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Abstract: The free radical theory in aging assumes that the accumulation of 

macromolecular damage induced by toxic reactive oxygen species plays a 

central role in the aging process. The intake of nutritional antioxidants can 

prevent this damage by neutralizing reactive oxygen derivatives. Glutathione 

(GSH; en-L-Glutamyl-L-cysteinyl glycine) is the lowest molecular weight 

thiol in the cells and as a cofactor of many enzymes and a potent antioxidant 

plays an important role in maintaining normal cell functions by destroying 

toxic oxygen radicals. In this study, the effects of GSH on SOD, GST and 

catalase enzymes and mtDNA damage were investigated at various time 

intervals by giving reduced glutathione to Drosophila. It was observed that 3-

week GSH administration did not have a statistically significant effect on SOD 

and GST activities whereas GSH application decreased the catalase enzyme 

activities significantly. Although the decrease in antioxidant capacity with age 

was observed in SOD and catalase enzymes, such a situation was not observed 

in GST enzyme activities. There was no statistically significant difference 

between the control and GSH groups in mtDNA copy number values, while in 

the GSH group, oxidative mtDNA damage was high. These results may be due 

to the prooxidant effect of GSH at the dose used in this study. 

ARTICLE HISTORY 

Received: Mar. 08, 2022 

Revised: Aug. 01, 2022 

Accepted: Oct. 18, 2022 

 

KEYWORDS 

Glutathione, 

Catalase, 

GST, 

SOD, 

mtDNA. 

1. INTRODUCTION 

Reactive oxygen species (ROS) are by-products of exposure to cellular metabolism or 

xenobiotics. ROS production can be harmful because it may cause oxidative changes in cellular 

lipids, proteins, and DNA, or it may be beneficial by participating in intracellular signalling or 

cell regulation (El-Osta & Circu, 2016). Mitochondria, the centre of cellular respiration, is a 

quantitatively important source of ROS as a result of oxygen reduction. In addition, 

mitochondria are exposed to harmful reactive oxygen species that inhibit cellular antioxidant 

mechanisms such as SOD and glutathione (El-Osta & Circu, 2016; Collins, 2016).  

Superoxide (O2
-) is one of the free radicals that can exert oxidative effects on the cell. 

Superoxide is reduced by superoxide dismutase (SOD) enzyme to hydrogen peroxide (Abreu 

& Cabelli, 2010; Sheshadri & Kumar, 2016). There is evidence that ROS such as superoxide 
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anion radical, hydrogen peroxide, carbon monoxide, and nitric oxide play an important role in 

various physiological processes such as cellular proliferation and differentiation, gene 

regulation, and anti-bacterial defense (Rebrin & Sohal, 2008). SOD can be considered as the 

first line of defense in ROS homeostasis (Abreu & Cabelli, 2010; Sheshadri & Kumar, 2016).  

Catalase (CAT) is a common antioxidant enzyme found in almost all tissues using oxygen. 

This enzyme catalyzes the reduction of hydrogen peroxide (H2O2) to water and molecular 

oxygen to complete the detoxification process carried out by the SOD. The catalase is present 

in the cell in the peroxisome, not in the mitochondria, which shows that the separation of 

hydrogen peroxide to water and oxygen is carried out by another enzyme known as glutathione 

peroxidase in mammalian cell mitochondria (Ighodaro & Akinloye, 2018). Approximately 

0.4% to 4% of the molecular oxygen metabolized in the mitochondrial electron transport chain 

is converted into ROS (Lim et al., 2006).  Mitochondrial DNA (mtDNA) is a circular double 

helix DNA arranged in nucleotides. There is no histone in the mitochondrial genome and the 

genome is located very close to the mitochondrial electron transport system (ETS); therefore, 

mtDNA is very sensitive to oxidative damage (Circu & Aw, 2012). 

Glutathione (GSH; γ-L-Glutamyl-L-cysteinyl glycine, the lowest molecular weight thiol in 

the cells, is composed of L-glutamate, L-cysteine, and glycine amino acids and is one of the 

most important antioxidant compounds in body fluids (Giustarini et al. 2016; Wu et al, 2004). 

GSH production is catalyzed by Gamma-glutamylcysteine synthetase (Gsh1p) and glutathione 

synthetase (Gsh2p) and synthesized in two steps dependent on ATP (Mannarino, 2008). 

Glutathione, an essential molecule and primary cellular redox buffer that participates in various 

biological processes, is often found in cells at millimolar concentrations (1-10 mM). Many 

processes in cells can use GSH as a cofactor and can be affected by changes in GSH level. The 

consequences of suboptimum GSH levels on all these processes are not yet clear (Ayer et al., 

2010). Glutathione is synthesized intracellularly and can be transferred from the cell. It then 

tends to be hydrolyzed to amino acids to be taken back by the cells and re-synthesized 

glutathione in the cell (Meister, 1991). When glutathione flows out of the cell as a tripeptide, a 

large amount cannot be absorbed back into the cell (Kern et al, 2011), which leads to basal 

glutathione content in serum with a normal range of 3.8-5.5μM and its half-life is reported as 

14.1 ± 9.2 minutes. Cells that can absorb glutathione as a tripeptide are hepatocytes (HepG2), 

intestinal mucosal cells, and retinal cells (Aebi et al, 1991; Sze et al, 1993; Benard et al, 1993; 

Kannan et al, 1996). GSH is also an important source of cysteine and performs many 

physiological functions, including proliferation, cell cycle regulation, apoptosis, catabolism of 

xenobiotics, glutathionylation of proteins, and the production of some steroids, lipid compound, 

and deoxyribonucleotides (Bajic et al, 2019). Glutathione is present in a reduced form known 

as reduced glutathione (GSH) and an oxidized form (GSSG) after administration of antioxidant 

effects on targets. These two forms determine a ratio known as the GSH / GSSG ratio, and 

changes in this ratio indicate changes in cellular oxidative balance (Owen & Butterfield, 2010).   

GSH, a cofactor of many enzymes and a potent antioxidant, plays an important role in 

maintaining normal cell functions by destroying toxic oxygen radicals. On the other hand, GSH 

level decreases in circulatory and tissue levels in chronic diseases such as diabetes and aging 

(Jain et al, 2016). The free radical theory in aging assumes that the accumulation of 

macromolecular damage induced by toxic reactive oxygen derivatives (ROS) plays a central 

role in the aging process (Lim et al, 2006). 

Mitochondrial dysfunction in cells is closely related to formation of reactive oxygen species 

(ROS) and oxidative stress. Although ROS homeostasis and antioxidant enzymes are 

modulated by cellular mtDNA, the modulation of the cellular antioxidant defense system by 

changes in mitochondrial DNA (mtDNA) content is largely unknown (Min & Lee, 2019). The 

mitochondrial glutathione (mtGSH) pool is 10-15% of cellular glutathione and is derived from 
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the transport of cytosolic glutathione along mitochondrial membranes (Collins, 2016). 

Mitochondrial redox systems such as glutathione, thioredoxin, and pyridine nucleotide redox 

pairs participate in antioxidant defense by modulating mitochondrial functions, including 

apoptotic cell death. The imbalance between ROS and antioxidant defense causes oxidative 

stress and oxidative changes in cellular biomolecules. Increased oxidative stress also leads to 

loss of GSH (Choi et al, 2016).  Furthermore, mitochondrial ROS can oxidize mitochondrial 

glutathione and cause the loss of intramitochondrial redox homeostasis since mitochondrial 

macromolecules including mitochondrial DNA (mtDNA) are exposed to irreversible oxidative 

modifications (El-Osta & Circu, 2016). In Min and Lee's studies (2019), expression and activity 

of glutathione peroxidase (GPx) and catalase were inversely proportional to mtDNA content in 

myoblasts. While the depletion of mtDNA slightly lowered both reduced glutathione (GSH) 

and oxidized glutathione (GSSG), the cellular redox status assessed by the GSH / GSSG ratio 

was similar to that of the control group. In their study, Min and Lee (2019) reported that ROS 

homeostasis and antioxidant enzymes are modulated by cellular mtDNA content and that 

increased Glutathione peroxidase (GPx) and catalase expression and activity through mtDNA 

depletion are closely related to the reduction of oxidative stress in myoblasts.  

Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce glutathione 

out of the cell, thereby reducing intracellular redox homeostasis and inhibiting the activation of 

the apoptotic signal cascade (Circu & Aw, 2012). Many defence mechanisms in the organism 

evolve reducing reactive oxidants and their damage (Ames et al, 1993). Apoptosis is a well-

organized and important cell death pattern for tissue homeostasis, organ development, and 

aging. To date, exogenous (receptor-mediated) and intrinsic (mitochondrial-derived) apoptotic 

pathways have been characterized in mammalian cells. Reduced glutathione plays an important 

role in protecting the reduced intracellular environment. The mechanism in which oxidative 

mtDNA damage induces apoptotic signalling is unclear (Circu & Aw, 2012). Enzymes such as 

superoxide dismutase (SOD), catalase, and glutathione S-transferase (GST) neutralize reactive 

electrophilic mutagens. In addition to the protective effects of intrinsic enzymatic antioxidant 

defence mechanisms, studies suggest that antioxidant consumption in diet is of great importance 

for health. Consumption of fruits and vegetables as the main source of diet antioxidants reduces 

the risk of degenerative diseases. However, there are many arguments suggesting that 

antioxidant contents of fruits and vegetables have the greatest effect on their protective effects 

(Ames et al, 1993).  

Studies on aging in Drosophila continue to provide new insights into the understanding of 

this complex process. Drosophila is well suited for experimental studies with its short life cycle, 

suitability for genetic manipulation, and its functionally preserved physiology (Shaw et al, 

2008). In this article, however, the effects of glutathione on some antioxidant enzyme activities 

and mtDNA were investigated in Drosophila melanogaster. 

2. MATERIAL and METHODS 

Flies were produced in standard corn flour medium in an incubator at 25 °C. Flies of 1-3 days 

of age were included in experimental media. The control group included the standard 

Drosophila corn meal medium (corn meal, yeast, agar, sugar, water, and antifungal acid): in 

GSH group, GSH (Reduced L Glutathione 0.5%) was added in addition to this standard food 

medium.  

Flies were evaluated once a week for enzyme activities. In each measurement, 12 flies were 

used from each group (GSH group and control group). Flies were homogenized in PBS buffer 

(pH: 7.4, with protease inhibitor) and then homogenized in ultrasonic homogenizer. The 

supernatant, which was centrifuged for 20 minutes at 20.000 g of homogenate, was used for 

enzyme activation measurement. GST activity was performed with CAYMAN GST activity 

assay kit and SOD analyzes were performed with CAYMAN SOD assay kit according to kit 



Int. J. Sec. Metabolite, Vol. 9, No. 4, (2022) pp. 377-386 

380 

instructions. BSA standards and total protein amount of samples were measured by Bradford 

method (SIGMA B6916 Bradford Reagent). 

Oxidative mtDNA damage and mitochondrial copy number were measured by quantitative 

PCR method. The principle of this analysis is that a lesion in the template DNA prevents the 

progression of the thermostable polymerase. Thus, amplification in the damaged DNA template 

are reduced compared to that of the undamaged DNA. Considering that the number of mtDNA 

copies may be different in each sample, a short fragment of 100 bp was replicated for each 

sample to normalize the results (Yakes & Van Houten, 1997; Santos et al, 2002; Venkatraman 

et al, 2004). The ratio of long fragment results to that of short fragment results gives a relative 

amount of damage. In our study, SIGMA G1N350 Genomic DNA purification kit was used for 

total DNA isolation; Pico Green dsDNA quantitation dye and QUBIT 2.0 fluorometer were 

used for the quantitative analysis of template DNA and PCR products; 5 ng of template DNA 

was added to each tube; and Thermo Phire hot start II DNA polymerase was used for PCR 

processing, and 4% DMSO was added to the PCR mix. 

For short fragment (100 bp) primers are as follows (Mutlu 2012a; Mutlu 2012b; Mutlu 2013): 

11426    5’- TAAGAAAATTCCGAGGGATTCA - 3’ 

11525    5’- GGTCGAGCTCCAATTCAAGTTA - 3’ 

For long fragment (10629 bp) primers are as follows (Mutlu 2012a; Mutlu 2012b; Mutlu 2013):  

1880      5’- ATGGTGGAGCTTCAGTTGATTT - 3’ 

12508    5’- CAACCTTTTTGTGATGCGATTA - 3’ 

Thermal conditions for long fragment amplification: At 98 °C for 1 minute and then for 21 

cycles at 98 °C for 10 sec, at 52 °C for 45 sec and at 68 °C for 5 min, for a final elongation at 

68 °C for 5 min. Thermal conditions for short fragment amplification: At 98 °C for 1 minute 

and then for 21 cycles at 98 °C for 10 sec, at 55 °C for 45 sec and 72 °C for 10 sec, for final 

elongation at 72 °C for 2 min. The statistical analysis of the data was performed using the 

Kruskal Wallis test in Minitab Release 13.0 statistics program. * Marked groups are statistically 

different from other groups (p<0.05).  

3. RESULTS  

In our study, it was observed that 3-week GSH administration did not have a statistically 

significant effect on SOD and GST activities (Table 1)  whereas GSH application decreased the 

catalase enzyme activity significantly (p<0.05). This decrease in catalase enzyme activities may 

be due to the prooxidant effect of GSH at the dose used in this study. Although the decrease in 

antioxidant capacity with age was observed in SOD and catalase enzymes, such a situation was 

not observed in GST enzyme activities. 

Table 1. Results of Cat, GST and SOD enzyme analysis. 

Groups 
Cat 

(IU SA /mg pro ± SE) 

GST 

(IU SA /mg pro ± SE) 

SOD 

(IU SA /mg pro ± SE) 

GSH 8 days 115.2±8.41 4.6±0.8 16.72±4.66 

Control 8 days 161.14±9.20* 4.34±0.81 20.91±3.94 

GSH 15 days 106.63±6.06 4.42±0.71 17.27±3.71 

Control 15days 146.62±5.54* 4.20±0.76 15.09±4.65 

GSH 22 days 99.21±5.92 4.71±0.79 14.6±3.01 

Control 22days 125.46±6.95 4.39±0.69 13.91±2.28 

*Marked groups are statistically different from other groups (p<0.05). (Cat: Catalase, GST: Glutathione S-transferase, GSH: 

Glutathione, SOD: Superoxide dismutase, IU:International unit, SA: Specific activity, mg pro: miligram protein, SE: standard 

error). 
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There was no statistically significant difference between the control and GSH groups in 

mtDNA copy number values, but in the GSH group oxidative mtDNA damage was relatively 

high (Table 2). This may be due to the prooxidant effect of GSH at the dose used in this study. 

Table 2. Results of oxidative mtDNA damage and mtDNA copy number analysis (Low relative 

amplification indicates high mtDNA damage) 

Groups Relative Amplification mtDNA copy number 

GSH 22 days 0.996±0.26 245.56±21.36 

Control 22days 1.214±0.33 251.11±22.28 

4. DISCUSSION and CONCLUSION 

The level of glutathione (GSH) decreases with age or in chronic diseases such as diabetes (Jain 

et al, 2016). The presence of mitochondrial GSH (mtGSH) is necessary for the protection of 

mitochondrial DNA. In mouse embryonic fibroblasts, aging mice and rats have been reported 

to have a direct relationship between decreasing mtGSH and increased mtDNA damage in brain 

and kidneys (Circu & Aw, 2012). In their study, Dannenman et al, (2015) reported that GSH 

depletion significantly increased mtDNA lesions induced by H2O2 in fibroblasts.  

Since glutathione is a small peptide molecule, it is exposed to hydrolysis with ɤ- 

glutamyltransferase in the small intestine (Garvey et al, 1976). However, it can also be absorbed 

as a tripeptide. Although the glutathione given orally to the rats causes an increase in serum and 

tissue glutathione, the general glutathione activity in humans does not correlate with dietary 

glutathione (Iantomasi et al, 1997; Hagen et al, 1990; Aw et al, 1991). Witschi et al, (1992) 

reported that oral intake of 3g glutathione (0.15 mM/kg) in healthy subjects failed to increase 

circulating glutathione concentrations for 270 minutes. 

In most foods, glutathione is present in a wide range of 13-110 mg. More than half of the 

nutritional glutathione comes from fruits and vegetables, and less from meats. However, 

glutathione content of diet does not correlate with systemic glutathione activity in humans (Flag 

et al, 1994). 

The GSH: GSSG ratio, which is the primary determinant of the cellular redox state, shifts 

more and more to oxidation in the aging process due to an increase in GSSG content or a 

decrease in de novo GSH biosynthesis. The Km of Glutamate-Cysteine Ligase (GCL), a speed-

limiting enzyme in de novo GSH biosynthesis, increases significantly during aging. Particularly 

under stressful conditions, the speed of GSH biosynthesis is adversely affected. Experimental 

studies suggest that the accumulation of homocysteine, an intermediate in the trans-sulfation 

pathway, may cause loss of affinity between the GCL and its substrates. Over-expression of 

GCL has been shown to prolong the life of Drosophila by up to 50%, suggesting that 

irregularities in glutathione metabolism play a causative role in the aging process (Rebrin & 

Sohal, 2008).  

Although GSH has an antioxidant effect, it can provide a pro-oxidant effect in some cases. 

During GSH catabolism, removal of γ-glutamate residue from the cysteine residue causes a 

prooxidant effect and may induce lipid peroxidation of the plasma membrane and some cellular 

damage associated with it (Bajic et al, 2019). It is thought that anti-oxidant defenses should be 

developed in the aging process or ROS production will be reduced. In addition, ROS can be 

useful as well as dangerous. For this reason, it has become quite problematic to establish a 

causal and effective relationship between ROS and its participation in the aging process. For 

example, although mitochondrial hydrogen peroxide production decreases with overexpression 

of Mn superoxide dismutase and ectopic catalase in mitochondrial matrix, Drosophila's life 

span is shortened instead of elongation. However, it is a fact that antioxidant defenses decrease 
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with aging. The balance between ROS and anti-oxidants increasingly shifts to a pro-oxidant 

state (Rebrin & Sohal, 2008).  

There are scientific data showing that calorie restriction (CR) delays the onset and 

progression of age-related changes based on oxidative stress. Rebrin et al, (2003) reported that 

calorie restriction did not affect the concentration of GSH in mitochondria except for the 

increase in heart and eye, the GSSG concentration was significantly reduced in all tissues except 

the brain and the GSH and GSSG ratio increased significantly in all tissues. 

Glutathione was generally considered to be safe for use as a dietary supplement, but in an 

oral acute toxicity study of GSH in mice, fatal dose 50 (LD50) was observed to be 5 g/kg 

(Weschawalit et al, 2017). Richie et al, (2014) reported that the increase in blood was dose and 

time dependent, and that levels returned to baseline after a period of 1 month in oral Glutathione 

intake. Glutathione is used orally or intravenously to whiten skin in various countries. Studies 

have shown that supplements in reduced and oxidized glutathione forms have skin lightening 

efficacy in humans; however, in humans, very good absorption in oral use does not occur. 

Furthermore, side effects, including colds, stomach disorders, headache, back pain, hot flashes, 

soft stool, eye twitching, ear infection, urinary tract infection, and constipation may be observed 

while intravenous applications are prohibited in some countries because of serious side effects 

including anaphylaxis (Arjınpathana & Asawanonda, 2012; Richie et al, 2014; Weschawalit et 

al, 2017).  

There is a direct relationship between glutathione oxidation and mtDNA damage in 

apoptosis. However, one of the earliest and most noticeable events during apoptosis is a 

decrease in the concentration of GSH (Esteve et al, 1999; Franco et al, 2007). Buthionine 

sulfoximine (BSO) is a specific inhibitor of GSH biosynthesis (Pallardó et al, 2009).  Marengo 

et al, (2008) demonstrated that acute treatment with BSO induces a significant GSH depletion 

that causes excessive production of radical oxygen species (ROS) and DNA damage and thus 

apoptosis. It is known that there is a decrease in cellular and mitochondrial glutathione during 

apoptosis, and this decrease is known to induce apoptosis inducing permeability transition pores 

(Armstrong & Jones 2002). 

Allen and Bradley (2011) did not observe any significant changes in their study with oral 

glutathione supplementation, in healthy individuals, lipid peroxidation biomarkers, DNA, and 

glutathione. Although GSH is a very important antioxidant that plays a role in the elimination 

of oxygen radicals in the body, it has been demonstrated in some studies that it has prooxidant 

properties (Solov’eva et al, 2007). Glutathione may act as a pro-oxidant that damages DNA 

although it is present as a cleanser in millimolar levels (Fucassi et al, 2006).  

In our study, the prooxidant properties of GSH were observed. In this case, it should be 

considered that intake of GSH and its derivatives as nutritional supplements in the form of pills 

or capsules may be harmful. The complexity of antioxidants or the ability of antioxidants such 

as glutathione to have prooxidant activity depending on the dose is a complex situation called 

“antioxidant paradox” by Halliwell (2013). In fact, the redox balance can be the cause or the 

result of a disease, and in some cases it is difficult to know the level at which an antioxidant 

becomes a prooxidant. Therefore, there is still much to understand about the role of glutathione 

levels in health (Minich & Brown, 2019). 
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