
* Corresponding Author: eozcetin@anadolu.edu.tr

Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A- Uygulamalı Bilimler ve Mühendislik

Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering

2016 - Volume: 17 Number: 1
Page: 167 - 180

DOI: 10.18038/btda.15399

Received: 12 February 2016 Revised: 09 April 2016 Accepted: 23 April 2016

A HYBRID GENETIC ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM

ON GRAPHICS PROCESSING UNITS

Erdener ÖZÇETİN1, *, Gürkan ÖZTÜRK1

1Endüstri Mühendisliği Bölümü, Mühendislik Fakültesi, Anadolu Üniversitesi 26555 Tepebaşı, Eskişehir

ABSTRACT

In this paper, a hybrid genetic algorithm is proposed for the quadratic assignment problem. The most time-consuming parts of

the proposed algorithm are the calculation of objective function values and the local search operator. Therefore, the

parallelization and implementation on graphics processing units of these parts was addressed. This parallel algorithm and its

sequential version have been tested and compared for 49 instances in the literature. The best-known solutions were obtained

for 34 of these instances. Computational experiments show that the proposed algorithm is capable of providing good quality

solutions in a short time. Indeed, it can be observed that the parallel algorithm works up to 51 times faster --17 times faster on

average-- than the sequential algorithm.

Keywords: Quadratic assignment problem (QAP), parallel programming, graphics processing units (GPU), CUDA

KARESEL ATAMA PROBLEMİ İÇİN GRAFİK İŞLEM BİRİMLERİ ÜZERİNDE

TASARLANMIŞ BİR MELEZ GENETİK ALGORİTMA

ÖZET

Bu çalışmada karesel atama probleminin çözümü için melez bir genetik algoritma önerilmiştir. Önerilen algoritmanın en zaman

alıcı bölümleri amaç fonksiyonun hesaplanması ve yerel arama operatörüdür. Bu nedenle algoritmanın söz konusu bölümlerinin

paralelleştirilmesi ve grafik işlem birimleri üzerinde uygulanması üzerinde durulmuştur. Algoritmanın seri ve paralel versiyonu

49 adet literatür problemi üzerinde test edilmiş ve karşılaştırmalar yapılmıştır. Test edilen literatur problemlerinden 34'ü için

bilinen en iyi sonuçlara ulaşılmıştır. Deneysel çalışmalar önerilen algoritmanın kısa sürede etkin sonuçlar verebildiğini ortaya

koymuştur. Önerilen paralel algoritmanın ortalama 17 kat olmak üzere 51 kata kadar seri algoritmaya göre hızlı çalıştığı

raporlanmıştır.

Keywords: Karesel atama problemi, paralel programlama, grafik işlem birimleri, CUDA

1. INTRODUCTION

The quadratic assignment problem (QAP) is a well-known combinatorial optimization problem

introduced by Koopmans and Beckmann [1]. The problem has a wide range of applications, including

facility planning [2], backboard wiring [3] and aircraft gate assignment [4].

It has been demonstrated that the QAP is NP-Hard [5]. As the QAP is a facility planning problem, n

facilities have to be assigned to n candidate locations by minimizing the cost function. Let 𝐷𝑛𝑥𝑛 be the

distance matrix such that 𝑑𝑖𝑗 denotes the distance between 𝑖𝑡ℎ and 𝑗𝑡ℎ locations, and let 𝐹𝑛𝑥𝑛 be a flow

matrix such that 𝑓𝑘𝑙 is the flow between facilities k and l. For permutation-based representation of

solution, any 𝜋 interprets the assignments. Let, 𝜋1 be {4 1 3 2}. For 𝜋1, facility 4 is assigned to location

1, facility 1 is assigned to location 2, facility 3 is assigned to location 3 and facility 2 is assigned to

location 4. The objective is to find the best permutation-based solution (𝜋∗) that minimizes the cost

function given by

 𝐶(𝜋) = ∑ ∑ 𝑑𝑖𝑗𝑓𝜋(𝑖)𝜋(𝑗).

𝑛

𝑗=1

𝑛

𝑖=1

 (1)

mailto:eozcetin@anadolu.edu.tr

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

168

Since the QAP is NP-Hard, obtaining optimal solutions using exact methods may not even be doable

(for detailed information see [6]). For this reason, researchers have proposed meta-heuristics. To date,

genetic algorithms (GA) (e.g. [7, 8]), Tabu search (TS) (e.g. [9, 10, 11, 12]), simulated annealing

(SA)(e.g. [13, 14, 15]) and ant colony optimization (ACO) (e.g. [16, 17]) have been proposed. These

research shows that even obtaining good quality solutions may very well be time-consuming when large-

scale instances of the problem are considered.

Graphics processing units (GPUs) are processors on the chipset of video cards that were originally

designed for data visualization. Due to user-friendly software, GPU computational capabilities became

available for researchers. The introduction of compute unified device architecture (CUDA) by NVIDIA

in 2006 can be considered a turning point in the usage of GPUs in the applied sciences. Since then,

thousands of publications have been added to the literature from a variety of disciplines.

Programming on GPUs also drew the attention of researchers working on combinatorial optimization.

It has become a widespread practice to develop meta-heuristics on GPUs to reduce computation times

for combinatorial optimization problems. A parallel GA was proposed on GPUs for the QAP; the

observed computation times on GPUs were 3.12 times faster than the central processing units (CPUs)

[18]. In another study, an ACO algorithm is applied for the QAP with a local search procedure [19].

Since local search is the most time-consuming part of the algorithm, parallelization of this procedure on

GPUs is focused. Speedups of up to 24.6 times were attained in this study. Luong et al. also considered

the QAP, presenting a new methodology to design and implement hybrid evolutionary algorithms on

GPUs [20]. They attained up to 14.1 times speedups. Zhu et al. [21] proposed a parallel TS algorithm

for QAP on GPUs. Recently, a multi-start TS algorithm was proposed on GPUs to solve the QAP [22].

Speedups of up to 50 times were generated based on six-core CPUs for symmetric instances.

There are also several studies in the literature related to other combinatorial optimization problems

whose solution involved meta-heuristics on GPUs. Cecilia et al. [23] developed an ACO algorithm for

the traveling salesman problem (TSP) and reported speedups of up to 20 times. Delevacq et al. [24] also

studied the TSP and were able to reach speedups of 23 times compared to the sequential implementation

of their ACO algorithm. Shulz [25] presented a study for solving the vehicle routing problem (VRP)

based on local search algorithms. In the study, memory bottlenecks and their impact on performance are

discussed, but speedup results are not mentioned. Groer et al. [26] also considered the VRP and

employed local search methods. Huang et al. [27] studied the scheduling problem using a random key

GA. They emphasized that chromosomes constructed via random key can be effectively implemented

on GPUs. Czapinski, Barnes [28] also took up the scheduling problem and developed a TS algorithm to

solve it. In the study they reported speedups of up to 89 times.

In addition to these studies, Bozejko [29] proposed a new parallel objective function determination

method for the flexible job shop scheduling problem. They obtained an average 45 times speedup by

using the shared memory-based version of the parallel algorithm and a 27 times speedup when using the

global memory-based version. Furthermore, Kneusel 30 studied curve fitting with particle swarm

optimization on GPUs.

In this paper, a hybrid GA is proposed to solve the QAP. This algorithm is implemented in a parallel

manner on GPUs and sequentially on CPUs. In the parallel implementation, the algorithm’s objective

function evaluation and local search procedure are parallelized on GPUs using the CUDA development

environment. Our goal is to develop a robust and effective algorithm leading to good feasible solutions

for instances of the QAP and to obtain speedups on computation times with the parallel implementation

on GPUs.

The rest of this paper is structured as follows: In Section 2, we give information about GPUs, CUDA

and the use of GPUs for combinatorial optimization problems. Then, we explain the new algorithm and

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

169

its implementation details in Section 3. The computational results and some comparisons are presented

and discussed in Section 4 with concluding remarks in Section 5.

2. HIGH-PERFORMANCE COMPUTING ON GPUS FOR COMBINATORIAL OPTIMIZATION

PROBLEMS

The demand of computer game players and producers has led to the development of today’s graphics

card technology, resulting in cards with hundreds of cores. Massive data parallelization is used to cope

with the challenges encountered in the computation of 3D visualization for computer games, CAD

programs, movies, and other applications. This computing power can also provide opportunities for the

applied sciences, and well-organized parallel algorithms can offer tremendous speedups with GPUs.

Matrix multiplication is one of the most oft-mentioned computational cases for parallel implementation

on GPUs [31]. We also worked on the same case, to demonstrate and emphasize GPUs computational

power by means of speedups. In the first step of our implementation, two matrices were randomly

generated using decimal numbers. After implementations on both CPUs and GPUs, comparisons were

made by means of speedups. For the multiplication of matrices A4096x4096 and B4096x4096, the computation

time was almost 1440 seconds with CPUs, but only 5.1 seconds with GPUs. The speedups can be

calculated as a ratio of CPU time to GPU time. All the speedups for different matrix sizes are shown in

Table 1. According to the experimental results, speedups increase dramatically as matrix size grows.

Table 1. Results of matrix multiplication

2.1. General GPU Structure

After the first CUDA-enabled graphics card was produced, NVIDIA released five architectures for

GPUs. Although the power of a GPU does not equal that of a CPU, a number of GPUs are much more

powerful than CPUs, and in recent years GPU performance has increased more rapidly than that of

CPUs.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

170

Figure 1. Fermi architecture [32]

A CUDA core is the processor on a chipset that is also called a GPU. The GTX580 graphics card

designed with Fermi architecture (Figure 1) is used in this study. In this architecture, CUDA cores are

assembled in a group known as a streaming multiprocessor (SM). Each SM has 32 CUDA cores and

there are a total 16 SMs on the chipset. Each SM has 64 KB of on-chip memory that can be configured

to have up to 48 KB of shared memory and 16 KB as L1 cache, or 16 KB as shared memory and 48 KB

as L1 cache. Fermi includes a L2 cache of 768 KB memory that is shared with all SMs. Furthermore,

there are four special function units (SFU) on each SM to conduct special mathematical computations

and two warp schedulers (WS) to organize the threads. Each CUDA core has its own integer unit (INT)

and floating point unit (FP) for integer and floating point computations.

2.2 GPU Programming Strategies

It is possible to develop programs on GPUs using various programming languages, like C, C++ and

Fortran on Microsoft Visual Studio or different compilers. Some parts of these programs continue to run

on CPUs, with the rest of the programs executed on GPUs using kernels. A kernel is a code block that

triggers the GPUs to work. Each kernel in a program needs grid parameters for executing code on GPUs.

A thread is the smallest work piece, and the code is executed in groups of 32 threads called warps. A

grid contains blocks, and a block contains a set of threads. It is bound with 1024 threads per block in

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

171

Fermi. Using block or thread indices and dimensions when implementing algorithms can offer many

advantages. For example, the indices can be used to compute array subscripts. Additionally, each SM

can work with up to eight blocks and 1536 threads. However, there are limitations, such as restrictions

using load and store units. Each SM has 16 load and store units that organize the calculation for 16

threads per clock cycle. Consequently, performance tuning on GPUs requires planning enough

parallelism to occupy all the multiprocessors.

Beyond raw physical parameters such as capacity and bandwidth, memory optimization also plays a key

role in higher performance. The main strategy for this issue is avoiding redundant data transfer and

keeping data in the fastest available memory. There are several memory types for GPUs, and their

comparisons are mainly based on speed. Registers, the private memory for each thread, are the fastest

kind of memory on GPUs. Each SM on the board has its own register memory that is divided between

the threads assigned to that SM. Shared memory is the second fastest kind of memory. This memory is

accessible to threads within a block. Shared memory can be inefficient if not accessed properly. The

global memory residing in the devices DRAM is the slowest memory type due to high latency. Efficient

access to global memory is related to grid organization. Threads properly grouped into warps can tolerate

long latency operations. Besides the L1 and L2 caches, Fermi also includes dedicated texture and

constant memory caches to accelerate reading global memory and to send kernel argument interaction.

In addition to these memories, page-locked memory guarantees the specified memory in RAM to

transfer data between CPUs and GPUs (You can find detailed information about CUDA in [31]).

3. THE PARALLEL HYBRID GENETIC ALGORITHM FOR THE QAP

In this section, our hybrid GA approach is presented with all operators. Then, the parallelized operators

for GPU implementation are described.

3.1. GA for QAP

Here, the GA first proposed by Holland [33] with various modifications are presented. The GA is an

evolutionary algorithm and this type is generally good at diversification. The main reason for

hybridizing the GA with local search algorithms is to enhance it by means of intensification. In our

approach, we used genetic operators with some modifications to avoid a premature convergence

problem. Moreover, we hybridized our GA with a local search operator to optimize our solutions.

3.1.1 Encoding and initial population generation

The first step in the GA approach is to encode the solutions and generate them. In our approach, we used

permutation-based solutions and generated them randomly. In a permutation, each position means the

assignment of facilities to candidate locations. For instance, if there is a 4 in the first position of the π,

this means the fourth facility is assigned to the first location. In our implementation, each π represents

an individual for the GA, and we worked with a population of 1000 individuals according to our

preliminary computational tests. After generating all these solutions randomly, each individual's

objective function value was calculated according to Equation 1.

3.1.2. Selection

The selection operator is designed to select the parents to apply the crossover operator. This operator is

the first operator for the loop of each iteration. Basically, a modified tournament selection procedure is

used for this operator. In the literature, a typical tournament selection criterion is to always choose the

fittest individual among the candidate individuals; however, this leads to a premature convergence

problem in the GA.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

172

In our modified procedure, two individuals were chosen from the population randomly and then

compared based on their objective function values. The fitter individual wins the tournament at the

probability of 0.85. Otherwise the other individual wins. Our preliminary computational tests suggested

that this probability was used to increase diversity in the next generation.

3.1.3. Crossover

The crossover scheme is widely reported as critical to GA performance. For the proposed algorithm,

this operator works with the 80% of selected individuals and produces the next generation by combining

the characteristics of both parents. The remaining individuals are directly transferred to the next

generation. We considered one-point, two-point and position-based crossover techniques for our GA.

Experiments indicate that position-based crossover works better than the others. Therefore this

technique is used for the crossover operator.

In our implementation, consecutive individuals (parents) were included in the crossover procedure. A k

parameter was selected randomly, which indicated the number of transferring genes from consecutive

parents. When the first new individual (child) was constituted, the locations of the k genes were selected

and taken from the first parent at random. The unassigned positions of the first child were scanned from

the left to right of the second parent. The next child was constituted in a manner similar to the first one

(see also Figure 2).

Figure 2. Position based crossover

3.1.4 Mutation

After crossover, a mutation procedure was applied to all individuals. For each individual, two genes

were randomly selected and the difference arising from this change was calculated. If this change

improved the solution, it was always accepted. On the other hand, if the change was not valuable, it was

accepted with a probability of 0.1, otherwise it was rejected. This modification serves to maintain

population diversity.

3.1.5 Local search

A basic ingredient of hybridized meta-heuristics is local search, which brings significant intensification

to the algorithm. Basically, this swap based operator searches for changes to gene pairs for all individuals

to improve solutions. The idea behind local search is very simple. Each iteration starts with an initial

solution π, then a number of neighboring solutions are obtained with the swap operator to π. It must be

noted that there may be many improving solutions in the neighborhood of the current solution. Thus, we

need a strategy for the acceptance of improving neighbors. The most common acceptance strategies are

accepting the best improving neighbor and accepting the first improving neighbor. We utilized the

accepting the first improving neighbor strategy. Therefore, if a neighbor solution 𝜋′ is better than π, the

process continues with π replacing 𝜋′.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

173

If we think about an n dimensional symmetric QAP instance, there are
𝑛(𝑛−1)

2
 candidate changes for

each solution. An iteration of this operator consists of evaluating the neighbors with respect to the

difference between the current and candidate solutions (see Equation 2). If this difference is less than

zero, then the change is accepted. Otherwise, it is rejected, and the next candidate is considered.

 𝛿 = ∑ (𝑑𝑎𝑡 − 𝑑𝑏𝑡)(

𝑛

𝑡=1 𝑡≠𝑎 𝑡≠𝑏

𝑓𝜋(𝑏)𝜋(𝑡) − 𝑓𝜋(𝑎)𝜋(𝑡)) (2)

When this operator ends its search, the elitism operator keeps the best solution in the population, and

the iteration finishes. The pseudo-code of our hybridized GA can be seen in Figure 3.

Figure 3. Pseudo-code for the proposed algorithm

3.2. Parallel Implementation of the Algorithm on GPUs

As mentioned in Section 1, the main focus of this study was to propose a fast and robust algorithm that

provides efficient solutions for the QAP.

Many algorithms are well-designed with the powerful combination of GPUs and CPUs. The most time-

consuming parts of our hybridized GA were the calculation of objective function values and the local

search operator. Therefore, the parallelization and implementation on GPUs of these parts was

addressed. The remaining parts of the algorithm concentrate on the CPUs.

To begin with, input data 𝐷𝑛𝑥𝑛 and 𝐹𝑛𝑥𝑛was read and copied from host to global memory. These two

matrices were available for all calculations on GPUs, until the termination criteria were reached. Using

constant memory can be thought of as more efficient than global memory for storing these data, but this

is not possible for large-scale instances due to the limitations of constant memory.

3.2.1. Parallel objective function evaluation

For each iteration of the algorithm, all individuals were transferred to the global memory. Then, each

individual's objective function value was evaluated simultaneously. In addition, multiplication

operations were handled in a parallel manner for any individual's objective function evaluation.

Specifically, we examined 3 individuals in the population. Let, π1, π2 and π3 be {1 2 3 4}, {4 1 3 2} and

{1 3 4 2} respectively. Any π interpreted the assignments. For π3, facility 1 was assigned to location 1,

facility 3 was assigned to location 2, facility 4 was assigned to location 3 and facility 2 was assigned to

location 4. For any individual's evaluation as a symmetric QAP instance, there existed
𝑛(𝑛−1)

2

multiplication operations. All these multiplications were handled simultaneously for all individuals and

put in the vector A using thread and block indices (see Figure 4). Then, A was summed up, and all

individuals' objective function values were calculated. After all corresponding fitness values were

calculated, all individuals were kept in the global memory for parallel local search. This means that there

was no memory operation at the end of this evaluation or at the beginning of the parallel local search.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

174

As previously mentioned, there were 1000 individuals in the population. Initial experiments showed that

the best choice for CUDA launch parameters was to group threads into 8 blocks of 125 threads.

Figure 4. Parallel objective function evaluation

3.2.2. Parallel local search

The local search operator is carried out on GPUs in a similar fashion to the objective function evaluation.

There exists
𝑛(𝑛−1)

2
 candidate swaps forüa any individual in the population.

Instead of evaluation in a sequential manner, the swap of the genes at the same position for all individuals

is checked simultaneously. Again, we examined 3 individuals in the population. In Figure 5, we see an

example of swap control between the first and third genes for all individuals. In addition, as mentioned

above, the difference in the objective function values of neighbors is calculated using Equation 2. We

implemented this function only on those GPUs that can be called from kernels. Once the entire

neighborhood had been performed in parallel on GPUs, all individuals were copied back to the host.

After that, a loop of our algorithm ends with the elitism operator on the CPU side.

Figure 5. Parallel local search

4. COMPUTATIONAL RESULTS

As mentioned in the introduction, there are a wide variety of GPU implementation papers in different

areas of scientific computing, including a few in combinatorial optimization with meta-heuristics. In

this section, we demonstrate how we gained speedups with our fair CPU and GPU implementations.

4.1. Test Environment and Instances

All experiments were performed on an NVIDIA GeForce GTX 580, which is a Fermi architecture GPU.

The GPU code was compiled using CUDA 4.2. Moreover, computational experiments were conducted

on a six-core Intel Core i7 3.20 GHz CPU with 32 GB of memory, running under Windows 7 (64-bit).

All algorithms were implemented with C++ on Microsoft Visual Studio 2010. For the comparisons, we

used some symmetric QAP instances with different sizes from QAPLIB [34]. These test instances have

different origins. Therefore, the efficiency of the algorithm was demonstrated with different types of

instances. TaiXXa problems are randomly generated according to a uniform distribution. In the class of

NugXX and SkoXX instances, flows were randomly generated, and the distances defined as the

"Manhattan" distance between grid points. EscXX instances are real-life, structured instances including

problems from practical applications. These test instances and their sizes are given in Table 2.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

175

Table 2. Test instances and their sizes

4.2. Test Results

The results of comparisons are shown in the Tables (3, 4, 5, 6). In these tables, BK is the best known or

optimal solution of the test instance. The CPU and GPU columns show the average runtime of the

implementations in seconds. In order to show the performance of the proposed algorithm, HIT counts

were used, which indicate how many times the best known values were reached in 20 runs. These are

shown in the HIT column. Note that each speedup was calculated as a ratio of average CPU time to

average GPU time. In addition, the GAP CPU and GAP GPU columns indicate the average gaps of CPU

and GPU implementation, and they were obtained by using Equation 3.

𝐶(𝜋) − 𝐶(𝜋∗)

𝐶(𝜋∗)
 (3)

Table 3. Results of Escherman problems

The results for Escherman's problems are given in Table 3. The number of times the best known solution

was found is 20/20 for all instances except Esc32a, which was 19/20. If we focus on Esc32a, which is

known as the hardest problem in this set, it took an average 176.651 seconds to reach the average gap

0.0006 (0.06%) with the CPU implementation, but only 6.195 seconds with the GPU implementation.

The experimental results show an impressive reduction in execution time. The average speedup was

28.52 times for Esc32a and 13.56 times for all other problems in this set. Figure 6 shows the average

solution times for both CPU and GPU runs.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

176

Table 4. Results of Nugent problems

Table 5. Results of Skorin problems

In Table 4 and Figure 7, comparisons for Nugent problems are presented. For this set, speedups vary

between 8.19 times and 47.46 times. While the average execution time for Nug28 on CPU was 47.7

seconds, it was only 2.7 seconds on GPUs. Moreover, HIT counts were 20/20 for 13 of these instances.

For Skorin instances, the problem sizes varied from 42 to 100. A stopping criterion was defined for this

set to make the comparison fair. According to this criterion, the execution ended when the gap was less

than or equal to 0.005 (0.5%). An 8.95 times average speedup was attained for this set. Table 5 and

Figure 8 indicate the average solution times for the implementations.

It is a fact that most of the Taillard instances are still in demand for improving best known solutions. In

2012, Misevicius reported the new best known values of the objective function for instances tai50a,

tai80a, and tai100a [12]. For this set, the stopping criterion was 0.02 (2%). The experimental results

show that our algorithm ran on average 15.68 times faster on GPUs than the CPU version for this set

(see Table 6). Figure 9 illustrates the average execution times of the two versions.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

177

Table 6. Results of Taillard problems

5. CONCLUSION

In this study, we introduced a hybrid GA to solve the QAP on GPUs. Modified operators and local

search were combined to diversify and intensify the search space. This algorithm is traditionally

implemented on CPUs. The most time-consuming parts of the algorithm were the objective function

evaluation and the local search procedure. Therefore, the parallelization of these two main parts of the

algorithm was addressed. Efficient parallelization and implementation techniques were suggested for

these operations on GPUs by using CUDA.

The computational results and comparisons demonstrated that the proposed method yields robust

solutions for the QAP instances. Our hybridized GA found the best known solutions for 34 out of 49

benchmark problems. On average, the results were only 0.003 (0.3%) worse than the best known

solutions. Furthermore, parallel implementation on GPUs works on average 17 times and up to 51 times

faster than the CPU version.

Further research should focus on how other time-consuming operators, like the crossover operator, can

be implemented on GPUs. In addition, research should focus on tuning up the proposed method to attain

even better solution quality. The proposed algorithm can also be applied to other discrete optimization

problems. The performance of the proposed algorithm with other problems will be the subject of future

research.

Figure 6. Escherman instances

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

178

Figure 7. Nuggent instances

Figure 8. Skorin instances

Figure 9. Taillard instances

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

179

REFERENCES

[1] T C Koopmans and M Beckmann. Assignment problems and the location of economic activities.

Econometrica: Journal of the Econometric 1957; 25 (1): 53–76.

[2] A N Elshafei. Hospital layout as a Quadratic Assignment Problem. Operations Research Quarterly

1977; 28: 167–179.

[3] L Steinberg. The backboard wiring problem: a placement algorithm. SIAM Review 1961; 3: 37–50.

[4] A Haghani and M -C. Chen, Optimizing gate assignments at airport terminals, Transportation

Research Part A: Policy and Practice 32 (1998) 437–454.

[5] S Sahni and T Gonzalez. OP-Complete approximation problems. Journal of the ACM 1976; 23: 555-565.

[6] Z Drezner, P M Hahn, E D Taillard. Recent advances for the quadratic assignment problem with

special emphasis on instances that are difficult for meta-heuristic methods. Annals of Operations 2005;

139: 65–94.

[7] J S Kochhar, B T Foster, S S Heragu. HOPE: A genetic algorithm for the unequal area facility layout

problem. Computers & Operations Research 1998; 25(7-8): 583–594.

[8] Z Drezner. A new genetic algorithm for the quadratic assignment problem. Informs Journal on

Computing 2003; 15: 320–330.

[9] J Skorin-Kapov. Tabu search applied to the quadratic assignment problem, ORSA Journal on

Computing. 1990; 2: 33–45.

[10] E Taillard. Robust taboo search for the quadratic assignment problem. Parallel Computing 1991;

17: 443–455.

[11] A Misevicius, A Osterika. Defining tabu tenure for the quadratic assignment problem. Information

Technology and Control 2007; 36 (4): 341–347.

[12] A Misevicius. An implementation of the iterated tabu search algorithm for the quadratic assignment

problem. OR Spectrum 2012; 34(3): 665-690.

[13] R Burkard, F Rendl. A thermodynamically motivated simulation procedure for combinatorial

optimization problems. European Journal of Operational Research 1984; 17(2): 169–174.

[14] M Wilhelm, T Ward. Solving quadratic assignment problems by simulated annealing. IIE

Transactions 1987; 19: 107–119.

[15] T Abreu, N Querido, N Boaventura. A simulated annealing for the quadratic assignment problem.

Rairo-Operations Research 1999; 33: 249–273.

[16] T Stützle and M Dorigo. ACO algorithms for the quadratic assignment problem. In: New ideas in

optimization, David Corne, Marco Dorigo, Fred Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli,

and Kenneth V. Price editors. Maidenhead, UK, England: McGraw-Hill Ltd, 1999. pp. 33-50.

[17] M Dorigo. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernet ics-Part B: Cybernetics 1996; 26 (1): 1–13.

Özçetin and Öztürk / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (1) - 2016

180

[18] S Tsutsui, N Fujimoto. Solving quadratic assignment problems by genetic algorithms with GPU

computation: a case study. In Proceedings of the 11th Annual Conference Companion on Genetic and

Evolutionary Computation (GECCO 2009), pp. 2523–2530.

[19] S Tsutsui, N Fujimoto. Fast QAP solving by ACO with 2-opt local search on a GPU. In 2011

IEEE Congress of Evolutionary Computation (CEC 2011). pp. 812–819.

[20] T Luong, N Melab, E. Talbi. Parallel hybrid evolutionary algorithms on GPU. In IEEE World

Congress on Computational Intelligence, 2010.

[21] W Zhu, J Curry, A Marquez. SIMD tabu search for the quadratic assignment problem with graphics

hardware acceleration. International Journal of Production Research 2010; 48(4): 1035-1047.

[22] M Czapinski. An effective parallel multistart tabu search for quadratic assignment problem on

CUDA platform, Journal of Parallel and Distributed Computing 2013; 73: 1461–1468.

[23] J M Cecilia, J M Garcia, A Nisbet, M Amos, M Ujaldon. Enhancing data parallelism for ant colony

optimization on GPUs. Journal of Parallel and Distributed Computing 2013; 73 (1): 42–51.

[24] A Delevacq, P Delisle, M Gravel, M Krajecki. Parallel ant colony optimization on graphics

processing units, Journal of Parallel and Distributed Computing 2013; 73: 52–61.

[25] C Schulz. Efficient local search on the GPU investigation on the vehicle routing problem. Journal

of Parallel and Distributed Computing 2013; 73: 14–31.

[26] C Groer, B Golden, E Wasil. A parallel algorithm for the vehicle routing problem, Informs Journal

on Computing 2011; 23: 315–330.

[27] C -S. Huang, Y-C. Huang, P.-J. Lai. Modified genetic algorithms for solving fuzzy flow shop

scheduling problems and their implementation with CUDA. Expert Systems with Applications 2012;

39: 4999–5005.

[28] M Czapinski, S Barnes, Tabu Search with two approaches to parallel flowshop evaluation on

CUDA platform, Journal of Parallel and Distributed Computing 2011; 71: 802–811.

[29] W Bozejko. On single-walk parallelization of the job shop problem solving algorithms, Computers

& Operations Research 2012; 39: 2258–2264.

[30] R T Kneusel. Curve-Fitting on Graphics Processors Using Particle Swarm Optimization,

International Journal of Computational Intelligence Systems. 2013; 7 (2): 213–224.

[31] D Kirk, W.-M. W. Whu. Programming massively parallel processors. Burlington, USA: Elsevier

Inc., 2010.

[32] NVIDIA. NVIDIAs next generation CUDA computer architecture Fermi (white paper). NVIDIA,

2011.

[33] J H Holland. Adaptation in natural and artificial systems. USA: A Bradford Book, 1992.

[34] R Burkard, S Karisch, F Rendl. QAPLIB-a quadratic assignment problem library. European Journal

of Operational Research 1991; 55(1): 115–119.

