2, facility 4 was assigned to location 3 and facility 2 was assigned to 

location 4. For any individual's evaluation as a symmetric QAP instance, there existed 
𝑛(𝑛−1)

2
  

multiplication operations. All these multiplications were handled simultaneously for all individuals and 

put in the vector A using thread and block indices (see Figure 4). Then, A was summed up, and all 

individuals' objective function values were calculated. After all corresponding fitness values were 

calculated, all individuals were kept in the global memory for parallel local search. This means that there 

was no memory operation at the end of this evaluation or at the beginning of the parallel local search. 
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As previously mentioned, there were 1000 individuals in the population. Initial experiments showed that 

the best choice for CUDA launch parameters was to group threads into 8 blocks of 125 threads.  

 

 
 

Figure 4. Parallel objective function evaluation 

 

3.2.2. Parallel local search 

 

The local search operator is carried out on GPUs in a similar fashion to the objective function evaluation. 

There exists 
𝑛(𝑛−1)

2
 candidate swaps forüa any individual in the population.  

 

Instead of evaluation in a sequential manner, the swap of the genes at the same position for all individuals 

is checked simultaneously. Again, we examined 3 individuals in the population. In Figure 5, we see an 

example of swap control between the first and third genes for all individuals. In addition, as mentioned 

above, the difference in the objective function values of neighbors is calculated using Equation 2. We 

implemented this function only on those GPUs that can be called from kernels. Once the entire 

neighborhood had been performed in parallel on GPUs, all individuals were copied back to the host. 

After that, a loop of our algorithm ends with the elitism operator on the CPU side.  

 

 
 

Figure 5. Parallel local search 

 

4. COMPUTATIONAL RESULTS 

 

As mentioned in the introduction, there are a wide variety of GPU implementation papers in different 

areas of scientific computing, including a few in combinatorial optimization with meta-heuristics. In 

this section, we demonstrate how we gained speedups with our fair CPU and GPU implementations. 

 

4.1. Test Environment and Instances 

 

All experiments were performed on an NVIDIA GeForce GTX 580, which is a Fermi architecture GPU. 

The GPU code was compiled using CUDA 4.2. Moreover, computational experiments were conducted 

on a six-core Intel Core i7 3.20 GHz CPU with 32 GB of memory, running under Windows 7 (64-bit). 

All algorithms were implemented with C++ on Microsoft Visual Studio 2010. For the comparisons, we 

used some symmetric QAP instances with different sizes from QAPLIB [34]. These test instances have 

different origins. Therefore, the efficiency of the algorithm was demonstrated with different types of 

instances. TaiXXa problems are randomly generated according to a uniform distribution. In the class of 

NugXX and SkoXX instances, flows were randomly generated, and the distances defined as the 

"Manhattan" distance between grid points. EscXX instances are real-life, structured instances including 

problems from practical applications. These test instances and their sizes are given in Table 2. 
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Table 2. Test instances and their sizes 

 

 
 

4.2. Test Results 

 

The results of comparisons are shown in the Tables (3, 4, 5, 6). In these tables, BK is the best known or 

optimal solution of the test instance. The CPU and GPU columns show the average runtime of the 

implementations in seconds. In order to show the performance of the proposed algorithm, HIT counts 

were used, which indicate how many times the best known values were reached in 20 runs. These are 

shown in the HIT column. Note that each speedup was calculated as a ratio of average CPU time to 

average GPU time. In addition, the GAP CPU and GAP GPU columns indicate the average gaps of CPU 

and GPU implementation, and they were obtained by using Equation 3. 

                                                                                
𝐶(𝜋) − 𝐶(𝜋∗)

𝐶(𝜋∗)
                                                                        (3) 

 

Table 3. Results of Escherman problems 

 

 
 

The results for Escherman's problems are given in Table 3. The number of times the best known solution 

was found is 20/20 for all instances except Esc32a, which was 19/20. If we focus on Esc32a, which is 

known as the hardest problem in this set, it took an average 176.651 seconds to reach the average gap 

0.0006 (0.06%) with the CPU implementation, but only 6.195 seconds with the GPU implementation. 

The experimental results show an impressive reduction in execution time. The average speedup was 

28.52 times for Esc32a and 13.56 times for all other problems in this set. Figure 6 shows the average 

solution times for both CPU and GPU runs.  
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Table 4. Results of Nugent problems 

 

 
 

Table 5. Results of Skorin problems 

 

 
 

In Table 4 and Figure 7, comparisons for Nugent problems are presented. For this set, speedups vary 

between 8.19 times and 47.46 times. While the average execution time for Nug28 on CPU was 47.7 

seconds, it was only 2.7 seconds on GPUs. Moreover, HIT counts were 20/20 for 13 of these instances.  

 

For Skorin instances, the problem sizes varied from 42 to 100. A stopping criterion was defined for this 

set to make the comparison fair. According to this criterion, the execution ended when the gap was less 

than or equal to 0.005 (0.5%). An 8.95 times average speedup was attained for this set. Table 5 and 

Figure 8 indicate the average solution times for the implementations.  

 

It is a fact that most of the Taillard instances are still in demand for improving best known solutions. In 

2012, Misevicius reported the new best known values of the objective function for instances tai50a, 

tai80a, and tai100a [12]. For this set, the stopping criterion was 0.02 (2%). The experimental results 

show that our algorithm ran on average 15.68 times faster on GPUs than the CPU version for this set 

(see Table 6). Figure 9 illustrates the average execution times of the two versions.  
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Table 6. Results of Taillard problems 

 

 
 

5. CONCLUSION 

 

In this study, we introduced a hybrid GA to solve the QAP on GPUs. Modified operators and local 

search were combined to diversify and intensify the search space. This algorithm is traditionally 

implemented on CPUs. The most time-consuming parts of the algorithm were the objective function 

evaluation and the local search procedure. Therefore, the parallelization of these two main parts of the 

algorithm was addressed. Efficient parallelization and implementation techniques were suggested for 

these operations on GPUs by using CUDA.  

 

The computational results and comparisons demonstrated that the proposed method yields robust 

solutions for the QAP instances. Our hybridized GA found the best known solutions for 34 out of 49 

benchmark problems. On average, the results were only 0.003 (0.3%) worse than the best known 

solutions. Furthermore, parallel implementation on GPUs works on average 17 times and up to 51 times 

faster than the CPU version. 

 

Further research should focus on how other time-consuming operators, like the crossover operator, can 

be implemented on GPUs. In addition, research should focus on tuning up the proposed method to attain 

even better solution quality. The proposed algorithm can also be applied to other discrete optimization 

problems. The performance of the proposed algorithm with other problems will be the subject of future 

research. 

 

 
 

Figure 6. Escherman instances 
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Figure 7. Nuggent instances 

 

 
 

Figure 8. Skorin instances  
 

 
 

Figure 9. Taillard instances 
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