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ABSTRACT 

 

In the production of thermal barrier coating (TBC) with the atmospheric plasma spray coating system, 

the process parameters directly affect the production cost and performance of the coatings. In this 

study, a comprehensive modeling-design-optimization study was conducted to improve the analytical 

performance of TBC. For this purpose, the data were taken from a literature study that included an 

extensive experimental design application. The modeling study prepared first, second, and third-order 

polynomial, trigonometric, and logarithmic-based models for each process output. Model selections 

were made with neuro-regression and a statistical method. The selected models were run on four 

different stochastic optimization algorithms for the coatings' deposition efficiency, bond strength, 

porosity, and hardness value outputs. Thirty-six neuro-regression models prepared in the modeling 

study have high R
2

training values. The second-order logarithmic nonlinear (SOLN) models were 

successful in the coatings' deposition efficiency and bond strength, and the polynomial nonlinear 

models were successful for the four process outputs. Therefore, they were chosen as the objective 

functions of the optimization algorithms. In addition, the selected models were run at the parameters 

determined by numerical optimization in the reference publication, and the prediction abilities of the 

models in the two studies were compared. SOLN models for deposition efficiency and bond strength 

values, second-order nonlinear model for hardness value, and reference study’ model predicted more 

closely to the validation test result for porosity values of coating. In the optimization studies, three or 

more algorithms suggested the same results with the same parameter sets for the deposition efficiency 

and hardness values. The optimization results show that these points can be a global optimum point 

for optimizing these two coating properties.  

 

Keywords: Plasma spray coating, Thermal barrier coating, Neuro-regression, Optimization 

 

1. INTRODUCTION 

 
Gas turbine engines are widely used in power plants and aircraft engines. Turbine engines used in 

power plants operate for extended periods (100-500 days) at high temperatures under constant thermal 

stresses. Although the ones used in aircraft engines work for shorter periods, they operate under 

variable thermal stresses due to different conditions intake off-landing and flight [1]. More dynamic 

and stable flight of airplanes is ensured by having a sizeable thrust-weight ratio. Increasing the turbine 

inlet temperature is an efficient approach to increase the thrust-weight ratio. However, increasing the 
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temperature will also increase the condition of the turbine components to undergo hot corrosion, high 

stresses, and oxidation. The most effective method to eliminate this problem is to coat turbine engine 

components with ceramic TBC with low thermal conductivity [1-3]. TBC are deposited in the form of 

a metallic bond coating and a ceramic top coating on nickel-based superalloy parts that are resistant to 

the operating conditions of turbine engines. The bond coating provides oxidation and corrosion 

resistance to the structure and balances the thermal properties and tensions between the ceramic 

coating and the substrate. The ceramic top coating provides thermal insulation, strain tolerance, and 

thermal shock resistance for hot components by reducing heat transfer. Generally, in TBC, 40-200 μm 

thick MCrAlY (M= Ni, Co) is used as the bond coating, while 100-400 μm thick yttrium-stabilized 

zirconia (YSZ) is used as the top coating [1, 2, 4].  

 

TBCs are mainly produced using either electron beam physical vapor deposition (EB-PVD) or 

atmospheric plasma spraying (APS) [5, 6]. In EB-PVD, the raw materials are deposited on the 

substrate surface after heated and evaporated with a high-energy electron beam. Coatings are 

deposited as columnar grains containing closed and open pores perpendicular to the substrate in a 

typical EB-PVD system. Microstructures of PVD coatings have good strain tolerance due to their low 

elastic modulus. In this way, the thermal cycle life of the coated engine components is extended. 

However, the EB-PVD technique is more complex and costly than other coating techniques [5]. 

Metalic or ceramic coating powders in APS coatings are injected into the plasma jet with a carrier gas. 

The coating powders are converted into semi-molten form by heating in the plasma, and at the same 

time, they are accelerated and sprayed onto the substrate surface. When semi-molten powders hit the 

substrate surface, they spread on the surface and form coating layers called splats. Therefore, APS 

coatings are relatively less costly and have lower thermal conductivity than EB-PVD coatings [1, 2, 5, 

6]. 

 

Optimization of APS coatings begins with the mathematical modeling of process parameters and 

responses. Many microstructural and physical properties of TBC, such as the amount of porosity, 

bond strength, and hardness, are affected by more than fifty factors such as plasma characteristics, 

substrate properties, coating powder properties, atmosphere, device and user properties [7]. These 

parameters can affect the properties of coatings both individually and together. Many researchers have 

studied various experimental and statistical methods to optimize these effects of parameters. Chen et 

al. investigated the effects of plasma power, process gas flow values, and coating distance on the 

thermal shock resistance of the coating by using Range analysis [8]. Bertrand et al. statistically 

investigated the effects of plasma power, coating distance, gas flow rates, speed, and angle of 

movement of the coating gun on the surface roughness, deposition efficiency, amount of porosity, and 

thermal conductivity properties of coatings [9]. Ning et al. investigated the effects of process 

parameters on thermal stress estimation of coatings using Artificial Neural Networks (ANN) [10]. 

Ramachandran et al. investigated the effects of primary and carrier gas flow rates, plasma power, 

coating distance, and powder feed rate on coatings' deposition efficiency and bond strength by 

response surface analysis (RSA) [11]. Kim et al. investigated the change of oxide growth in the bond 

layer of TBC with thermal cycle tests and process temperature and time with regression analysis (RA) 

[12]. Karthikeyan et al. investigated the effects of plasma power, coating distance, and powder feed 

rate on their coatings' porosity and hardness values with RSA. They modeled the data with RA [13]. 

 

Optimization of the physical, mechanical, and thermal properties of APS coatings has been 

investigated by many researchers using various optimization algorithms [4, 14-18]. Lin et al. obtained 

the optimal plating distance, plasma current, argon, and hydrogen gas flow rates using an ANN and 
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Genetic Algorithm (GA). They performed validation tests using these parameters and obtained 

approximately 40% reduction in the porosity value of the coatings, high-temperature stability, and 

high hardness [4]. Tonkonogy et al. investigated the effects of grinding parameters on the surface 

properties of coatings by using ant colony, particle swarm, scatter search, and genetic algorithm. They 

stated that the surfaces of the coatings deposited with the parameters suggested by the genetic 

algorithm would have lower surface defects and roughness [17]. Ye et al. investigated the 

microstructural properties of coatings such as porosity, pore-crack ratio, and maximum ferret diameter 

with the Cuckoo Search Algorithm. They noted that there was no significant relationship between 

porosity, pore-crack ratio, maximum Feret diameter, and aspect ratio, but the coating powder size had 

a significant effect on the microstructure properties of the coatings [18]. Shi et al. investigated the 

effects of the microstructural properties of the coatings on the thermal diffusivity behavior with 

Random Generation Algorithm. They suggested that the best thermal insulation achieved in a 50 μm 

coating with porosity widths from 0.54 μm to 2.56 μm [15]. Sankar et al. investigated the effects of 

coating thickness on thermal conductivity with GA and suggested the optimum coating thickness as 

125 μm [16]. Rajesh et al. used Teaching Learning Based Optimization Algorithm to obtain optimum 

microhardness, porosity, wear and surface roughness values of their coatings. They determined that 

parameters such as carrier gas flow rate, coating distance, arc current, and powder feed rate are 

directly related to coating properties [14]. 

 

The APS process optimization studies are examined, it is seen that only one first or second-order 

regression model is used in the preparation of the objective functions. In these studies, the data 

obtained with the process parameters were estimated by the models prepared with the same 

parameters. The ability of the models to predict the actual values was checked with the R
2
 calculation. 

After this evaluation, models with high R
2
 values were stated as successful. However, in this 

approach, while the models successfully predict the results obtained only in those parameters, they 

may not predict the whole process correctly. Such problems have been somewhat resolved with ANN-

based modeling and optimization studies [4]. Another critical issue is the limitation of models as 

objective functions. System parameters can be used within a certain operating range in engineering 

applications. This situation requires that the functions that define the systems also have boundaries. In 

addition, the security, sensitivity, and robustness of the algorithm used in stochastic search systems 

should also be considered [19]. 

 

In this study, a modeling-design-optimization technique was conducted to optimize the process 

parameters in the production of TBCs with the APS system. This method was organized using data 

from a literature study [11], which organized the experimental work with a factorial experimental 

design set to optimize the deposition efficiency, tensile bond strength, hardness, and porosity of the 

coatings. Firstly, in modeling and optimization studies, neuro-regression models in different forms 

(linear, polynomial, trigonometric and logarithmic) were made. Secondly, the prepared models were 

selected for each process output by checking the statistical analyzes and limit values. Finally, 

Differential Evolution (DE), Nelder-Mead (NM), Random Search (RS), and Simulated Annealing 

(SA) stochastic optimization algorithms were run with selected models to solve the same problems. In 

this way, optimum operating parameters for the APS process were obtained. 
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2. MATERIAL AND METHOD 

 

2.1. Modelling 

In the modeling stage, a hybrid method combining the benefits of RA and ANN was used to test the 

accuracy of the predictions. In this method, four-fifths of all data are randomly allocated for training. 

The rest is used for testing. The purpose of the training process is to minimize the difference between 

the experimental and predicted values by adjusting the regression models and coefficients listed in 

Table 1. Finally, in the testing phase, the ability of the models prepared with the training data to 

predict the test data is checked. 

 

Statistical analyses of the coefficient of determination (R
2
training, R

2
testing), root mean square error 

(RMSE), mean absolute error (MAE), and model efficiency (ME) of training and test data for each 

model were used to determine the relationships between neuro-regression models and experimental 

data (see Eq. 1-4). In addition, the lowest and highest predictive values of all models were calculated 

under experimental limit conditions. 

 

𝑅2 = 1 −
∑ (𝑋𝐴,𝑖−𝑋𝑃,𝑖)2𝑛

𝑖=1

∑ 𝑋𝑃,𝑖
2𝑛

𝑖=1

  (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝐴,𝑖 − 𝑋𝑃,𝑖)

2𝑛
𝑖=1   (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑋𝐴,𝑖 − 𝑋𝑃,𝑖)

𝑛
𝑖=1   (3) 

𝑀𝐸 = 1 −
∑ (𝑋𝐴,𝑖−𝑋𝑃,𝑖)2𝑛

𝑖=1

∑ (𝑋𝐴,𝑖−𝑋̅𝑃,𝑖)2𝑛
𝑖=1

   (4) 

 

where XA is the actual value and XP is the estimated value. 

To determine the objective functions in the optimization algorithms, the statistical calculations and 

limit values of the nine neuro-regression models were calculated, and model selections were made. 

Model selection is carried out in three steps. In the first step, R
2
training and R

2
testing values are checked, 

and those with values greater than 0.9 will be selected. In the second step, the limit values of the 

models are checked, and the models with less than 100% difference to the experimental data will be 

selected. In the third step, the models' RMSE, MA, and ME values are checked. Models with RMSE 

and MA values close to zero and ME values close to one will be determined as target functions. 

 

Table 1. Multiple regression model forms. 

Models  Nomenclature Formula 

First Order Multiple 

linear 
FOL 𝑌 = ∑ (𝑎𝑖𝑥𝑖)3

𝑖=1 + 𝑐  

Second order multiple 

nonlinear 
SON 𝑌 =  ∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘) + ∑ (𝑎𝑖𝑥𝑖) + 3

𝑖=1  3
𝑗=1

3
𝑘=1 𝑐  

Third order multiple 

nonlinear 
TON 

𝑌 =
 ∑ ∑ ∑ (𝛽𝑙𝑥𝑙𝑥𝑚𝑥𝑝)3

𝑝=1 +3
𝑚=1

3
𝑙=1

∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘)3
𝑗=1 + ∑ (𝑎𝑖𝑥𝑖)3

𝑖=1 + 𝑐 3
𝑘=1   

First order trigonometric 

multiple nonlinear 
FOTN 𝑌 = ∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

3

𝑖=1
+ 𝑐  

Second order 

trigonometric multiple 
SOTN 𝑌 =
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nonlinear ∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])
3

𝑖=1
+

∑ (𝛽𝑗𝑆𝑖𝑛2[𝑥𝑗] + 𝛽𝑗𝐶𝑜𝑠2[𝑥𝑗])
3

𝑗=1
+ 𝑐  

Third order trigonometric 

multiple nonlinear 
TOTN 

𝑌 =

∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])
3

𝑖=1
+

∑ (𝛽𝑗𝑆𝑖𝑛2[𝑥𝑗] + 𝛽𝑗𝐶𝑜𝑠2[𝑥𝑗])
3

𝑗=1
+

∑ (𝛾𝑘𝑆𝑖𝑛3[𝑥𝑘] + 𝛾𝑘𝐶𝑜𝑠3[𝑥𝑘])
3

𝑘=1
+ 𝑐  

First order logarithmic 

multiple nonlinear 
FOLN 𝑌 = ∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

3

𝑖=1
+ 𝑐  

Second order logarithmic 

multiple nonlinear 
SOLN 

𝑌 =

∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])
3

𝑗=1
3
𝑘=1 + ∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

3

𝑖=1
+ 𝑐  

Third order logarithmic 

multiple nonlinear 
TOLN 

𝑌 = ∑ ∑ ∑ (𝛽𝑙𝐿𝑜𝑔[𝑥𝑙𝑥𝑚𝑥𝑝])3
𝑝=1

3
𝑚=1

3
𝑙=1 +

∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])
3

𝑗=1
3
𝑘=1 + ∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

3

𝑖=1
+ 𝑐  

 

2.2. Optimization 

Structural optimization is defined as reaching the optimum value by minimizing or maximizing the 

specified single or multiple targets, considering all constraints. For this purpose, two types of 

optimization techniques called traditional and non-traditional are used. Traditional optimization 

techniques only work for continuous and differentiable functions. However, some engineering design 

problems have characteristic properties that conventional optimization techniques, which only work 

for continuous and differentiable functions, cannot be used. For this reason, only non-traditional 

methods can be used to solve these problems. For this purpose, many optimization algorithms such as 

Ant Colony, Particle Swarm, and Genetic Algorithm were developed and used in many engineering 

applications [17, 20, 21]. However, since the exact solution cannot be reached with stochastic 

methods, it is beneficial to use more than one algorithm with various technical infrastructure for the 

same optimization problem solution to increase the reliability of the result [19].  

 

Some objective function-based problems can be encountered in solving mathematical optimization 

problems by stochastic algorithms. The problems of objective functions are expressed in general titles 

as non-multilinearity, having many local optimum points, mixed-integer design variables, and 

nonlinear constraints [19]. In this study, DE, NM, SA, and RS optimization algorithms, which have 

been successfully applied in many engineering applications, were used to solve the same APS coating 

problems to overcome the difficulties encountered in the optimization study. Detailed information and 

operating parameters of these algorithms are available in [19, 20]. 

 

2.3. Problem Definition 

In this study, the deposition efficiency, bond strength, porosity, and set values of TBC produced by 

the APS process were optimized. Firstly, the data used to determine the objective functions were taken 

from the literature study [11]. The data including coating process inputs (Input Power (P), Primary 

Gas Flow Rate (PGFR) Coating Distance (D), Powder Feed Rate (PFR), Carrier Gas Flow Rate 

(CGFR) and outputs (Deposition Efficiency (E), Bond Strength (BS), Porosity (P), Hardness (H)) are 

presented in Table 2. Next, nine candidate functional structures are proposed to express the 

relationship between each process output and inputs mathematically. Then, the selection of the most 

suitable model for each output was made in two steps: the calculation of the R
2

training, R
2
testing, RMSE, 
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MAE, ME, limit values of the models, and the selection of those that satisfy the conditions. Finally, 

all coating problems are solved by four different direct search algorithms with the selected models. 

 

In this optimization study, the objective functions define the deposition efficiency, bond strength, 

porosity, and hardness values of the coating of YSZ powder as TBC in the APS system. The 

objectives of the optimization study are to maximize the deposition efficiency, bond strength, and 

hardness values and minimize the porosity value. The search space is continuous in the optimization 

setup, and the design variables are integers. Design values for this process were determined as 22 

kW≤ P ≤ 30 kW, 25lpm ≤ PGFR ≤ 45 lpm, 90 mm ≤ D ≤ 130 mm, 15 gpm ≤ PFR ≤ 35 gpm, and 3 

lpm ≤ CGFR ≤ 11 lpm. 

 

Table 2. Process parameters and responses in the factorial experimental design set of thermal barrier 

coatings [11]. 

Run  

Process parameters Responses 

P (kW) PGFR(lpm) D (mm) PFR(gpm) CGFR(lpm) E (%) BS(MPa) P (%) H (Hv0.3) 

1 24 30 100 15 9 44 9 20 710 

2 28 30 100 15 5 59 17 8 954 

3 24 40 100 15 5 49 7 11 792 

4 28 40 100 15 9 67 21 4 1082 

5 24 30 40 15 5 42 5 25 675 

6 28 30 40 15 9 39 7 22 683 

7 24 40 40 15 9 47 10 23 757 

8 28 40 40 15 5 60 14 11 966 

9 24 30 100 30 5 42 4 25 675 

10 28 30 100 30 9 58 13 14 943 

11 24 40 100 30 9 47 9 19 757 

12 28 40 100 30 5 63 16 9 1024 

13 24 30 40 30 9 32 4 25 512 

14 28 30 40 30 5 40 5 24 652 

15 24 40 40 30 5 41 6 25 663 

16 28 40 40 30 9 45 8 17 733 

17 22 35 110 25 7 41 6 23 663 

18 30 35 110 25 7 64 19 6 1036 

19 26 25 110 25 7 38 8 23 617 

20 26 45 110 25 7 53 15 11 861 

21 26 35 90 25 7 66 16 7 1071 

22 26 35 130 25 7 48 7 23 780 

23 26 35 110 15 7 58 18 12 943 

24 26 35 110 35 7 48 13 21 780 

25 26 35 110 25 3 58 10 13 943 

26 26 35 110 25 11 53 11 14 861 

27 26 35 110 25 7 70 23 5 1129 

28 26 35 110 25 7 72 22 4 1164 

29 26 35 110 25 7 70 23 5 1129 

30 26 35 110 25 7 71 22 4 1140 

31 26 35 110 25 7 70 23 5 1129 
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32 26 35 110 25 7 72 22 4 1164 

 

 

3. RESULTS AND DISCUSSION 

 

In the reference study [11], the experimental setup of TB production with the APS system was 

organized according to the factorial experimental design set: 

 

I. The results were modeled by RA. 

 

II. They obtained the optimum values graphically with response surface analysis and numerically via 

the models. In both calculations, the input power 26.3 kW, coating distance 110.5 mm, carrier gas 

flow rate 36.15 lpm, powder feed rate 23.35 gpm, and carrier gas flow rate 7.8 lpm were found as 

optimum values of process parameters. They determined the deposition efficiency as 71.0825%, the 

bond strength as 22.999 MPa, the porosity as 4.0009%, and the hardness as 1148.92 HV0.3 via 

graphical optimization. 

 

III. They calculated the deposition efficiency as 71.0837%, the bond strength as 22.9997 MPa, the 

porosity as 4.0001%, and the hardness as 1148.94 Hv0.3 via numerical optimization. 

The statistical results and limit values of neuro-regression models of deposition efficiency, bond 

strength, porosity, and hardness values of TBC produced with the APS system are given in Table 3-6, 

respectively. The objective functions for each coating response were selected by examining these 

values. 

 

Table 3. Results of Neuro-Regression models prepared for deposition efficiency of coatings. 

Models R
2

training R
2

testing RMSE MAE ME Maximum (%) Minimum (%) 

FON 0.982 0.0575 7.2345 5.9144 0.5966 81.4711 32.8749 

SON 0.9977 0.8176 2.5516 1.8566 0.9498 81.8114 9.2366x10
-7

 

TON 0.9999 0.9599 0.3202 0.1025 0.9992 81.313 19.3512 

FOTN 0.9853 0.4183 6.537 4.7106 0.6706 114.393 4.2758x10
-6

 

SOTN 0.9999 0.1365 0.3202 0.1025 0.9992 76.1162 10.4223 

TOTN 0.9999 -0.404 0.3202 0.1025 0.9992 62 1.1014 x10
-12

 

FOLN 0.9827 0.1407 7.0935 5.76 0.6121 78.7856 32.1459 

SOLN 0.9975 0.9122 1.6487 0.9137 0.9459 86.798 21.1729 

TOLN 0.9999 0.687 0.3202 0.1025 0.9992 117.494 9.1199 x10
-11

 

 

All models had R
2

training values greater than 0.98 as shown in Table 3. However, only the TON and 

SOLN models have R
2

testing values greater than 0.9. The maximum and minimum values are 81.313%, 

19.3512% for TON and 86.798%, and 21.1729% for SOLN. Therefore, it was determined that the 

limit values of both models were compatible with the experimental results. In the final model 

selection step, it was seen that both models met the criteria for RMSE, MAE, and ME values. 

Therefore, the TON and SOLN models, which were successful in all evaluations, were chosen as 

objective functions for the optimization of the deposition efficiency of the coatings. 

 

Table 4. Results of Neuro-Regression models for bond strength value of coatings. 

Models R
2

training R
2

testing RMSE MAE ME Maximum (MPa) Minimum (MPa) 
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FON 0.9264 -0.0812 3.7064 2.9298 0.6312 28.2771 0.7685 

SON 0.9941 0.9192 1.0416 0.798 0.9708 26.6069 1.1248 

TON 0.9998 0.6835 0.1601 0.0512 0.9993 27.8997 3.4416 x10
-7

 

FOTN 0.9511 0.352 3.0225 2.0048 0.7547 56.6733 8.0577 x10
-11

 

SOTN 0.9998 0.3426 0.1601 0.0512 0.9933 27.0203 1.1242 x10
-8

 

TOTN 0.9998 0.4154 0.1802 0.0633 0.9993 11.0614 2.1811 x10
-7

 

FOLN 0.9269 -0.0078 3.6955 2.9044 0.6334 27.0397 0.679 

SOLN 0.9924 0.9325 1.1858 0.9116 0.9626 28.5923 1.8785 

TOLN 0.9998 0.5425 0.1601 0.0511 0.9993 41.3351 8.1877 x10
-8

 

 

Table 4 shows the statistical results and limit values for the neuro regression models prepared for the 

bond strength of the coatings. It is seen that the R
2

training values of all models are greater than 0.92, and 

even the 2nd and 3rd-degree models are greater than 0.99. However, only the R
2
testing values of the 

SON and SOLN models were greater than the limit value of 0.9 (0.9192 and 0.9325). These two 

models also satisfied the other two criteria and were chosen as objective functions for optimizing the 

bond strength of the coatings. 

 

Table 5. Results of Neuro-Regression models for porosity value of coatings. 

Models R
2

training R
2
testing RMSE MAE ME Maximum (%) Minimum (%) 

FON 0.9579 0.0221 3.5559 2.7711 0.7768 31.5121 1.8892 x10
-7

 

SON 0.9929 0.7831 1.4061 0.89 0.965 42.7176 9.4926 x10
-11

 

TON 0.9999 0.9358 0.1601 0.0512 0.9995 36.562 0.8587 

FOTN 0.9546 0.0927 3.5683 2.2883 0.7752 57.9335 1.2801 x10-7 

SOTN 0.9999 0.3032 0.1601 0.0512 0.9995 30.9089 1.9072 x10
-7

 

TOTN 0.9999 -0.3731 0.1601 0.0512 0.9995 27.925 5.7252 x10
-8

 

FOLN 0.99525 0.1219 3.6484 2.8352 0.765 31.0363 1.7474 x10
-8

 

SOLN 0.993 0.8218 1.3967 0.8633 0.9655 47.5996 3.6005 

TOLN 0.9999 -0.1294 0.1601 0.0512 0.9995 91.9325 2.0571 x10
-7

 

 

Table 5 shows the statistical results and limit values for the neuro-regression models for the porosity 

values of the coatings. It is seen that the R
2
training values of all models are greater than 0.95, but only 

the R
2

testing value 0.9358 of the TON model is greater than the limit value of 0.9. Therefore, the 

maximum and minimum values that can be reached with the TON model are 36.562% and 0.8587%, 

respectively, which meet the limit criteria. Finally, the RMSE, MAE, and ME values were examined. 

It was seen that the RMSE and MAE values were close to zero (0.1601 and 0.0512), and the ME 

values were close to 1 (0.9995). Therefore, the TON model met all the criteria and was chosen as the 

objective function for optimizing the porosity of the coatings. 

 

Table 6. Results of Neuro-Regression models for hardness value of coatings. 

Models R
2

training R
2

testing RMSE MAE ME Maximum (Hv0.3) Minimum (Hv0.3) 

FON 0.9871 0.042 8.876 78.4129 0.6553 1358.58 487.096 

SON 0.9991 0.9694 3.7793 2.4316 0.9792 1238.91 280.1352 

TON 0.9999 0.4552 5.6044 1.7948 0.999 1410.46 301.154 

FOTN 0.9918 0.4106 78.9978 49.7294 0.8055 2091.45 5.088 x10
-6

 

SOTN 0.9999 -0.0912 5.6044 1.7948 0.999 1248.3 178.491 
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TOTN 0.9999 0.796 5.6044 1.7948 0.999 1193.6 15.2357 x10
-6

 

FOLN 0.9866 0.1243 100.966 80.0364 0.6823 1312.47 498.078 

SOLN 0.9989 0.043 28.2528 17.5079 0.9751 1313.19 3.6379 x10
-12

 

TOLN 0.9999 0.522 5.6044 1.7948 0.999 1760.2 2.8323 x10
-8

 

 

Table 6 shows the statistical results and limit values for the neuro-regression models for the hardness 

values of the coatings. It is seen that the R
2
training values of all models are greater than 0.98, but only 

the R
2

testing value 0.9694 of the SON model is greater than the limit value of 0.9. Therefore, the SON 

model also satisfied the other two criteria and was chosen as objective functions to optimize the 

hardness of the coatings. As a result of the model selections, TON and SOLN models for deposition 

efficiency, SON and SOLN models for bond strength, TON model for porosity values, and SON 

model for hardness value were selected as the objective functions in the optimization of the coatings.  

 

In the reference study, regression models were prepared for each coating process response, and then a 

numeric optimization study was carried out using these models. For all coating process responses, an 

optimum experimental set was determined as input power 26.3 kW, primary gas flow rate 36.15 lmp, 

coating distance 110.5 mm, powder feed rate 23.35 gpm, and carrier gas flow rate 7.8 lpm. The results 

of validation tests, the predicted values of the regression models of the reference, and current studies 

are given in Table 7. 

 

Table 7. Comparison of Neuro-Regression model results with reference study. 

Responses Validation 

Reference Study 

 

Current Study 

Objective functions 

TON SOLN 

Deposition efficiency (%) 72 71.0837 73.0561 71.2686 

Bond strength (MPa) 21 22.9997 24.1362 22.3709 

Porosity (%) 4 4.0001 3.9404  

Hardness (HV0.3) 1153 1148.94 1149.37  

 

When Table 7 is examined, it is seen that the estimated values of regression models of both the 

reference and the current studies have very close to the validation results. For example, while the error 

rates in the estimations of the deposition efficiency of coatings were 1.72% in the reference study, it 

was 1.466 % with the TON model and 1.025 % with the SOLN model in the current study. These 

values for the bond strength of the coatings were 9.522% in the reference study, 14.934% with the 

SON model, and 6.528% with the SOLN model in the current study. For the porosity and hardness 

values of the coatings, the rates were 0.0025% and 0.3521% in the reference study and 1.49% and 

0.314% in the current study, respectively.  

 

Four different optimization algorithms were used to maximize the deposition efficiency, bond 

strength, and hardness values and minimize the coatings' porosity value. Table 8 shows the objective 

functions, optimization constraints, suggested process parameters, and estimated values of algorithms 

for each coating response. 

 

Table 8. Optimization results of thermal barrier coating. 

Responses Objective Constraints Opt. Suggested Suggested Design Parameters 
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Functions Algorithms Values 

Deposition 

efficiency 

(%) 

TON 

 

22 kW<P<30 kW 

25lpm<PGFR<45 

lpm 90 

mm<D<130 mm 

15 gpm<PFR< 35 

gpm 3 

lpm<CGFR<11 

lpm 

DE 

81.312 

X1= 28.6369 kW, X2= 39.4152 

lpm, X3=99.4844 mm, X4= 

22.3357 gpm,  

X5= 8.1161 lpm 

SA 

NM 

RS 124.755 
X1= 30, X2= 25 lpm, X3= 130 mm, 

X4=35 gpm, X5=3 lpm 

SOLN DE 

86.798 

X1= 27.4608 kW, X2= 36.0565 

lpm, X3=90 mm, X4=21.3869 

gpm, X5=7.1047 lpm 

SA 

NM 

RS 
     

Bond 

strength 

(MPa) 

SON DE 
27.8997 

X1= 29.0027 Kw, X2= 40.6943 

lpm, X3= 105.441 mm, 

X4=21.2947 gpm, X5=7.1047 lpm NM 

RS 
73.5196 

X1= 30 Kw, X2= 25 lpm, X3= 130, 

X4=35 gpm, X5=3 lpm SA 

SOLN DE 

28.5923 

X1= 27.8652 Kw, X2= 36.711 lpm, 

X3= 90 mm, X4=19.6789 gpm, 

X5=6.2139 lpm 
NM 

RS 47.3729 
X1= 30, X2= 25, X3= 130, X4=35 

gpm, X5=11 lpm 

SA 40.0992 
X1= 22 Kw, X2= 45 lpm, X3= 130 

mm, X4=35 gpm, X5=3 lpm 
     

Porosity 

(%) 

TON 

DE 2.0568 

X1= 27.3598 kW, X2= 36.5172 

lpm, X3= 93.8257 mm, 

X4=15.6061 gpm, X5=6.1185 lpm 

SA 1.1018 

X1= 27.9016 kW, X2= 34.893 lpm, 

X3=105.305 mm, X4=15.0098 

gpm, X5=3 lpm 

NM 0.8881 

X1= 27.6482 kW, X2= 37.0504 

lpm, X3=106.634 mm, X4=22.8431 

gpm, X5=6.6352 lpm 

RS 2.0694 

X1= 29.8778 kW, X2= 42.2386 

lpm, X3= 95.307 mm, X4=23.7204 

gpm, X5=5.3439 lpm 
     

Hardness 

(HV0.3) 

TON DE 

1313.19 

X1= 27.8464 kW, X2= 36.755 lpm, 

X3= 90 mm, X4=20.2408 gpm, 

X5=5.7636 lpm 

SA 

NM 

RS 

*( X1:Input Power, X2:Primary Gas Flow Rate, X3: Coating Distance, X4: Powder Feed Rate, X5: 

Carrier Gas Flow Rate) 

 

When Table 8 is examined, the highest value for maximizing the deposition efficiency of the coatings 

was predicted as 124.755% by the TON model with the RS algorithm. However, this value was 
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considered an unrealistic result. Other algorithms of the TON model predicted as 81.312% with the 

same design parameters (X1=28.6369 kW, X2=39.4152 lpm, X3=99.4844 mm, X4=22.3357 gpm, 

X5=8.1161 lpm). Similarly, by the SOLN model, the four algorithms predicted as 86.798% with same 

design parameters (X1=27.4608 kW, X2=36.0565 lpm, X3=90 mm, X4=21.3869 gpm, X5=7.1047 

lpm). The fact that more than three algorithms give the same result with the same parameters for the 

deposition efficiency of the coatings is interpreted as that the objective functions are consistent and 

that these parameter sets can have local maximum points. In the maximization studies, the bond 

strength values of the coatings were predicted as 27.8997 MPa by DE and NM algorithms in the TON 

model with the parameters set as X1=29.0027 kW, X2=40.6943 lpm, X3=105.441 mm, X4=21.2947 

gpm, and X5=7.1047 lpm. In the same model, it was predicted as 73.5196 MPa by the RS and SA 

algorithms with the parameters X1=30 kW, X2=25 lpm, X3=130 mm, X4=35 gpm, and X5=3 lpm. 

Nevertheless, this value was considered an unrealistic result. The DE and NM algorithms of the 

SOLN model estimated 28.5923 MPa with the parameter set X1=27.8652 kW, X2=36.711 lpm, X3=90 

mm, X4=19.6789 gpm, X5=6.2139 lpm. The values estimated by the RS and SE algorithms are 

47.3729 MPa and 40.0992 MPa, about twice the maximum experimental result, so they did not meet 

the criterion. To minimize the porosity value of the coatings, DE, SA, NM, and RS algorithms were 

run with the TON model and predicted as 2.0568%, 1.1018%, 0.8881%, and 2.0694%, respectively. 

To maximize the hardness values of the coatings, four algorithms were run with the TON model and 

predicted as 1313.19 HV0.3 with the same design parameters (X1=27.8464 kW, X2=36.755 lpm, X3=90 

mm, X4=20.2408 gpm, X5=5.7636 lpm). It is interpreted that these parameters, which are suggested to 

give the same result by all four algorithms, can indicate a global optimum point. The optimization 

results of the TBC are evaluated in general, both polynomial and logarithmic models were successful, 

but trigonometric models were not. 

 

4. CONCLUSIONS 

 

The deposition efficiency, adhesion strength, porosity, and hardness values are the properties that 

affect both the production costs and the performance of TBCs. The optimization studies of TBC were 

carried out in two steps in the study. In the first step, first, second, and third-order polynomial, 

logarithmic and trigonometric regression models were prepared by fitting from the coating process 

data. Then, model selection was made for each coating output. The selected models were run with 

four different optimization algorithms for the same problem solutions in the second step. Based on the 

studies carried out, the following results have been obtained: 

 

• R
2
training values of thirty-six models prepared for four different process outputs are greater than 0.92. 

However, only six models have R
2

testing values greater than 0.9. This situation shows the inadequacy of 

the classical R
2
 calculation. 

 

• In the regression model selections, 2nd and/or 3rd-order nonlinear polynomial and logarithmic 

models successfully described the process, while trigonometric models were not successful in solving 

any problem. 

 

• A design parameter set was proposed for the optimum values of all coating outputs in the reference 

study, and a validation test was performed according to the parameter set. Calculations were made 

using this proposed design set with the regression models in both the reference study and the current 

study. The closeness of the results in the two studies to the validation test results was compared. The 
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present study models gave better results for the deposition efficiency, adhesion strength, and hardness 

values. 

 

• In the optimization studies, the same result was estimated for the deposition efficiency value with the 

same design parameters by three algorithms with the TON model and four algorithms with the SOLN 

model. Similarly, for the hardness value of the coatings, the four algorithms predicted the same result 

with the same design parameters. Therefore, these results are interpreted as showing the global 

optimum of the proposed parameters for the two outputs. 
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